跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.17) 您好!臺灣時間:2025/09/03 05:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林立杰
研究生(外文):Li-Jie Lin
論文名稱:Alpha-亞麻酸與正丁醇之非均相酯化反應動力行為研究
論文名稱(外文):Kinetic Behavior Study on the Heterogeneous Esterification of
指導教授:李明哲李明哲引用關係
指導教授(外文):Ming-Jer Lee
口試委員:吳紀聖陳良益
口試委員(外文):Chi-Sheng WuLiang-Yih Chen
口試日期:2017-07-25
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:化學工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:101
中文關鍵詞:反應動力Alpha-亞麻酸正丁醇非均相反應酯化反應觸媒反應
外文關鍵詞:Kinetic1-ButanolHeterogeneous reactionEsterificationcatalytic reaction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:150
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用批式反應器探討由α-亞麻酸與正丁醇合成α-亞麻酸正丁酯合成反應之非均相反應動力行為,反應中使用酸性陽離子交換樹脂Amberlyst 39為觸媒。實驗操作於343.15 K至363.15 K之間,並探討(醇/酸)進料莫耳比、觸媒質傳阻力以及觸媒添加量之效應。
反應動力實驗結果顯示,隨著反應溫度的升高,反應速率能有效地加快,此外平衡轉化率也有些微的提升;而(醇/酸)進料莫耳比、觸媒量的提高,反應速率也有明顯得提升;此外,觸媒顆粒及轉速的改變對反應速率無顯著差異,由此得知本研究之實驗條件皆操作在非質傳阻力影響之前提下。
α-亞麻酸正丁酯合成反應動力數據分別以理想溶液擬均相模式、非理想溶液擬均相動力模式、Eley-Rideal模式以及Langmuir-Hinshelwood-Hougen-Watson模式關聯,並求得最適化的動力參數值,NRTL模式則用於計算各反應成分之活性係數,關聯的結果顯示LHHW模式為描述α-亞麻酸正丁酯合成反應的非均相催化動力行為的最佳模式。
The heterogeneous kinetics behavior was investigated with a batch reactor for the synthesis of linolenic acid n-butyl ester from linolenic acid and n-butanol over the cation-exchange resins, Amberlyat 39. The experiments were conducted at tempertures from 343.15 K to 363.15 K. Additionally, the effects of molar ratio of alcohol to acid in the feed stream, the mass transfer resistances on the catalytic reaction, and the different levels of catalyst loadings were also observed.
Both reaction rate and equilibrium conversion of acid increased with increase of reaction temperature, while increasing molar ratio of alcohol to acid in the feed stream and catalyst loading increase the reaction rate. It was also found that the reaction rate is not apparently different when operating at different agitation rates and different particle sizes of catalyst. Therefore, these results show that the mass transfer resistances are neglegible over the entire operating conditions.
The kinetic data of the synthesis of linolenic acid n-butyl ester were correlated with the ideal-quasi-homogeneous (IQH), the non-ideal-quasi-homogeneous (NIQH), the Eley-Rideal (ER), and the Langmuir-Hinshelwood-Hougen-Watson (LHHW) models, respectively. The NRTL model was used to calculate the activity coefficients for each reacting species. The optimal values of the kinetic parameters were determined from the data fitting. The LHHW model yielded the best representation for the kinetic behavior of heterogeneous catalytic synthesis of linolenic acid n-butyl ester.
第一章 緒論 1
1-1 前言 1
1-2文獻回顧 3
1-3 本研究之重點 19
第二章 反應動力實驗 26
2-1 酯化反應動力數據量測 26
2-2 藥品 30
2-3 實驗步驟 31
2-4 組成分析 32
2-5 數據處理 35
2-6 動力反應實驗結果 37
2-7 結果與討論 38
第三章 反應動力數據關聯 58
3-1 動力模式 58
3-2理想溶液擬均相動力模式 59
3-3非理想溶液動力模式 62
3-4 速率常數與吸附常數的訂定 64
3-5 α-亞麻酸正丁酯之動力模式關聯結果 66
3-6 非理想溶液之平衡常數 67
第四章 結論與建議 86
4-1 結論 86
4-2 建議與注意事項 88
參考文獻 90
符號說明 97
附錄A觸媒篩目粒徑對照表 101
Aranda, D. A. G., R. T. P. Santos, N. C. O. Tapanes, A. L. D. Ramos, and O. A. C. Antunes, “Acid-Catalyzed Homogeneous Esterification Reaction for Biodiesel Production from Palm Fatty Acids,” Catal. Lett., Vol. 122 pp. 20-25 (2008).

Asthana, N. S., A. K. Kolah, D. T. Vu, C. T. Lira, and D. J. Miller, “A Kinetic Model for the Esterification of Lactic Acid and Its Oligomers,” Ind. Eng. Chem. Res., Vol. 45, pp. 5251-5257 (2006).

Alegría, A. and J. Cuellar, “Esterification of Oleic Acid for Biodiesel Production Catalyzed by 4-Dodecylbenzenesulfonic Acid,”Applied Catalysis B: Environmental, Vol. 179, pp. 530-541 (2015).

Chowdhury, A., D. Sarkar, and D. Mitra, “Esterification of Free Fatty Acids Derived from Waste Cooking Oil with Octanol: Process Optimization and Kinetic Modeling,” Chem. Eng. Technol., Vol. 39, No. 4, pp. 730-740 (2016).

De Paiva, E. J. M., V.Graeser, F. Wypych, and M. L.Corazza, "Kinetics of Non-Catalytic and ZnL2-Catalyzed Esterification of Lauric Acid with Ethanol," Fuel, Vol. 117, Part A, pp. 125-132 (2013).

Delgado, P., M. T. Sanz, and S. Beltran, “Kinetic Study for Esterification of Lactic Acid with Ethanol and Hydrolysis of Ethyl Lactate Using an Ion-Exchange Resin Catalyst,” Chemical Engineering and Processing, Vol. 126, pp. 111-118 (2007).
Deshmane, V. G., P. R. Gogate, and A. B. Pandit, “Ultrasound Assisted Synthesis of Isopropyl Esters from Palm Fatty Acid Distillate,” Ultrasonics Sonochemistry, Vol. 16, pp. 345-350 (2009).

Fredenslund, A., J. Gmehling, and P. Rasmussen, “Vapor-Liquid Equilibria Using UNIFAC: A Group-Contribution Method,” Elsevier, Amsterdam (1977).

González, J. C., and J. R. Fair, “Preparation of Tertiary Amyl Alcohol in a Reactive Distillation Column. 1. Reactive Kinetics, Chemical Equilibrium, and Mass-Transfer Issues,” Ind. Eng. Chem. Res., Vol. 36, pp. 3833-3844 (1997).

Ilgen, O., "Investigation of Reaction Parameters, Kinetics and Mechanism of Oleic Acid Esterification with Methanol by Using Amberlyst 46 as a Catalyst." Fuel Processing Technology, Vol. 124, pp. 134-139 (2014).

Jong, M. C. de, R. Feijt, E. Zondervan, T. A. Nijhuis, and A. B. de Haan, “Reaction Kinetics of the Esterification of Myristic Acid with Isopropanol and n-Propanol Using p-Toluene Sulphonic Acid as Catalyst,” Applied Catalysis A: General, Vol. 365, pp. 141-147 (2009).

Kolah, A. K., N. S. Asthana, D. T. Vu, C. T. Lira, and D. J. Miller, “Reaction Kinetics of the Catalytic Esterification of Citric Acid with Ethanol,” Ind. Eng. Chem. Res. , Vol. 46, pp. 3180-3187 (2007).


Kanda, L. R. S., M. L. Corazza, L. Zatta, and L. Wypych, “Kinetics Evaluation of the Ethyl Esterification of Long Chain Fatty Acids Using Commertial Montmorillonite K10 as Catalyst,” Fuel, Vol. 193, pp. 265-274 (2017).

Lee, M. J., J. Y. Chiu, and H. M. Lin, “Kinetics of Catalytic Esterification of Acetic Acid and n-Butanol over Amberlyst 35,” Ind. Eng. Chem. Res., Vol. 41, pp. 2882-2887 (2002).

Lilja, J., J. Aumo, T. Salmi, D. Yu. Murzin, P. Mäki-Arvela, M. Sundell, K. Ekman, R. Peltonen, and H. Vainio, “Kinetics of Esterification of Propanoic Acid with Methanol over a Fibrous Polymer-Supported Sulphonic Acid Catalyst,” Applied Catalysis A: General, Vol. 228, pp. 253-267 (2002).

Liu, Y., E. Lotero, and J. G. Goodwin Jr., “A Comparison of the Esterification of Acetic Acid with Methanol Using Heterogeneous Acid Catalysis,” Journal of Catalysis, Vol. 242, pp. 278-286 (2006).

Mäki-Arvela, P., T. Salmi, M. Sundell, K. Ekman, R. Peltonen, and J. Lehtonen, “Comparison of Polyvinybenzene and Polyolefin Supported Sulphonic Acid Catalysts in the Esterification of Acetic Acid,” Applied Catalysis A: General, Vol. 184, pp. 25-32 (1999).

Mansir, N., Y. H. Taufiq-Yap, U. Rashid, and I. M. Lokman, “Investigation of Heterogeneous Solid acid Catalyst Performance on Low
Grade Feedstocks for Biodiesel Production: A Review,” Energy Conversion and Management, Vol. 141, pp. 171-182 (2017).

Nandiwale, K. Y., P. S. Niphadkar, S. S. Deshpande, and V. V. Bokade, “Esterification of Renewable Levulinic Acid to Ethyl Levulinate Biodiesel Catalyzed by Highly Active and Reusable Desilicated H-ZSM-5,” J. Chem. Technol. Biotechnol., Vol. 89, pp. 1507-1515 (2014).
Orjuela, A., A. J. Yaneza, A. Santhanakrishnan, C. T. Lira, and D. J. Miller, “Kinetics of Mixed Succinic Acid/Acetic Acid Esterification with Amberlyst 70 Ion Exchange Resin as Catalyst,” Chem. Eng. J., Vol. 188, pp. 98-107 (2012).

Park, J. Y., D. K. Kim, and J. S. Lee, “Esterification of Free Fatty Acids Using Water-Tolerable Amberlyst as a Heterogeneous Catalyst,” Bioresource Technol., Vol. 101, pp. S62-S65 (2010).

Pasias, S., N. Barakos, C. Alexopoulos, and N. Papayannakos, “Heterogeneously Catalyzed Esterification of FFAs in Vegetable Oils,” Chem. Eng. Technol., Vol. 29, pp. 1365-1371 (2006).

Phan, A. N. and T. M. Phan, “Biodiesel Production from Waste Cooking Oils,” Fuel, Vol. 87, pp. 3490-3496 (2008).

Pinnarat, T. and P. E. Savage. "Noncatalytic Esterification of Oleic Acid in Ethanol," J. Supercrit. Fluids, Vol.53, 53-59 (2010).

Renon, H. and J. M. Prausnitz, “Local Compositions in Thermodynamic Excess Function for Liquid Mixtures,” AIChE J., Vol. 14, pp.135-144 (1968).


Rattanaphra, D., A. P. Harvey, A. Thanapimmetha, and P. Srinophakun, “Kinetic of Myristic Acid Esterification with Methanol in the Presence of
Triglycerides over Sulfated Zirconia,” Renewable Energy., Vol. 36, pp. 2679-2686 (2011).

Rani, K. N. P., T. S. V. R. Neeharika, T. P. Kumar, B. Satyavathi, and C. Sailu, “Kinetics of Non-Catalytic Esterification of Free Fatty Acids Present in Jatropha Oil,” Journal of Oleo Science, Vol. 65, pp. 441-445 (2016).

Ray, N. M. and A. K. Ray, “Determination of Adsorption and Kinetic Parameters for Methyl Oleate (Biodiesel) Esterification Reaction Catalyzed by Amberlyst 15 Resin,” The Canadian Journal of Chemical Engineering, Vol. 94, pp. 738-744 (2016).

Sanz, M. T., R. Murga, and J. L. Cabezas, “Autocatalyzed and Ion-Exchange-Resin-Catalyzed Esterification Kinetics of Lactic Acid with Methanol,” Ind. Eng. Chem. Res., Vol. 41, pp. 512-517 (2002).

Seo, Y. and W. H. Hong, “Kinetics of Esterification of Lactic Acid with Methanol in the Presence of Cation Exchange Resin Using a Pseudo-Homogeneous Model,”J. Chem. Eng. Japan, Vol. 33, pp. 128-133 (2000).

Su, C. H., C. C. Fu, J. Gomes, I. M. Chu, and W. T. Wu, “A Heterogeneous Acid-Catalyzed Process for Biodiesel Production from Enzyme Hydrolyzed Fatty Acids,” AIChE J., Vol. 54, pp. 327-336 (2008).

Santos, P. R. S., F. Wypych, F. A. P. Voll, F. Hamerski, and M. L. Corazza, “Kinetics of Ethylic Esterification of Lauric Acid on Acid Activated Montmorillonite (STx1-b) as Catalyst,” Fuel, Vol. 181, pp. 600-609 (2016).

Tsao, J. C. Y., T. C. Huang, and H. S. Weng, “Kinetic Studies for the Preparation of Itaconates by Continuous-Flow and Fixed-Bed Methods,” Ind. Eng. Chem. Process Des. Dev., Vol. 7, pp. 401-409 (1968).

Tesser, R., M. D. Serio, M. Guida, M. Nastasi, and E. Santacesaria, “Kinetics of Oleic Acid Esterification with Methanol in the Presence of Triglycerides,” Ind. Eng. Chem. Res., Vol. 44, pp. 7978-7982 (2005).

Tesser, R., L. Casale, D. Verde, M. Di Serio, and E. Santacesaria, “Kinetics of Free Fatty Acids Esterification: Batch and Loop Reactor Modeling,” Chem. Eng. J., Vol 154, pp. 25-33 (2009).

Xu, X., Y. Zheng, and G. Zheng, “Kinetics and Effectiveness of Catalyst for Synthesis of Methyl tert-Butyl Ether in Catalytic Distillation,” Ind. Eng. Chem. Res., Vol. 34, pp. 2232-2236 (1995).

Yadav, G. D. and M. B. Thathagar, “Esterification of Maleic Acid with Ethanol over Cation-Exchange Resin Catalysts,” Reactive & Functional Polymers, Vol. 52, pp. 99-110 (2002).

Yalcinyuva, T., H. Deligoz, I. Boz, and M. A. Gurkaynak, “Kinetics and Mechanism of Myristic Acid and Isopropyl Alcohol Esterification Reaction with Homogeneous and Heterogeneous Catalysts,” International Journal of Chemical Kinetics, Vol. 40, pp. 136-144 (2008).

Yang, Z., M. Li, and J. Yang, “Kinetics of Esterification of Lactic Acid with Ethanol Catalyzed by Cation-Exchange Resins,” Reactive & Functional Polymers, Vol. 61, pp. 101-114 (2004).

邱如吟,「產製丙酸丁酯之非均相酯化反應研究」,碩士論文,台灣科技大學化工研究所(2000)。

蔡雨廷,「戊二酸與甲醇的非均相酯化反應動力行為研究」,碩士論文,台灣科技大學化工研究所(2005)。

李佩容,「戊酸甲酯非均相觸媒之合成反應動力行為研究」,碩士論文,台灣科技大學化工所(2009)。

張善堯,「非均相觸媒之阿魏酸甲酯合成反應動力行為研究」,碩士論文,台灣科技大學化工所(2012)。

蔡嘉瑩,「非均相觸媒之乙酰丙酸乙酯合成反應動力行為研究」,碩士論文,台灣科技大學化工所(2014)。

陳筱簍,「Alpha亞麻酸與乙醇之非均相觸媒酯化合成反應動力行為研究」,碩士論文,台灣科技大學化工所(2016)。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊