跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.56) 您好!臺灣時間:2025/12/09 21:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭佩甄
研究生(外文):Pei-Chen Cheng
論文名稱:探討胺基胜肽酶A抑制劑在大腸癌幹細胞中可能的作用機轉
論文名稱(外文):To study the potential inhibitory mechanism of aminopeptidase A inhibitor in colorectal cancer stem cells
指導教授:黃智生黃智生引用關係
指導教授(外文):Jason C. Huang
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:醫學生物技術暨檢驗學系
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2016
畢業學年度:105
語文別:中文
論文頁數:91
中文關鍵詞:大腸癌胺基胜肽酶A
外文關鍵詞:Colorectal cancerAminopeptidase A
相關次數:
  • 被引用被引用:0
  • 點閱點閱:157
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
結腸直腸癌(CRC)於2015年在世界為第三常見的癌症,同時在癌症死亡率也排名第三。大約有百分之六十的結腸直腸癌病人可以透過手術、化學藥物、放射線及標靶藥物治療,然而病患常因為復發而無法痊癒。先前的研究指出,癌症幹細胞主要有自我更新及化療藥物抗性,傳統的癌症治療通常只消滅已分化的癌細胞而非癌症幹細胞,因此常引起復發。癌症幹細胞標靶治療不僅可消除癌症幹細胞,體內剩餘的癌細胞亦可受到藥物影響而死亡,因此,傳統治療方式與癌症幹細胞標靶治療的結合應用或許可有效治療癌症。實驗室先前利用微陣列分析方式篩選出了胺基胜肽酶A,然而,此分子對於結腸直腸癌的轉移機制仍未清楚。透過酵素活性抑制試驗,實驗室由LOPAC 1280平台篩選出了一種藥物compound A,可有效抑制胺基胜肽酶A的活性,由實驗室先前的研究發現,compound A可以抑制結腸直腸癌細胞的移動、侵襲及聚球能力,因此,我們將探討compound A是透過哪一機制去抑制結腸直腸癌幹細胞的生成。透過MTS assay及Clonogenic assay得知,compound A可抑制細胞短期與長期的增生,並由流式細胞儀的分析得知compound A可使細胞週期停滯於G0/G1期,更進一步探討,compound A可抑制cyclin D1、p21、p27的表現,對於細胞增生的調控,推測compound A可能透過抑制ERK及β-catenin達到調控細胞週期的效果。利用sphere formation assay,初步得知compound A可明顯抑制癌症幹細胞基因Nanog及ENPEP基因的表現量。同時,在動物實驗中觀察到了餵予小鼠compound A,腫瘤的大小相較餵予水的組別小。綜上所述,目前實驗的結果可知compound A在細胞及動物實驗都有抑制癌症細胞生長的效果,但是對癌症幹細胞抑制機轉仍有待進一步的探討。
Colorectal cancer (CRC) is the third most common cancer in the world and ranked third in cancer relating deaths in 2015. Approximately sixty percent of CRC patients can be treated by surgery, chemotherapy, radiation therapy and targeted therapy. However, CRC is seldom cured due to recurrence. Previous studies indicates that cancer stem cells (CSCs) are responsible for self-renewal and resistance to cytotoxic agents. Traditional cancer therapies usually kill differentiated cancer cells but not CSCs, and often lead to relapse. Meanwhile, CSC-targeted therapies can eliminate CSCs, and the remaining cancer cells will gradually die out. Therefore, combination of traditional and CSC-targeted therapies should clear CSCs and differentiated cancer cells. Aminopeptidase A (ENPEP) was selected from microarray analysis because its role in CRC metastasis is still unknown. By enzymatic activity inhibition assay, we screened LOPAC 1280 system and selected compound A as a potent inhibitor of aminopeptidase A activity. Compound A was shown to inhibit cell migration, invasion and sphere formation ability in CRC cells. We tried to determine the inhibitory mechanism of CRC stem cells by compound A. In MTS assay and clonogenic assay, we found that compound A can inhibit short term and long term proliferation. Next, our data showed that compound A can arrest cell cycle at G0/G1 by flow cytometry. Furthermore, cyclin D1, p21 and p27 were downregulated with compound A treatment shown by Western blot. We also demonstrated that compound A may inhibit ERK and beta-catenin expression to induce cell cycle arrest. Through sphere formation assay, compound A can inhibit cancer stem cell genes like Nanog and ENPEP expression. Finally, we observed that mice fed with compound A had smaller tumor size compared with control group. In conclusion, our data evidenced that compound A inhibits cell proliferation both in vitro and in vivo. Yet the cancer stem cell inhibitory mechanism of compound A needs to be further studied.
致謝..............................i
中文摘要.........................iii
英文摘要..........................iv
目錄..............................vi
第一章、緒論......................................... ..1
第一節、結腸直腸癌 (Colorectal cancer).................. 1
第二節、細胞週期 (Cell cycle)........................... 3
第三節、癌症幹細胞 (Cancer stem cell)................... 6
第四節、Aminopeptidase A (ENPEP)簡介................... 7
第五節、Compound A簡介................................. 8
第六節、研究動機與目的...................................9
第二章、材料與方法......................................10
第一節、實驗材料........................................10
第二節、實驗方法........................................28
第三章、實驗結果........................................43
1.構築之ENPEP 1809△大量表現之質體轉染於293T細胞中並無APA蛋白酵素活性...............................................43
2.Compound A 可以抑制SW480及HT29結腸直腸癌細胞增生.......44
3.Compound A可使SW480細胞週期停滯(arrest),停留於G0/G1期.45
4.Compound A抑制APA活性並非依賴Calcium之抑制............45
5.Compound A可以抑制SW480細胞株之β-catenin、ERK訊號傳遞路徑...................................................46
6.Compound A可抑制癌症幹細胞相關基因表現................47
7.Compound A在斑馬魚實驗平台可抑制細胞增生..............48
8.不同劑量的compound A可抑制小鼠結腸直腸癌細胞株CT26在BALB/c小鼠中的腫瘤生長......................................48
9.0.07mg/kg劑量之compound A可抑制小鼠結腸直腸癌細胞株於BALB/c小鼠中的腫瘤生長......................................49
第四章、實驗討論......................................50
第五章、參考文獻......................................57
第六章、實驗結果圖表...................................62
第七章、附錄..........................................81
1. Brenner, H., M. Kloor, and C.P. Pox, Colorectal cancer. The Lancet, 2014. 383(9927): p. 1490-1502.
2. Siegel, R.L., K.D. Miller, and A. Jemal, Cancer statistics, 2015. CA Cancer J Clin, 2015. 65(1): p. 5-29.
3. Leslie, A., et al., The colorectal adenoma-carcinoma sequence. Br J Surg, 2002. 89(7): p. 845-60.
4. Jasperson, K.W., et al., Hereditary and Familial Colon Cancer. Gastroenterology, 2010. 138(6): p. 2044-2058.
5. de la Chapelle, A., Genetic predisposition to colorectal cancer. Nat Rev Cancer, 2004. 4(10): p. 769-80.
6. Kwong, L.N. and W.F. Dove, APC and its modifiers in colon cancer. Advances in experimental medicine and biology, 2009. 656: p. 85-106.
7. Obrocea, F.L., et al., Colorectal cancer and the 7th revision of the TNM staging system: review of changes and suggestions for uniform pathologic reporting. Rom J Morphol Embryol, 2011. 52(2): p. 537-44.
8. El Zouhairi, M., A. Charabaty, and M.J. Pishvaian, Molecularly targeted therapy for metastatic colon cancer: proven treatments and promising new agents. Gastrointest Cancer Res, 2011. 4(1): p. 15-21.
9. Hagan, S., M.C. Orr, and B. Doyle, Targeted therapies in colorectal cancer-an integrative view by PPPM. EPMA J, 2013. 4(1): p. 3.
10. Gerard, C. and A. Goldbeter, The balance between cell cycle arrest and cell proliferation: control by the extracellular matrix and by contact inhibition. Interface Focus, 2014. 4(3): p. 20130075.
11. Vermeulen, K., D.R. Van Bockstaele, and Z.N. Berneman, The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif, 2003. 36(3): p. 131-49.
12. Norbury, C. and P. Nurse, Animal cell cycles and their control. Annu Rev Biochem, 1992. 61: p. 441-70.
13. Johnson, D.G. and C.L. Walker, Cyclins and cell cycle checkpoints. Annu Rev Pharmacol Toxicol, 1999. 39: p. 295-312.
14. Morgan, D.O., Principles of CDK regulation. Nature, 1995. 374(6518): p. 131-4.
15. Pines, J., Cyclins and cyclin-dependent kinases: theme and variations. Adv Cancer Res, 1995. 66: p. 181-212.
16. Sherr, C.J., G1 phase progression: cycling on cue. Cell, 1994. 79(4): p. 551-5.
17. Fisher, R.P. and D.O. Morgan, A novel cyclin associates with MO15/CDK7 to form the CDK-activating kinase. Cell, 1994. 78(4): p. 713-24.
18. Sherr, C.J. and J.M. Roberts, Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev, 1995. 9(10): p. 1149-63.
19. Polyak, K., et al., Cloning of p27Kip1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell, 1994. 78(1): p. 59-66.
20. Lee, M.H., I. Reynisdottir, and J. Massague, Cloning of p57KIP2, a cyclin-dependent kinase inhibitor with unique domain structure and tissue distribution. Genes Dev, 1995. 9(6): p. 639-49.
21. Chen, J., et al., Cyclin-binding motifs are essential for the function of p21CIP1. Molecular and Cellular Biology, 1996. 16(9): p. 4673-4682.
22. Waga, S., R. Li, and B. Stillman, p53-induced p21 controls DNA replication. Leukemia, 1997. 11 Suppl 3: p. 321-3.
23. Pan, Z.Q., et al., Inhibition of nucleotide excision repair by the cyclin-dependent kinase inhibitor p21. J Biol Chem, 1995. 270(37): p. 22008-16.
24. Buchkovich, K., L.A. Duffy, and E. Harlow, The retinoblastoma protein is phosphorylated during specific phases of the cell cycle. Cell, 1989. 58(6): p. 1097-105.
25. Kato, J., et al., Direct binding of cyclin D to the retinoblastoma gene product (pRb) and pRb phosphorylation by the cyclin D-dependent kinase CDK4. Genes Dev, 1993. 7(3): p. 331-42.
26. Levine, A.J., p53, the cellular gatekeeper for growth and division. Cell, 1997. 88(3): p. 323-31.
27. Agarwal, M.L., et al., The p53 network. J Biol Chem, 1998. 273(1): p. 1-4.
28. Oren, M., Regulation of the p53 tumor suppressor protein. J Biol Chem, 1999. 274(51): p. 36031-4.
29. Basu, A. and S. Haldar, The relationship between BcI2, Bax and p53: consequences for cell cycle progression and cell death. Mol Hum Reprod, 1998. 4(12): p. 1099-109.
30. Sherr, C.J., Cancer cell cycles. Science, 1996. 274(5293): p. 1672-7.
31. McDonald, E.R., 3rd and W.S. El-Deiry, Cell cycle control as a basis for cancer drug development (Review). Int J Oncol, 2000. 16(5): p. 871-86.
32. Hall, M. and G. Peters, Genetic alterations of cyclins, cyclin-dependent kinases, and Cdk inhibitors in human cancer. Adv Cancer Res, 1996. 68: p. 67-108.
33. Leach, F.S., et al., Amplification of cyclin genes in colorectal carcinomas. Cancer Res, 1993. 53(9): p. 1986-9.
34. Hunter, T. and J. Pines, Cyclins and cancer. II: Cyclin D and CDK inhibitors come of age. Cell, 1994. 79(4): p. 573-82.
35. Keyomarsi, K., et al., Deregulation of cyclin E in breast cancer. Oncogene, 1995. 11(5): p. 941-50.
36. Beck, B. and C. Blanpain, Unravelling cancer stem cell potential. Nat Rev Cancer, 2013. 13(10): p. 727-38.
37. Morrison, S.J. and J. Kimble, Asymmetric and symmetric stem-cell divisions in development and cancer. Nature, 2006. 441(7097): p. 1068-1074.
38. Nguyen, L.V., et al., Cancer stem cells: an evolving concept. Nat Rev Cancer, 2012. 12(2): p. 133-143.
39. Dalerba, P., R.W. Cho, and M.F. Clarke, Cancer stem cells: models and concepts. Annu Rev Med, 2007. 58: p. 267-84.
40. Vaiopoulos, A.G., et al., Colorectal cancer stem cells. Stem Cells, 2012. 30(3): p. 363-71.
41. Roy, H.K., et al., The transcriptional repressor SNAIL is overexpressed in human colon cancer. Dig Dis Sci, 2005. 50(1): p. 42-6.
42. Langan, R.C., et al., Colorectal cancer biomarkers and the potential role of cancer stem cells. J Cancer, 2013. 4(3): p. 241-50.
43. O'Brien, C.A., et al., A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature, 2007. 445(7123): p. 106-10.
44. Ricci-Vitiani, L., et al., Identification and expansion of human colon-cancer-initiating cells. Nature, 2007. 445(7123): p. 111-5.
45. Ong, C.W., et al., CD133 expression predicts for non-response to chemotherapy in colorectal cancer. Mod Pathol, 2010. 23(3): p. 450-7.
46. Vermeulen, L., et al., Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity. Proceedings of the National Academy of Sciences, 2008. 105(36): p. 13427-13432.
47. Wilson, B.J., et al., Colorectal Cancer Stem Cells: Biology and Therapeutic Implications. Curr Colorectal Cancer Rep, 2011. 7(2): p. 128-135.
48. Dalerba, P., et al., Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci U S A, 2007. 104(24): p. 10158-63.
49. Du, L., et al., CD44 is of functional importance for colorectal cancer stem cells. Clin Cancer Res, 2008. 14(21): p. 6751-60.
50. Landen, C.N., Jr., et al., Targeting aldehyde dehydrogenase cancer stem cells in ovarian cancer. Mol Cancer Ther, 2010. 9(12): p. 3186-99.
51. Ma, I. and A.L. Allan, The role of human aldehyde dehydrogenase in normal and cancer stem cells. Stem Cell Rev, 2011. 7(2): p. 292-306.
52. Vasiliou, V. and D.W. Nebert, Analysis and update of the human aldehyde dehydrogenase (ALDH) gene family. Hum Genomics, 2005. 2(2): p. 138-43.
53. Honoki, K., et al., Possible involvement of stem-like populations with elevated ALDH1 in sarcomas for chemotherapeutic drug resistance. Oncol Rep, 2010. 24(2): p. 501-5.
54. Kim, M.P., et al., ALDH activity selectively defines an enhanced tumor-initiating cell population relative to CD133 expression in human pancreatic adenocarcinoma. PLoS One, 2011. 6(6): p. e20636.
55. Su, Y., et al., Aldehyde dehydrogenase 1 A1-positive cell population is enriched in tumor-initiating cells and associated with progression of bladder cancer. Cancer Epidemiol Biomarkers Prev, 2010. 19(2): p. 327-37.
56. Wang, J., et al., The enigmatic role of glutamyl aminopeptidase (BP-1/6C3 antigen) in immune system development. Immunological Reviews, 1998. 161(1): p. 71-77.
57. Li, L., J. Wang, and M.D. Cooper, cDNA cloning and expression of human glutamyl aminopeptidase (aminopeptidase A). Genomics, 1993. 17(3): p. 657-64.
58. Nanus, D.M., et al., Aminopeptidase A expression and enzymatic activity in primary human renal cancers. Int J Oncol, 1998. 13(2): p. 261-7.
59. Suganuma, T., et al., Regulation of aminopeptidase A expression in cervical carcinoma: role of tumor-stromal interaction and vascular endothelial growth factor. Lab Invest, 2004. 84(5): p. 639-648.
60. Ofner, L.D. and N.M. Hooper, The C-terminal domain, but not the interchain disulphide, is required for the activity and intracellular trafficking of aminopeptidase A. Biochem J, 2002. 362(Pt 1): p. 191-7.
61. Han, L., et al., Cancer stem cells: therapeutic implications and perspectives in cancer therapy. Acta Pharmaceutica Sinica B, 2013. 3(2): p. 65-75.
62. Yang, Y., et al., Structural insights into central hypertension regulation by human aminopeptidase A. J Biol Chem, 2013. 288(35): p. 25638-45.
63. Nanus, D.M., et al., Molecular cloning of the human kidney differentiation antigen gp160: human aminopeptidase A. Proc Natl Acad Sci U S A, 1993. 90(15): p. 7069-73.
64. Lee, H.-J., et al., Molecular cloning and expression of aminopeptidase A isoforms from rat hippocampus1. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, 2000. 1493(1–2): p. 273-278.
65. Giacinti, C. and A. Giordano, RB and cell cycle progression. Oncogene, 0000. 25(38): p. 5220-5227.
66. Liebmann, C. and F.D. Bohmer, Signal transduction pathways of G protein-coupled receptors and their cross-talk with receptor tyrosine kinases: lessons from bradykinin signaling. Curr Med Chem, 2000. 7(9): p. 911-43.
67. Colussi, D., et al., Molecular Pathways Involved in Colorectal Cancer: Implications for Disease Behavior and Prevention. International Journal of Molecular Sciences, 2013. 14(8): p. 16365-16385.
68. Clevers, H., Wnt/beta-catenin signaling in development and disease. Cell, 2006. 127(3): p. 469-80.
69. Clevers, H. and R. Nusse, Wnt/beta-catenin signaling and disease. Cell, 2012. 149(6): p. 1192-205.
70. Chang, F., et al., Signal transduction mediated by the Ras/Raf/MEK/ERK pathway from cytokine receptors to transcription factors: potential targeting for therapeutic intervention. Leukemia, 2003. 17(7): p. 1263-93.
71. Kolch, W., Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem J, 2000. 351 Pt 2: p. 289-305.
72. Ahmed, D., et al., Epigenetic and genetic features of 24 colon cancer cell lines. Oncogenesis, 2013. 2: p. e71.
73. Seshacharyulu, P., et al., Targeting the EGFR signaling pathway in cancer therapy. Expert Opinion on Therapeutic Targets, 2012. 16(1): p. 15-31.
74. Hwang, W.-L., et al., MicroRNA-146a directs the symmetric division of Snail-dominant colorectal cancer stem cells. Nat Cell Biol, 2014. 16(3): p. 268-280.
75. Carter, N.J., Regorafenib: A Review of Its Use in Previously Treated Patients with Progressive Metastatic Colorectal Cancer. Drugs & Aging, 2014. 31(1): p. 67-78.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top