跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2026/01/13 10:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱義琦
研究生(外文):Yi-Chi Chiu
論文名稱:製備鉍薄膜電極應用於微分脈衝剝除法中以偵測重金屬濃度
論文名稱(外文):Electrochemical Detection of Heavy Metals by Differential Pulse Anodic Stripping Voltammetry on Bismuth Thin Film Electrodes
指導教授:顏溪成顏溪成引用關係
口試日期:2017-06-28
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:103
中文關鍵詞:陽極剝除伏安法微分脈衝法鉍薄膜電極
外文關鍵詞:Differential pulse voltammetryBismuth film electrodesAnodic stripping voltammetryCd ion detection
相關次數:
  • 被引用被引用:0
  • 點閱點閱:210
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
電化學偵測方法相較於光譜法提供較方便且便宜的偵測條件,其費用及設備需求較低。於電化學偵測重金屬中,汞薄膜電極及懸汞電極有極低的偵測極限。然而,鉍金屬其毒性較汞金屬低,且能夠被人體所代謝,屬於對自然危害較低的金屬,近年來鉍薄膜電極已漸漸取代汞薄膜電極。
於本論文研究中,以含40ppm鉍離子之0.1M醋酸與醋酸鈉緩衝液將鉍金屬電沉積於玻璃碳電極上製備鉍薄膜電極,並以微分脈衝剝除法偵測溶液中的鎘離子濃度。在不改變脈衝波形的情況下,探討其沉積條件、待測液中的鉍離子濃度及旋轉對偵測結果之影響,並嘗試增加其有效反應面積及省去預沉積步驟以找到最佳的偵測效果及最方便的偵測方法。
實驗結果發現,在玻璃碳電極的前處理中,以0.5M硫酸作為洗液並以循環伏安法活化後之電極表面其有效反應面積提升了約原有的76%。在待測液方面,於含1ppm鉍離子之醋酸與醋酸鈉緩衝液中在偵測各濃度之鎘離子皆比其他濃度的鉍離子溶液來的好,而在線性表現方面於100ppb的鉍離子溶液中表現較好,其R-square值為0.998,因此可以推斷鎘濃度於10ppb至120ppb下,100ppb的鉍離子待測液為最佳偵測溶液。於氧氣敏感性探討中,在未除去氧氣的溶液中偵測重金屬溶液,於低掃描速率的條件下,鉍薄膜電極依舊能保有其效果。在沉積電位方面,本研究探討出其沉積電位窗口於-0.87V至-1.1V(vs Ag/AgCl/KCl),若沉積電位於-1.2V以下,其剝除時產生的氫氣會附著於電極上,導致電極有效反面積下降,而造成電流峰值降低。為了簡化偵測流程,本研究探討鉍薄膜電極預沉積的必要性,結果發現於預濃縮時一同將鉍與鎘沉積在玻璃碳電極上能夠簡化操作流程,並避免電極於更換電沉積液及待測液時可能造成電極的汙染。而在電極部分,發現於剝除中不旋轉能獲得較穩定的偵測曲線,也能維持較厚的質傳邊界層。結合本實驗測試之結果測試於最佳條件中對於溶液中之鎘離子之偵測極限為0.2ppb。
For trace metal analysis, electroanalytical methods offer several advantages over spectroscopies: simplicity, low cost and possibility of in-field application. Although the mercury thin film electrode and hanging mercury drop electrode are highly sensitive and selective, mercury is a highly toxic metal. Bismuth has been known as an environmentally friendly material which can be metabolized by human body, so nowadays bismuth thin film electrodes have become alternative material for electrochemical analysis. In this study, bismuth thin film electrodes were fabricated by electroplating bismuth on the glassy carbon electrode(GCE) in 0.1M acetate buffer solution (pH=4) containing 40ppm of Bi(III), and used in measuring of the concentration of Cd(II) by differential pulse anodic stripping voltammetry(DPASV). The effects of pre-electrodeposition potential, the concentration of Bi(III) in the analyte solution, and rotation of the working electrode have been investaged.
The experimental results showed that the sensitivity of the electrode was increased about 76% with the pretreatment of glassy carbon electrodes by applying cyclic potential scans in 0.5M H2SO4. It was found that DPASV provided better Cd(II) detection in the analyte solution containing 1000ppb of Bi(III), and the best linear plot based on peak area in determination of 10 to 120ppb of Cd(II) occurred in the analyte solution containing 100ppb of Bi(III). The Bi thin film electrode on GCE offered good detection, even in non-deaerated solutions. From the investigation of pre-electrodeposition potential in DPASV, the maximum peak current was obtained at -1.1V (vs Ag/AgCl/KCl). It has been found in the experimental results that the preparation of Bi thin film electrode before anodic stripping voltammetry has been found unnecessarily, which can simplify the detection procedures. In the anodic stripping step, the electrode without rotation could keep the more stable current peaks than the electrode with rotation. The detection limit of Cd2+ is 0.2ppb.
誌謝 I
中文摘要 II
英文摘要 III
目錄 V
圖目錄 VIII
表目錄 XIII
第1章 緒論 1
1-1 前言 1
1-2 研究背景 2
1-3 研究動機 4
第2章 文獻回顧與原理介紹 6
2-1 金屬 6
2-2 微量金屬偵測方法 12
2-2-1 層析法 12
2-2-2 光譜法 13
2-2-3 微結構傳感器(Nano structure transistor) 14
2-3 電化學分析方法 15
2-3-1 電位法及常見電極 15
2-3-2 伏安法及常見電極 18
2-4 電化學偵測模式 26
2-5 陽極剝除伏安法 31
2-5-1 線性掃描剝除法(Linear sweep anodic stripping voltammetry) 34
2-5-2 常規脈衝剝除法(Normal pulse anodic stripping voltammetry) 35
2-5-3 方波陽極剝除法(Square wave anodic stripping voltammetry) 36
2-5-4 微分脈衝剝除法(Differential pulse anodic stripping voltammetry) 39
2-6 不同電解液的偵測範圍 44
2-7 三電極電化學系統 46
第3章 研究方法 47
3-1 實驗藥品及耗材 47
3-2 實驗器材 48
3-3 實驗溶液配製 48
3-4 實驗步驟 50
3-4-1 電流儀程序設定 50
3-4-2 清洗玻璃碳電極 53
3-4-3 電沉積鉍薄膜電極 55
3-4-4 微分脈衝剝除法偵測重金屬離子 56
第4章 結果與討論 58
4-1 鉍金屬沉積 58
4-2 影響電流密度峰值及其線性之分析 60
4-2-1 以循環伏安法活化玻璃碳電極之影響 60
4-2-2 待測液中的氧氣對於鉍薄膜電極之效應 61
4-2-3 鉍濃度對電流密度峰值之影響 61
4-2-4 預濃縮電位對電流密度峰值之影響 63
4-2-5 有無先電沉積鉍薄膜電極之需要性探討 64
4-2-6 電極旋轉對於DPASV掃描之影響 65
4-2-7 鎘離子偵測極限探討 67
4-3 多成份待測液下對鎘離子偵測效果的影響 68
第5章 結論 90
第6章 參考文獻 91
[1]McGaw, E.A. and Swain, G.M., A comparison of boron-doped diamond thin-film and Hg-coated glassy carbon electrodes for anodic stripping voltammetric determination of heavy metal ions in aqueous media. Analytica chimica acta, 2006. 575(2): p. 180-189.
[2]Lunvongsa, S., Takayanagi, T., Oshima, M., and Motomizu, S., Novel catalytic oxidative coupling reaction of N, N-dimethyl-p-phenylenediamine with 1, 3-phenylenediamine and its applications to the determination of copper and iron at trace levels by flow injection technique. Analytica chimica acta, 2006. 576(2): p. 261-269.
[3]Järup, L., Hazards of heavy metal contamination. British Medical Bulletin, 2003. 68(1): p. 167-182.
[4]Silva, Y.J.A.B.d., Nascimento, C.W.A.d., and Biondi, C.M., Comparison of USEPA digestion methods to heavy metals in soil samples. Environmental Monitoring and Assessment, 2014. 186(1): p. 47-53.
[5]Cheng, M.C. The Study on the Removal of Cadminum and Lead Contaminated Soil by Electrochemical Treatment. M.S. thesis, National Taiwan University, 2001
[6]Inaba, T., Kobayashi, E., Suwazono, Y., Uetani, M., Oishi, M., Nakagawa, H., and Nogawa, K., Estimation of cumulative cadmium intake causing Itai–itai disease. Toxicology letters, 2005. 159(2): p. 192-201.
[7]Li, M., Gou, H., Al-Ogaidi, I., and Wu, N., Nanostructured sensors for detection of heavy metals: a review. ACS Sustainable Chemistry & Engineering, 2013. 1(7): p. 713–723.
[8]Aragay, G. and Merkoçi, A., Nanomaterials application in electrochemical detection of heavy metals. Electrochimica Acta, 2012. 84: p. 49-61.
[9]袁運開, 自然科學概論. 2005: 五南圖書出版股份有限公司.
[10]Duffus, J.H., " Heavy metals" a meaningless term?(IUPAC Technical Report). Pure and applied chemistry, 2002. 74(5): p. 793-807.
[11]Jones, L. and Atkins, P., Chemistry: Molecules, matter and change. 2004: W.H.Freeman and Co Ltd.
[12]Foster, W., Inorganic Chemistry (Niels Bjerrum). Journal of Chemical Education, 1936. 13(7): p. 349.
[13]Goyer, R.A., Toxic and essential metal interactions. Annual review of nutrition, 1997. 17(1): p. 37-50.
[14]Sigel, A., Sigel, H., and Sigel, R.K., Interrelations between essential metal ions and human diseases. 2013: Springer.
[15]Holister, G.S.P., Andrew, The Environment: A Dictionary of the World Around Us. 1976: Arrow Books, London UK.
[16]Walker, P.M., Chambers science and technology dictionary. 1988: Chambers-Cambridge.
[17]Hampel, C.A. and Hawley, G.G., Glossary of chemical terms. 1982: Van Nostrand Reinhold.
[18]Scott, J. and Smith, P., Dictionary of wastewater and wastewater treatment. 1981, IWA Publishing, Butterworths, London.
[19]Zenk, M.H., Heavy metal detoxification in higher plants-a review. Gene, 1996. 179(1): p. 21-30.
[20]Clifford, A.F., Corngold, N., Flowers, B.H., and Ter Haar, D., International Encyclopedia of Chemical Science. 1964: D. Van Nostrand.
[21]Maynard, J.L., Concise chemical and technical dictionary. 1986: Chemical Pub. Co.
[22]Rand, G., Wells, P., and McCarty, L., Fundamentals Of Aquatic Toxicology: Effects, Environmental Fate And Risk Assessment. 1995: Taylor & Francis Group.
[23]Fu, F. and Wang, Q., Removal of heavy metal ions from wastewaters: a review. Journal of environmental management, 2011. 92(3): p. 407-418.
[24]Mahmoud, M.E., Osman, M.M., Hafez, O.F., Hegazi, A.H., and Elmelegy, E., Removal and preconcentration of lead (II) and other heavy metals from water by alumina adsorbents developed by surface-adsorbed-dithizone. Desalination, 2010. 251(1): p. 123-130.
[25]Sheoran, A. and Sheoran, V., Heavy metal removal mechanism of acid mine drainage in wetlands: a critical review. Minerals engineering, 2006. 19(2): p. 105-116.
[26]Kabdaşlı, I., Arslan, T., Ölmez-Hancı, T., Arslan-Alaton, I., and Tünay, O., Complexing agent and heavy metal removals from metal plating effluent by electrocoagulation with stainless steel electrodes. Journal of hazardous materials, 2009. 165(1): p. 838-845.
[27]Kobya, M., Demirbas, E., Senturk, E., and Ince, M., Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone. Bioresource technology, 2005. 96(13): p. 1518-1521.
[28]Neufeld, R.D., Heavy metals-induced deflocculation of activated sludge. Journal (Water Pollution Control Federation), 1976: p. 1940-1947.
[29]Tack, F. and Verloo, M.G., Chemical speciation and fractionation in soil and sediment heavy metal analysis: a review. International Journal of Environmental Analytical Chemistry, 1995. 59(2-4): p. 225-238.
[30]Shaw, M.J. and Haddad, P.R., The determination of trace metal pollutants in environmental matrices using ion chromatography. Environment International, 2004. 30(3): p. 403-431.
[31]Porath, J., Carlsson, J., Olsson, I., and Belfrage, G., Metal chelate affinity chromatography, a new approach to protein fractionation. Nature, 1975. 258: p. 598-599.
[32]Tüzen, M., Determination of heavy metals in soil, mushroom and plant samples by atomic absorption spectrometry. Microchemical Journal, 2003. 74(3): p. 289-297.
[33]Tüzen, M., Determination of heavy metals in fish samples of the middle Black Sea (Turkey) by graphite furnace atomic absorption spectrometry. Food chemistry, 2003. 80(1): p. 119-123.
[34]Yuan, C.G., Shi, J.B., He, B., Liu, J.F., Liang, L.N., and Jiang, G.B., Speciation of heavy metals in marine sediments from the East China Sea by ICP-MS with sequential extraction. Environment International, 2004. 30(6): p. 769-783.
[35]Voica, C., Kovacs, M., Dehelean, A., Ristoiu, D., and Iordache, A., ICP-MS determinations of heavy metals in surface waters from Transylvania. Romanian Journal of Physics, 2012. 57(6-7): p. 1184-1193.
[36]Sun, B., Zhao, F., Lombi, E., and Mcgrath, S., Leaching of heavy metals from contaminated soils using EDTA. Environmental Pollution, 2001. 113(2): p. 111-120.
[37]Santiago-Rivas, S., Moreda-Piñeiro, A., Bermejo-Barrera, A., and Bermejo-Barrera, P., Fractionation metallothionein-like proteins in mussels with on line metal detection by high performance liquid chromatography–inductively coupled plasma-optical emission spectrometry. Talanta, 2007. 71(4): p. 1580-1586.
[38]Jamali, M.R., Assadi, Y., Shemirani, F., Hosseini, M.R.M., Kozani, R.R., Masteri-Farahani, M., and Salavati-Niasari, M., Synthesis of salicylaldehyde-modified mesoporous silica and its application as a new sorbent for separation, preconcentration and determination of uranium by inductively coupled plasma atomic emission spectrometry. Analytica chimica acta, 2006. 579(1): p. 68-73.
[39]Chen, K.I., Li, B.R., and Chen, Y.T., Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation. Nano Today, 2011. 6(2): p. 131-154.
[40]Zhang, Z., Yu, K., Bai, D., and Zhu, Z., Synthesis and Electrochemical Sensing Toward Heavy Metals of Bunch-like Bismuth Nanostructures. Nanoscale Research Letters, 2009. 5(2): p. 398.
[41]Düzgün, A., Zelada-Guillén, G.A., Crespo, G.A., Macho, S., Riu, J., and Rius, F.X., Nanostructured materials in potentiometry. Analytical and bioanalytical chemistry, 2011. 399(1): p. 171-181.
[42]Shamsipur, M. and Mashhadizadeh, M.H., Cadmium ion-selective electrode based on tetrathia-12-crown-4. Talanta, 2001. 53(5): p. 1065-1071.
[43]Meyerhoff, M. and Opdycke, W., Ion-selective electrodes. Advances in clinical chemistry, 1986. 25: p. 1-47.
[44]Laylin, J.K., Nobel laureates in chemistry, 1901-1992. 1993: Chemical Heritage Foundation.
[45]Khani, H., Rofouei, M.K., Arab, P., Gupta, V.K., and Vafaei, Z., Multi-walled carbon nanotubes-ionic liquid-carbon paste electrode as a super selectivity sensor: application to potentiometric monitoring of mercury ion (II). Journal of Hazardous Materials, 2010. 183(1): p. 402-409.
[46]Monk, P.M., Fundamentals of electro-analytical chemistry. Vol. 29. 2008: John Wiley & Sons.
[47]Bard, A.J. and Faulkner, L.R., Electrochemical methods: fundamentals and applications. Vol. 2. 1980: Wiley New York.
[48]Kim, T.H., Lee, J., and Hong, S., Highly selective environmental nanosensors based on anomalous response of carbon nanotube conductance to mercury ions. The Journal of Physical Chemistry C, 2009. 113(45): p. 19393-19396.
[49]Ren, Z., Huang, Z., Wang, D., Wen, J., Xu, J., Wang, J., Calvet, L., Chen, J., Klemic, J., and Reed, M., Growth of a single freestanding multiwall carbon nanotube on each nanonickel dot. Applied physics letters, 1999. 75(8): p. 1086-1088.
[50]Liu, G., Lin, Y., Tu, Y., and Ren, Z., Ultrasensitive voltammetric detection of trace heavy metal ions using carbon nanotube nanoelectrode array. Analyst, 2005. 130(7): p. 1098-1101.
[51]Tarley, C.R.T., Santos, V.S., Baêta, B.E.L., Pereira, A.C., and Kubota, L.T., Simultaneous determination of zinc, cadmium and lead in environmental water samples by potentiometric stripping analysis (PSA) using multiwalled carbon nanotube electrode. Journal of hazardous materials, 2009. 169(1): p. 256-262.
[52]Injang, U., Noyrod, P., Siangproh, W., Dungchai, W., Motomizu, S., and Chailapakul, O., Determination of trace heavy metals in herbs by sequential injection analysis-anodic stripping voltammetry using screen-printed carbon nanotubes electrodes. Analytica chimica acta, 2010. 668(1): p. 54-60.
[53]Hwang, G.H., Han, W.K., Park, J.S., and Kang, S.G., Determination of trace metals by anodic stripping voltammetry using a bismuth-modified carbon nanotube electrode. Talanta, 2008. 76(2): p. 301-308.
[54]Morton, J., Havens, N., Mugweru, A., and Wanekaya, A.K., Detection of Trace Heavy Metal Ions Using Carbon Nanotube‐Modified Electrodes. Electroanalysis, 2009. 21(14): p. 1597-1603.
[55]Xu, H., Zeng, L., Xing, S., Xian, Y., Shi, G., and Jin, L., Ultrasensitive voltammetric detection of trace lead (II) and cadmium (II) using MWCNTs‐nafion/bismuth composite electrodes. Electroanalysis, 2008. 20(24): p. 2655-2662.
[56]Jia, X., Li, J., and Wang, E., High‐Sensitivity Determination of Lead (II) and Cadmium (II) Based on the CNTs‐PSS/Bi Composite Film Electrode. Electroanalysis, 2010. 22(15): p. 1682-1687.
[57]Gao, X., Wei, W., Yang, L., and Guo, M., Carbon Nanotubes/Poly (1, 2‐diaminobenzene) Nanoporous Composite Film Electrode Prepared by Multipulse Potentiostatic Electropolymerisation and Its Application to Determination of Trace Heavy Metal Ions. Electroanalysis, 2006. 18(5): p. 485-492.
[58]Wanekaya, A.K., Applications of nanoscale carbon-based materials in heavy metal sensing and detection. Analyst, 2011. 136(21): p. 4383-4391.
[59]Shen, L., Chen, Z., Li, Y., He, S., Xie, S., Xu, X., Liang, Z., Meng, X., Li, Q., Zhu, Z., Li, M., Le, X.C., and Shao, Y., Electrochemical DNAzyme sensor for lead based on amplification of DNA− Au Bio-Bar codes. Analytical chemistry, 2008. 80(16): p. 6323-6328.
[60]Economou, A. and Fielden, P., Mercury film electrodes: developments, trends and potentialities for electroanalysis. Analyst, 2003. 128(3): p. 205-213.
[61]Bott, A.W., Stripping voltammetry. Current Separations, 1992. 12(3): p. 141-147.
[62]Wojciechowski, M. and Balcerzak, J., Square-wave anodic stripping voltammetry at glassy-carbon-based thin mercury film electrodes in solutions containing dissolved oxygen. Analytical Chemistry, 1990. 62(13): p. 1325-1331.
[63]Wang, J., Lu, J., Hocevar, S.B., Farias, P.A., and Ogorevc, B., Bismuth-coated carbon electrodes for anodic stripping voltammetry. Analytical chemistry, 2000. 72(14): p. 3218-3222.
[64]Wang, J., Stripping Analysis at Bismuth Electrodes: A Review. Electroanalysis, 2005. 17(15-16): p. 1341-1346.
[65]Jagner, D., Potentiometric stripping analysis. A review. Analyst, 1982. 107(1275): p. 593-599.
[66]Dugo, G., La Pera, L., La Torre, G.L., and Giuffrida, D., Determination of Cd (II), Cu (II), Pb (II), and Zn (II) content in commercial vegetable oils using derivative potentiometric stripping analysis. Food Chemistry, 2004. 87(4): p. 639-645.
[67]Jagner, D., Computerised flow potentiometric stripping analysis. TrAC Trends in Analytical Chemistry, 1983. 2(3): p. 53-56.
[68]Wang, J., Analytical electrochemistry. 2006: John Wiley & Sons.
[69]Holak, W., Determination of arsenic by cathodic stripping voltammetry with a hanging mercury drop electrode. Analytical Chemistry, 1980. 52(13): p. 2189-2192.
[70]Mirceski, V., Sebez, B., Jancovska, M., Ogorevc, B., and Hocevar, S.B., Mechanisms and kinetics of electrode processes at bismuth and antimony film and bare glassy carbon surfaces under square-wave anodic stripping voltammetry conditions. Electrochimica Acta, 2013. 105: p. 254-260.
[71]Ramaley, L. and Krause Jr, M.S., Theory of square wave voltammetry. Analytical Chemistry, 1969. 41(11): p. 1362-1365.
[72]Demetriades, D., Economou, A., and Voulgaropoulos, A., A study of pencil-lead bismuth-film electrodes for the determination of trace metals by anodic stripping voltammetry. Analytica chimica acta, 2004. 519(2): p. 167-172.
[73]Królicka, A., Pauliukait, R., S̆vancara, I., Metelka, R., Bobrowski, A., Norkus, E., Kalcher, K., and Vytřas, K., Bismuth-film-plated carbon paste electrodes. Electrochemistry Communications, 2002. 4(2): p. 193-196.
[74]Grincienė, G., Selskienė, A., Verbickas, R., Norkus, E., and Pauliukaite, R., Peculiarities of electrochemical bismuth film formation in the presence of bromide and heavy metal ions. Electroanalysis, 2009. 21(15): p. 1743-1749.
[75]Economou, A., Bismuth-film electrodes: recent developments and potentialities for electroanalysis. TrAC Trends in Analytical Chemistry, 2005. 24(4): p. 334-340.
[76]Pauliukaitė, R., Hočevar, S.B., Ogorevc, B., and Wang, J., Characterization and applications of a bismuth bulk electrode. Electroanalysis, 2004. 16(9): p. 719-723.
[77]Benoit, R., Saboungi, M.-L., Treguer-Delapierre, M., Milosavljevic, B., and Meisel, D., Reactions of radicals with hydrolyzed Bi (III) ions: A pulse radiolysis study. The Journal of Physical Chemistry A, 2007. 111(42): p. 10640-10645.
[78]Baes Jr, C. and Mesmer, R., The Hydrolysis of Cations. A Wiley-Interscience Publication. 1976, John Wiley & Sons, New York, NY.
[79]Zhao, G., Wang, H., Liu, G., and Wang, Z., Box–Behnken response surface design for the optimization of electrochemical detection of cadmium by Square Wave Anodic Stripping Voltammetry on bismuth film/glassy carbon electrode. Sensors and Actuators B: Chemical, 2016. 235: p. 67-73.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top