[1]洪茂峰,無線通訊技術的演進,國立成功大學校刊,第220期,29 ~ 33頁。
[2]朱國瑞、呂淑雅、林士雄、李旺龍,微波及微波的應用&;quot;,科學發展, 2005年11月,395期,28~37頁。
[3]Developed Li-Fi Technology – Overview, Available online at http://www.lificonsortium.org/technology.html
[4]Eid Alsabbagh, Haoyang Yu, Kevin Gallagher, “802.11ac design considerations for mobile devices,” Microwave Journal, February 14, 2013.
[5]David Angell, “Intel® Centrino® 802.11n Wi-Fi gets down to business,” Technology@Intel, April 14, 2010.
[6]IEEE 802.11 Working Group, “IEEE 802.11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications,” IEEE-SA, April, 2012.
[7]Mirin Lew, “Introduction to 802.11ac WLAN technology and testing,” Agilent Technologies webcast slides, Jan, 2012.
[8]Wi-Fi Alliance®, Available online at http://www.wi-fi.org/who-we-are
[9]IEEE 802.15.3a, WPAN High Rate Alternative PHY Task Group 3a (TG3a), Available online at http://www.ieee802.org/15/pub/TG3a.html
[10]IEEE 802.15.1, Available online at https://www.ieee802.org/15/pub/TG1.html
[11]Feng Chen, Nan Wang, Reinhard German, Falko Dressler, “Performance evaluation of IEEE 802.15.4 LR-WPAN for industrial applications,” Wireless on Demand Network Systems and Services, Jan, 2008.
[12]IEEE, “Wireless medium access control (MAC) and physical layer (PHY) specifications for low-rate wireless personal area networks (WPAMs),” IEEE Standard 802.15.4, 2006.
[13]ZigBee Alliance homepage, Available online at http://www.zigbee.org/
[14]張盛富、張嘉展,無線通訊射頻晶片模組設計-射頻晶片篇,台北,全華圖書股份有限公司,2008年。
[15]G. Hanington, P. F. Chen, P. M. Asbeck and L. E. Larson, “High-efficiency power amplifier using dynamic power-supply voltage for CDMA applications,” IEEE Trans. Microw. Theory and Tech., vol. 47, pp. 1471-1476, Aug. 1999.
[16]P. Reynaert and M. Steyaert,”A 1.75-GHz polar modulated CMOS RF power amplifier for GSM-EDGE,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2598-2608, Dec. 2005.
[17]F. Wang, D. Kimball, D. Lie, P. Asbeck, and L. Larson, ”A monolithic high-efficiency 2.4-GHz 20-dBm SiGe BiCMOS envelope-tracking OFDM power amplifier,” IEEE J. Solid-State Circuits, vol. 42, no. 6, pp. 1271-1281, Jun. 2007.
[18]F. Wang, D. Kimball, J. Popp, A. Yang, D. Lie, P. Asbeck, and L. Larson, ”An improved power-added efficiency 19-dBm hybrid envelope elimination and restoration power amplifier for 802. 11g WLAN applications,” IEEE Trans. Microw. Theory Tech.,” vol. 54, no. 12, pp. 4086-4099, Dec. 2006.
[19]H. Xu, Y. Palaskas, A. Ravi, M. Sajadieh, M. El-Tanani, and K. Soumyanath, “A flip-chip-packaged 25.3 dBm class-D outphasing power amplifier in 32 nm CMOS for WLAN application,” IEEE J. Solid-State Circuits,” vol. 46, no. 7, pp. 1596-1605, Jul. 2011.
[20]W. H. Doherty, “A new high efficiency power amplifier for modulated waves,” Proc. IRE, vol.24, no. 9, pp. 1163-1182, Sep. 1936.
[21]Steve C. Cripps, “RF Power Amplifier For Wireless Communications,” Artech House, London, 2006.
[22]Behzad Razavi, “RF Microelectronics,” Prentice Hall PTR, USA, pp.149-155, 1997.
[23]E. L. Tan, “Rollett-based single-parameter criteria for unconditional stability of linear two-ports,” IEEE Proc.-Micow. Antennas Propag., vol. 151, no.4, pp. 298-302, August 2004.
[24]ADS, ver. 2011, Agilent Technol., Santa Clara, CA, 2011.
[25]D. M. Pozar, “Microwave Engineering, 3rd Ed,” John Wiley &; Sons, Inc., 2005.
[26]Tzyy-Sheng Horng, “RF communication circuit design,” course slides, 2012.
[27]A. S. Sedra, K. C. Smith, “Microelectronic Circuit, 6th Ed,” Oxford, 2011.
[28]Sowlati, T.; Leenaerts, D. M. W.; “A 2.4-GHz 0.18-μm CMOS self-biased cascode power amplifier,” IEEE Journal of Solid-State Circuits, Vol 38, Issue 8, Aug. 2003, pp:1318 – 1324.
[29]Chien-Min Lo, Chin-Shen Lin, Huei Wang, “A miniature V-band 3-Stage cascode LNA in 0.13 CMOS,” in Proc. of IEEE International Solid-State Circuits Conference. Tech. Papers, pp. 1254-1263, Feb.6-9, 2006.
[30]C. Yoo and Q. Huang, “A common-gate switched 0.9-W class-E power amplifier with 41% PAE in 0.25-μm CMOS,” IEEE J. Solid-State Circuits, vol. 36, pp. 823–830, May 2001.
[31]T. Kuo and B. Lusignan, “A 1.5-W class-F RF power amplifier in 0.25- m CMOS technology,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 154–155, 2001.
[32]Behzad Razavi,“ A layout technique for millimeter-wave PA transistors,” IEEE, Radio Frequency Integrated Circuits Symposium (RFIC), pp:1-4, 2011.
[33]Boshi Jin, Junghwan Moon, Chenxi Zhao, Bumman Kim,“ A 30.8-dBm wideband CMOS power amplifier with minimized supply fluctuation,” IEEE Trans. Microwave Theory &; Tech., vol 60, no. 6, pp. 1658-2142, August 2010.
[34]Jongchan Kang, Jehyung Yoon, Kyoungjoon Min, Daekyu Yu, Joongjin Nam, Youngoo Yang, Bumman Kim,“ A highly linear and efficient differential CMOS power amplifier with harmonic control,” IEEE Journal of Solid-State Circuit, vol. 41, no.6, pp. 1314-1322, June, 2012.
[35]魏祖強 平面型變壓器為基礎之積體化被動元件設計與模型化研究,國立中山大學電機工程研究所碩士論文,民國九十七年。[36]C. Patrick Yue, S. Simon Wong,” On-Chip spiral inductors with patterned ground shields for Si-Based RF IC’s,” IEEE Journal of Solid-State Circuits, vol. 33, no. 5, May, 1998.
[37]HFSS, ver. 11, Ansoft Corp., Pittsburgh, PA, 2008.
[38]Virtuoso, ver.6.1.6, Cadence Corp., San Jose, CA, 2012.
[39]K.J. Kim, T. H. Lim and K.H. Anh,” The novel high efficiency on chip transformers for the CMOS,” IEEE ISIC, pp.401–404, 2009.
[40]Chenxi Zhao, Byungjoon Park, Yunsung Cho, Bumman Kim,” Analysis and design of CMOS doherty power amplifier using voltage combining method,” IEEE International, Wireless Symposium (IWS), 2013.
[41]Naratip Wongkomet, Luns Tee, Paul R. Gray,“ A 31.5 dBm CMOS RF doherty power amplifier for wireless communication.” IEEE Journal of Solid-State Circuit, vol. 41, no. 12, Dec., 2006.
[42]Kyoung-Joon Cho, Wan-Jong Kim, Ji-Yeon Kim, Jong-Heon Kim, Shawn P. Stapleton,” A novel N-way distributed doherty amplifier with improved efficiency at high PAR signals,” Microwave Journal, April 15, 2008.
[43]Li-Yuan Yang, Hsin-Shu Chen, Yi-Jan Chen, “A 2.4 GHz fully integrated cascode-cascade CMOS doherty power amplifier,” IEEE, Microwave and Wireless Components Letters, vol. 18, no. 3, pp. 197-199, Mar, 2008.
[44]M. Elmala, J. Paramesh, K. Soumyanath,” A 90-nm CMOS Doherty power amplifier with minimum AM-PM distortion,” IEEE Journal Solid-State Circuits, vol. 41, no. 6, pp 1323-1332, Jun, 2006.
[45]E. Kaymaksut,P. Reynaert,” Transformer-Based uneven doherty power amplifier in 90 nm CMOS for WLAN applications,” IEEE Journal Solid-State Circuits, vol. 47, no. 7, pp. 1659-1671, 2012.
[46]K. H. An et al.,” Power-combing transformer techniques for fully-integrated CMOS power amplifier,” IEEE J. Solid-State Circuit, vol. 43, no. 5, pp. 1064-1075, May 2008.
[47]I. Aoki et al.,” Distributed active transformer – a new power-combining and impedance-transformation technique,” IEEE Trans. Microw. Theory and Tech., vol. 50, no. 1, pp, 316-331, Jan 2002.
[48]E. Kaymaksut, B. Francois and P. Reynaert, “Analysis and Optimization of Transformer-Based Power Combining for Back-Off Efficiency Enhancement”, IEEE Transactions on Circuits and Systems - I, vol. 60, No. 4, pp. 825-835, April 2013.
[49]K. Onizuka, S. Saigusa and S. Otaka, “A +30.5 dBm CMOS Doherty Power Amplifier with Reliability Enhancement Technique”, Symposium on VLSI Circuits Digest of Technical Papers, Honolulu, Hawai, July, 2012.