|
[1]McGaw, E.A. and Swain, G.M., A comparison of boron-doped diamond thin-film and Hg-coated glassy carbon electrodes for anodic stripping voltammetric determination of heavy metal ions in aqueous media. Analytica chimica acta, 2006. 575(2): p. 180-189. [2]Lunvongsa, S., Takayanagi, T., Oshima, M., and Motomizu, S., Novel catalytic oxidative coupling reaction of N, N-dimethyl-p-phenylenediamine with 1, 3-phenylenediamine and its applications to the determination of copper and iron at trace levels by flow injection technique. Analytica chimica acta, 2006. 576(2): p. 261-269. [3]Järup, L., Hazards of heavy metal contamination. British Medical Bulletin, 2003. 68(1): p. 167-182. [4]Silva, Y.J.A.B.d., Nascimento, C.W.A.d., and Biondi, C.M., Comparison of USEPA digestion methods to heavy metals in soil samples. Environmental Monitoring and Assessment, 2014. 186(1): p. 47-53. [5]Cheng, M.C. The Study on the Removal of Cadminum and Lead Contaminated Soil by Electrochemical Treatment. M.S. thesis, National Taiwan University, 2001 [6]Inaba, T., Kobayashi, E., Suwazono, Y., Uetani, M., Oishi, M., Nakagawa, H., and Nogawa, K., Estimation of cumulative cadmium intake causing Itai–itai disease. Toxicology letters, 2005. 159(2): p. 192-201. [7]Li, M., Gou, H., Al-Ogaidi, I., and Wu, N., Nanostructured sensors for detection of heavy metals: a review. ACS Sustainable Chemistry & Engineering, 2013. 1(7): p. 713–723. [8]Aragay, G. and Merkoçi, A., Nanomaterials application in electrochemical detection of heavy metals. Electrochimica Acta, 2012. 84: p. 49-61. [9]袁運開, 自然科學概論. 2005: 五南圖書出版股份有限公司. [10]Duffus, J.H., " Heavy metals" a meaningless term?(IUPAC Technical Report). Pure and applied chemistry, 2002. 74(5): p. 793-807. [11]Jones, L. and Atkins, P., Chemistry: Molecules, matter and change. 2004: W.H.Freeman and Co Ltd. [12]Foster, W., Inorganic Chemistry (Niels Bjerrum). Journal of Chemical Education, 1936. 13(7): p. 349. [13]Goyer, R.A., Toxic and essential metal interactions. Annual review of nutrition, 1997. 17(1): p. 37-50. [14]Sigel, A., Sigel, H., and Sigel, R.K., Interrelations between essential metal ions and human diseases. 2013: Springer. [15]Holister, G.S.P., Andrew, The Environment: A Dictionary of the World Around Us. 1976: Arrow Books, London UK. [16]Walker, P.M., Chambers science and technology dictionary. 1988: Chambers-Cambridge. [17]Hampel, C.A. and Hawley, G.G., Glossary of chemical terms. 1982: Van Nostrand Reinhold. [18]Scott, J. and Smith, P., Dictionary of wastewater and wastewater treatment. 1981, IWA Publishing, Butterworths, London. [19]Zenk, M.H., Heavy metal detoxification in higher plants-a review. Gene, 1996. 179(1): p. 21-30. [20]Clifford, A.F., Corngold, N., Flowers, B.H., and Ter Haar, D., International Encyclopedia of Chemical Science. 1964: D. Van Nostrand. [21]Maynard, J.L., Concise chemical and technical dictionary. 1986: Chemical Pub. Co. [22]Rand, G., Wells, P., and McCarty, L., Fundamentals Of Aquatic Toxicology: Effects, Environmental Fate And Risk Assessment. 1995: Taylor & Francis Group. [23]Fu, F. and Wang, Q., Removal of heavy metal ions from wastewaters: a review. Journal of environmental management, 2011. 92(3): p. 407-418. [24]Mahmoud, M.E., Osman, M.M., Hafez, O.F., Hegazi, A.H., and Elmelegy, E., Removal and preconcentration of lead (II) and other heavy metals from water by alumina adsorbents developed by surface-adsorbed-dithizone. Desalination, 2010. 251(1): p. 123-130. [25]Sheoran, A. and Sheoran, V., Heavy metal removal mechanism of acid mine drainage in wetlands: a critical review. Minerals engineering, 2006. 19(2): p. 105-116. [26]Kabdaşlı, I., Arslan, T., Ölmez-Hancı, T., Arslan-Alaton, I., and Tünay, O., Complexing agent and heavy metal removals from metal plating effluent by electrocoagulation with stainless steel electrodes. Journal of hazardous materials, 2009. 165(1): p. 838-845. [27]Kobya, M., Demirbas, E., Senturk, E., and Ince, M., Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone. Bioresource technology, 2005. 96(13): p. 1518-1521. [28]Neufeld, R.D., Heavy metals-induced deflocculation of activated sludge. Journal (Water Pollution Control Federation), 1976: p. 1940-1947. [29]Tack, F. and Verloo, M.G., Chemical speciation and fractionation in soil and sediment heavy metal analysis: a review. International Journal of Environmental Analytical Chemistry, 1995. 59(2-4): p. 225-238. [30]Shaw, M.J. and Haddad, P.R., The determination of trace metal pollutants in environmental matrices using ion chromatography. Environment International, 2004. 30(3): p. 403-431. [31]Porath, J., Carlsson, J., Olsson, I., and Belfrage, G., Metal chelate affinity chromatography, a new approach to protein fractionation. Nature, 1975. 258: p. 598-599. [32]Tüzen, M., Determination of heavy metals in soil, mushroom and plant samples by atomic absorption spectrometry. Microchemical Journal, 2003. 74(3): p. 289-297. [33]Tüzen, M., Determination of heavy metals in fish samples of the middle Black Sea (Turkey) by graphite furnace atomic absorption spectrometry. Food chemistry, 2003. 80(1): p. 119-123. [34]Yuan, C.G., Shi, J.B., He, B., Liu, J.F., Liang, L.N., and Jiang, G.B., Speciation of heavy metals in marine sediments from the East China Sea by ICP-MS with sequential extraction. Environment International, 2004. 30(6): p. 769-783. [35]Voica, C., Kovacs, M., Dehelean, A., Ristoiu, D., and Iordache, A., ICP-MS determinations of heavy metals in surface waters from Transylvania. Romanian Journal of Physics, 2012. 57(6-7): p. 1184-1193. [36]Sun, B., Zhao, F., Lombi, E., and Mcgrath, S., Leaching of heavy metals from contaminated soils using EDTA. Environmental Pollution, 2001. 113(2): p. 111-120. [37]Santiago-Rivas, S., Moreda-Piñeiro, A., Bermejo-Barrera, A., and Bermejo-Barrera, P., Fractionation metallothionein-like proteins in mussels with on line metal detection by high performance liquid chromatography–inductively coupled plasma-optical emission spectrometry. Talanta, 2007. 71(4): p. 1580-1586. [38]Jamali, M.R., Assadi, Y., Shemirani, F., Hosseini, M.R.M., Kozani, R.R., Masteri-Farahani, M., and Salavati-Niasari, M., Synthesis of salicylaldehyde-modified mesoporous silica and its application as a new sorbent for separation, preconcentration and determination of uranium by inductively coupled plasma atomic emission spectrometry. Analytica chimica acta, 2006. 579(1): p. 68-73. [39]Chen, K.I., Li, B.R., and Chen, Y.T., Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation. Nano Today, 2011. 6(2): p. 131-154. [40]Zhang, Z., Yu, K., Bai, D., and Zhu, Z., Synthesis and Electrochemical Sensing Toward Heavy Metals of Bunch-like Bismuth Nanostructures. Nanoscale Research Letters, 2009. 5(2): p. 398. [41]Düzgün, A., Zelada-Guillén, G.A., Crespo, G.A., Macho, S., Riu, J., and Rius, F.X., Nanostructured materials in potentiometry. Analytical and bioanalytical chemistry, 2011. 399(1): p. 171-181. [42]Shamsipur, M. and Mashhadizadeh, M.H., Cadmium ion-selective electrode based on tetrathia-12-crown-4. Talanta, 2001. 53(5): p. 1065-1071. [43]Meyerhoff, M. and Opdycke, W., Ion-selective electrodes. Advances in clinical chemistry, 1986. 25: p. 1-47. [44]Laylin, J.K., Nobel laureates in chemistry, 1901-1992. 1993: Chemical Heritage Foundation. [45]Khani, H., Rofouei, M.K., Arab, P., Gupta, V.K., and Vafaei, Z., Multi-walled carbon nanotubes-ionic liquid-carbon paste electrode as a super selectivity sensor: application to potentiometric monitoring of mercury ion (II). Journal of Hazardous Materials, 2010. 183(1): p. 402-409. [46]Monk, P.M., Fundamentals of electro-analytical chemistry. Vol. 29. 2008: John Wiley & Sons. [47]Bard, A.J. and Faulkner, L.R., Electrochemical methods: fundamentals and applications. Vol. 2. 1980: Wiley New York. [48]Kim, T.H., Lee, J., and Hong, S., Highly selective environmental nanosensors based on anomalous response of carbon nanotube conductance to mercury ions. The Journal of Physical Chemistry C, 2009. 113(45): p. 19393-19396. [49]Ren, Z., Huang, Z., Wang, D., Wen, J., Xu, J., Wang, J., Calvet, L., Chen, J., Klemic, J., and Reed, M., Growth of a single freestanding multiwall carbon nanotube on each nanonickel dot. Applied physics letters, 1999. 75(8): p. 1086-1088. [50]Liu, G., Lin, Y., Tu, Y., and Ren, Z., Ultrasensitive voltammetric detection of trace heavy metal ions using carbon nanotube nanoelectrode array. Analyst, 2005. 130(7): p. 1098-1101. [51]Tarley, C.R.T., Santos, V.S., Baêta, B.E.L., Pereira, A.C., and Kubota, L.T., Simultaneous determination of zinc, cadmium and lead in environmental water samples by potentiometric stripping analysis (PSA) using multiwalled carbon nanotube electrode. Journal of hazardous materials, 2009. 169(1): p. 256-262. [52]Injang, U., Noyrod, P., Siangproh, W., Dungchai, W., Motomizu, S., and Chailapakul, O., Determination of trace heavy metals in herbs by sequential injection analysis-anodic stripping voltammetry using screen-printed carbon nanotubes electrodes. Analytica chimica acta, 2010. 668(1): p. 54-60. [53]Hwang, G.H., Han, W.K., Park, J.S., and Kang, S.G., Determination of trace metals by anodic stripping voltammetry using a bismuth-modified carbon nanotube electrode. Talanta, 2008. 76(2): p. 301-308. [54]Morton, J., Havens, N., Mugweru, A., and Wanekaya, A.K., Detection of Trace Heavy Metal Ions Using Carbon Nanotube‐Modified Electrodes. Electroanalysis, 2009. 21(14): p. 1597-1603. [55]Xu, H., Zeng, L., Xing, S., Xian, Y., Shi, G., and Jin, L., Ultrasensitive voltammetric detection of trace lead (II) and cadmium (II) using MWCNTs‐nafion/bismuth composite electrodes. Electroanalysis, 2008. 20(24): p. 2655-2662. [56]Jia, X., Li, J., and Wang, E., High‐Sensitivity Determination of Lead (II) and Cadmium (II) Based on the CNTs‐PSS/Bi Composite Film Electrode. Electroanalysis, 2010. 22(15): p. 1682-1687. [57]Gao, X., Wei, W., Yang, L., and Guo, M., Carbon Nanotubes/Poly (1, 2‐diaminobenzene) Nanoporous Composite Film Electrode Prepared by Multipulse Potentiostatic Electropolymerisation and Its Application to Determination of Trace Heavy Metal Ions. Electroanalysis, 2006. 18(5): p. 485-492. [58]Wanekaya, A.K., Applications of nanoscale carbon-based materials in heavy metal sensing and detection. Analyst, 2011. 136(21): p. 4383-4391. [59]Shen, L., Chen, Z., Li, Y., He, S., Xie, S., Xu, X., Liang, Z., Meng, X., Li, Q., Zhu, Z., Li, M., Le, X.C., and Shao, Y., Electrochemical DNAzyme sensor for lead based on amplification of DNA− Au Bio-Bar codes. Analytical chemistry, 2008. 80(16): p. 6323-6328. [60]Economou, A. and Fielden, P., Mercury film electrodes: developments, trends and potentialities for electroanalysis. Analyst, 2003. 128(3): p. 205-213. [61]Bott, A.W., Stripping voltammetry. Current Separations, 1992. 12(3): p. 141-147. [62]Wojciechowski, M. and Balcerzak, J., Square-wave anodic stripping voltammetry at glassy-carbon-based thin mercury film electrodes in solutions containing dissolved oxygen. Analytical Chemistry, 1990. 62(13): p. 1325-1331. [63]Wang, J., Lu, J., Hocevar, S.B., Farias, P.A., and Ogorevc, B., Bismuth-coated carbon electrodes for anodic stripping voltammetry. Analytical chemistry, 2000. 72(14): p. 3218-3222. [64]Wang, J., Stripping Analysis at Bismuth Electrodes: A Review. Electroanalysis, 2005. 17(15-16): p. 1341-1346. [65]Jagner, D., Potentiometric stripping analysis. A review. Analyst, 1982. 107(1275): p. 593-599. [66]Dugo, G., La Pera, L., La Torre, G.L., and Giuffrida, D., Determination of Cd (II), Cu (II), Pb (II), and Zn (II) content in commercial vegetable oils using derivative potentiometric stripping analysis. Food Chemistry, 2004. 87(4): p. 639-645. [67]Jagner, D., Computerised flow potentiometric stripping analysis. TrAC Trends in Analytical Chemistry, 1983. 2(3): p. 53-56. [68]Wang, J., Analytical electrochemistry. 2006: John Wiley & Sons. [69]Holak, W., Determination of arsenic by cathodic stripping voltammetry with a hanging mercury drop electrode. Analytical Chemistry, 1980. 52(13): p. 2189-2192. [70]Mirceski, V., Sebez, B., Jancovska, M., Ogorevc, B., and Hocevar, S.B., Mechanisms and kinetics of electrode processes at bismuth and antimony film and bare glassy carbon surfaces under square-wave anodic stripping voltammetry conditions. Electrochimica Acta, 2013. 105: p. 254-260. [71]Ramaley, L. and Krause Jr, M.S., Theory of square wave voltammetry. Analytical Chemistry, 1969. 41(11): p. 1362-1365. [72]Demetriades, D., Economou, A., and Voulgaropoulos, A., A study of pencil-lead bismuth-film electrodes for the determination of trace metals by anodic stripping voltammetry. Analytica chimica acta, 2004. 519(2): p. 167-172. [73]Królicka, A., Pauliukait, R., S̆vancara, I., Metelka, R., Bobrowski, A., Norkus, E., Kalcher, K., and Vytřas, K., Bismuth-film-plated carbon paste electrodes. Electrochemistry Communications, 2002. 4(2): p. 193-196. [74]Grincienė, G., Selskienė, A., Verbickas, R., Norkus, E., and Pauliukaite, R., Peculiarities of electrochemical bismuth film formation in the presence of bromide and heavy metal ions. Electroanalysis, 2009. 21(15): p. 1743-1749. [75]Economou, A., Bismuth-film electrodes: recent developments and potentialities for electroanalysis. TrAC Trends in Analytical Chemistry, 2005. 24(4): p. 334-340. [76]Pauliukaitė, R., Hočevar, S.B., Ogorevc, B., and Wang, J., Characterization and applications of a bismuth bulk electrode. Electroanalysis, 2004. 16(9): p. 719-723. [77]Benoit, R., Saboungi, M.-L., Treguer-Delapierre, M., Milosavljevic, B., and Meisel, D., Reactions of radicals with hydrolyzed Bi (III) ions: A pulse radiolysis study. The Journal of Physical Chemistry A, 2007. 111(42): p. 10640-10645. [78]Baes Jr, C. and Mesmer, R., The Hydrolysis of Cations. A Wiley-Interscience Publication. 1976, John Wiley & Sons, New York, NY. [79]Zhao, G., Wang, H., Liu, G., and Wang, Z., Box–Behnken response surface design for the optimization of electrochemical detection of cadmium by Square Wave Anodic Stripping Voltammetry on bismuth film/glassy carbon electrode. Sensors and Actuators B: Chemical, 2016. 235: p. 67-73.
|