|
1. Brenner, H., M. Kloor, and C.P. Pox, Colorectal cancer. The Lancet, 2014. 383(9927): p. 1490-1502. 2. Siegel, R.L., K.D. Miller, and A. Jemal, Cancer statistics, 2015. CA Cancer J Clin, 2015. 65(1): p. 5-29. 3. Leslie, A., et al., The colorectal adenoma-carcinoma sequence. Br J Surg, 2002. 89(7): p. 845-60. 4. Jasperson, K.W., et al., Hereditary and Familial Colon Cancer. Gastroenterology, 2010. 138(6): p. 2044-2058. 5. de la Chapelle, A., Genetic predisposition to colorectal cancer. Nat Rev Cancer, 2004. 4(10): p. 769-80. 6. Kwong, L.N. and W.F. Dove, APC and its modifiers in colon cancer. Advances in experimental medicine and biology, 2009. 656: p. 85-106. 7. Obrocea, F.L., et al., Colorectal cancer and the 7th revision of the TNM staging system: review of changes and suggestions for uniform pathologic reporting. Rom J Morphol Embryol, 2011. 52(2): p. 537-44. 8. El Zouhairi, M., A. Charabaty, and M.J. Pishvaian, Molecularly targeted therapy for metastatic colon cancer: proven treatments and promising new agents. Gastrointest Cancer Res, 2011. 4(1): p. 15-21. 9. Hagan, S., M.C. Orr, and B. Doyle, Targeted therapies in colorectal cancer-an integrative view by PPPM. EPMA J, 2013. 4(1): p. 3. 10. Gerard, C. and A. Goldbeter, The balance between cell cycle arrest and cell proliferation: control by the extracellular matrix and by contact inhibition. Interface Focus, 2014. 4(3): p. 20130075. 11. Vermeulen, K., D.R. Van Bockstaele, and Z.N. Berneman, The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif, 2003. 36(3): p. 131-49. 12. Norbury, C. and P. Nurse, Animal cell cycles and their control. Annu Rev Biochem, 1992. 61: p. 441-70. 13. Johnson, D.G. and C.L. Walker, Cyclins and cell cycle checkpoints. Annu Rev Pharmacol Toxicol, 1999. 39: p. 295-312. 14. Morgan, D.O., Principles of CDK regulation. Nature, 1995. 374(6518): p. 131-4. 15. Pines, J., Cyclins and cyclin-dependent kinases: theme and variations. Adv Cancer Res, 1995. 66: p. 181-212. 16. Sherr, C.J., G1 phase progression: cycling on cue. Cell, 1994. 79(4): p. 551-5. 17. Fisher, R.P. and D.O. Morgan, A novel cyclin associates with MO15/CDK7 to form the CDK-activating kinase. Cell, 1994. 78(4): p. 713-24. 18. Sherr, C.J. and J.M. Roberts, Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev, 1995. 9(10): p. 1149-63. 19. Polyak, K., et al., Cloning of p27Kip1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell, 1994. 78(1): p. 59-66. 20. Lee, M.H., I. Reynisdottir, and J. Massague, Cloning of p57KIP2, a cyclin-dependent kinase inhibitor with unique domain structure and tissue distribution. Genes Dev, 1995. 9(6): p. 639-49. 21. Chen, J., et al., Cyclin-binding motifs are essential for the function of p21CIP1. Molecular and Cellular Biology, 1996. 16(9): p. 4673-4682. 22. Waga, S., R. Li, and B. Stillman, p53-induced p21 controls DNA replication. Leukemia, 1997. 11 Suppl 3: p. 321-3. 23. Pan, Z.Q., et al., Inhibition of nucleotide excision repair by the cyclin-dependent kinase inhibitor p21. J Biol Chem, 1995. 270(37): p. 22008-16. 24. Buchkovich, K., L.A. Duffy, and E. Harlow, The retinoblastoma protein is phosphorylated during specific phases of the cell cycle. Cell, 1989. 58(6): p. 1097-105. 25. Kato, J., et al., Direct binding of cyclin D to the retinoblastoma gene product (pRb) and pRb phosphorylation by the cyclin D-dependent kinase CDK4. Genes Dev, 1993. 7(3): p. 331-42. 26. Levine, A.J., p53, the cellular gatekeeper for growth and division. Cell, 1997. 88(3): p. 323-31. 27. Agarwal, M.L., et al., The p53 network. J Biol Chem, 1998. 273(1): p. 1-4. 28. Oren, M., Regulation of the p53 tumor suppressor protein. J Biol Chem, 1999. 274(51): p. 36031-4. 29. Basu, A. and S. Haldar, The relationship between BcI2, Bax and p53: consequences for cell cycle progression and cell death. Mol Hum Reprod, 1998. 4(12): p. 1099-109. 30. Sherr, C.J., Cancer cell cycles. Science, 1996. 274(5293): p. 1672-7. 31. McDonald, E.R., 3rd and W.S. El-Deiry, Cell cycle control as a basis for cancer drug development (Review). Int J Oncol, 2000. 16(5): p. 871-86. 32. Hall, M. and G. Peters, Genetic alterations of cyclins, cyclin-dependent kinases, and Cdk inhibitors in human cancer. Adv Cancer Res, 1996. 68: p. 67-108. 33. Leach, F.S., et al., Amplification of cyclin genes in colorectal carcinomas. Cancer Res, 1993. 53(9): p. 1986-9. 34. Hunter, T. and J. Pines, Cyclins and cancer. II: Cyclin D and CDK inhibitors come of age. Cell, 1994. 79(4): p. 573-82. 35. Keyomarsi, K., et al., Deregulation of cyclin E in breast cancer. Oncogene, 1995. 11(5): p. 941-50. 36. Beck, B. and C. Blanpain, Unravelling cancer stem cell potential. Nat Rev Cancer, 2013. 13(10): p. 727-38. 37. Morrison, S.J. and J. Kimble, Asymmetric and symmetric stem-cell divisions in development and cancer. Nature, 2006. 441(7097): p. 1068-1074. 38. Nguyen, L.V., et al., Cancer stem cells: an evolving concept. Nat Rev Cancer, 2012. 12(2): p. 133-143. 39. Dalerba, P., R.W. Cho, and M.F. Clarke, Cancer stem cells: models and concepts. Annu Rev Med, 2007. 58: p. 267-84. 40. Vaiopoulos, A.G., et al., Colorectal cancer stem cells. Stem Cells, 2012. 30(3): p. 363-71. 41. Roy, H.K., et al., The transcriptional repressor SNAIL is overexpressed in human colon cancer. Dig Dis Sci, 2005. 50(1): p. 42-6. 42. Langan, R.C., et al., Colorectal cancer biomarkers and the potential role of cancer stem cells. J Cancer, 2013. 4(3): p. 241-50. 43. O'Brien, C.A., et al., A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature, 2007. 445(7123): p. 106-10. 44. Ricci-Vitiani, L., et al., Identification and expansion of human colon-cancer-initiating cells. Nature, 2007. 445(7123): p. 111-5. 45. Ong, C.W., et al., CD133 expression predicts for non-response to chemotherapy in colorectal cancer. Mod Pathol, 2010. 23(3): p. 450-7. 46. Vermeulen, L., et al., Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity. Proceedings of the National Academy of Sciences, 2008. 105(36): p. 13427-13432. 47. Wilson, B.J., et al., Colorectal Cancer Stem Cells: Biology and Therapeutic Implications. Curr Colorectal Cancer Rep, 2011. 7(2): p. 128-135. 48. Dalerba, P., et al., Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci U S A, 2007. 104(24): p. 10158-63. 49. Du, L., et al., CD44 is of functional importance for colorectal cancer stem cells. Clin Cancer Res, 2008. 14(21): p. 6751-60. 50. Landen, C.N., Jr., et al., Targeting aldehyde dehydrogenase cancer stem cells in ovarian cancer. Mol Cancer Ther, 2010. 9(12): p. 3186-99. 51. Ma, I. and A.L. Allan, The role of human aldehyde dehydrogenase in normal and cancer stem cells. Stem Cell Rev, 2011. 7(2): p. 292-306. 52. Vasiliou, V. and D.W. Nebert, Analysis and update of the human aldehyde dehydrogenase (ALDH) gene family. Hum Genomics, 2005. 2(2): p. 138-43. 53. Honoki, K., et al., Possible involvement of stem-like populations with elevated ALDH1 in sarcomas for chemotherapeutic drug resistance. Oncol Rep, 2010. 24(2): p. 501-5. 54. Kim, M.P., et al., ALDH activity selectively defines an enhanced tumor-initiating cell population relative to CD133 expression in human pancreatic adenocarcinoma. PLoS One, 2011. 6(6): p. e20636. 55. Su, Y., et al., Aldehyde dehydrogenase 1 A1-positive cell population is enriched in tumor-initiating cells and associated with progression of bladder cancer. Cancer Epidemiol Biomarkers Prev, 2010. 19(2): p. 327-37. 56. Wang, J., et al., The enigmatic role of glutamyl aminopeptidase (BP-1/6C3 antigen) in immune system development. Immunological Reviews, 1998. 161(1): p. 71-77. 57. Li, L., J. Wang, and M.D. Cooper, cDNA cloning and expression of human glutamyl aminopeptidase (aminopeptidase A). Genomics, 1993. 17(3): p. 657-64. 58. Nanus, D.M., et al., Aminopeptidase A expression and enzymatic activity in primary human renal cancers. Int J Oncol, 1998. 13(2): p. 261-7. 59. Suganuma, T., et al., Regulation of aminopeptidase A expression in cervical carcinoma: role of tumor-stromal interaction and vascular endothelial growth factor. Lab Invest, 2004. 84(5): p. 639-648. 60. Ofner, L.D. and N.M. Hooper, The C-terminal domain, but not the interchain disulphide, is required for the activity and intracellular trafficking of aminopeptidase A. Biochem J, 2002. 362(Pt 1): p. 191-7. 61. Han, L., et al., Cancer stem cells: therapeutic implications and perspectives in cancer therapy. Acta Pharmaceutica Sinica B, 2013. 3(2): p. 65-75. 62. Yang, Y., et al., Structural insights into central hypertension regulation by human aminopeptidase A. J Biol Chem, 2013. 288(35): p. 25638-45. 63. Nanus, D.M., et al., Molecular cloning of the human kidney differentiation antigen gp160: human aminopeptidase A. Proc Natl Acad Sci U S A, 1993. 90(15): p. 7069-73. 64. Lee, H.-J., et al., Molecular cloning and expression of aminopeptidase A isoforms from rat hippocampus1. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, 2000. 1493(1–2): p. 273-278. 65. Giacinti, C. and A. Giordano, RB and cell cycle progression. Oncogene, 0000. 25(38): p. 5220-5227. 66. Liebmann, C. and F.D. Bohmer, Signal transduction pathways of G protein-coupled receptors and their cross-talk with receptor tyrosine kinases: lessons from bradykinin signaling. Curr Med Chem, 2000. 7(9): p. 911-43. 67. Colussi, D., et al., Molecular Pathways Involved in Colorectal Cancer: Implications for Disease Behavior and Prevention. International Journal of Molecular Sciences, 2013. 14(8): p. 16365-16385. 68. Clevers, H., Wnt/beta-catenin signaling in development and disease. Cell, 2006. 127(3): p. 469-80. 69. Clevers, H. and R. Nusse, Wnt/beta-catenin signaling and disease. Cell, 2012. 149(6): p. 1192-205. 70. Chang, F., et al., Signal transduction mediated by the Ras/Raf/MEK/ERK pathway from cytokine receptors to transcription factors: potential targeting for therapeutic intervention. Leukemia, 2003. 17(7): p. 1263-93. 71. Kolch, W., Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem J, 2000. 351 Pt 2: p. 289-305. 72. Ahmed, D., et al., Epigenetic and genetic features of 24 colon cancer cell lines. Oncogenesis, 2013. 2: p. e71. 73. Seshacharyulu, P., et al., Targeting the EGFR signaling pathway in cancer therapy. Expert Opinion on Therapeutic Targets, 2012. 16(1): p. 15-31. 74. Hwang, W.-L., et al., MicroRNA-146a directs the symmetric division of Snail-dominant colorectal cancer stem cells. Nat Cell Biol, 2014. 16(3): p. 268-280. 75. Carter, N.J., Regorafenib: A Review of Its Use in Previously Treated Patients with Progressive Metastatic Colorectal Cancer. Drugs & Aging, 2014. 31(1): p. 67-78.
|