|
[1] D. M. Chapin, C. S. Fuller and G. L. Pearson, “A new silicon pn junction photocell for converting solar radiation into electrical power,” J. Appl. Phys., 25, 676 (1954). [2] J. Zhao, A. Wang, M. A. Green and F. Ferrazza, “Novel 19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Appl. Phys. Lett., 73, 1991 (1998). [3] O. Schultz, S. W. Glunz and G. P. Willeke, “Multicrystalline silicon solar cells exceeding 20% efficiency,” Prog. Photovolt. : Res. Appl., 12, 553 (2004). [4] S. Benagli, D. Borrello, E. Vallat-Sauvain, J .Meier, U. Kroll, J .Hotzel, J .Spitznagel, J .Steinhauser, L .Castens and Y. Djeridane, “High-efficiency amorphous silicon devices on LPCVD-ZNO TCO prepared in industrial KAI-M R&;D reactor,” 24th European Photovoltaic Solar Energy Conference, Hamburg, Sept. (2009). [5] News–“Tandem organic photovoltaic reaches 10.6% efficiency a world’s first for polymer organic photovoltaic devices” (2012). [6] K. M. Coakley,Wudl and M. D. McGehee, “Conjugated polymer photovoltaic cells,” Chem. Mater., 16, 4533 (2004). [7] H. Hoppe and N. S. Sariciftci, “Organic solar cell: An review,” J. Mater. Res., 19, (2004). [8] A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, “Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells,” J. Am. Chem. Soc., 131, 6050–6051 (2009). [9] J. H. Im, C. R. Lee, J. W. Lee, S. W. Park and N. G. Park, “6.5% efficient perovskite quantum-dot-sensitized solar cell,” Nanoscale, 3, 4088–4093 (2011). [10] J. H. Heo, S. H. Im, H. J. Kim, P. P. Boix, S. J. Lee, S. I. Seok, Iva?n M. S. and J. Bisquert, “Sb2S3-Sensitized Photoelectrochemical Cells: Open Circuit Voltage Enhancement through the Introduction of Poly-3-hexylthiophene Interlayer,” J. Phys. Chem. C, 116, 20717–20721 (2012). [11] P. Mauersberger and F. Huber, “Structure of caesium triiodostannate(II),” Acta Cryst., 36, 683–684 (1980). [12] K. Shum, Z. Chen, J. Qureshi, C. Yu, J. J. Wang, W. Pfenninger, N. Vockic, J. Midgley and J. T. Kenney, “Synthesis and characterization of CsSnI3 thin films,” Appl. Phys. Lett., 96, 221903 (2010). [13] D. B. Mitzi, K. Chondroudis and C. R. Kagan, “Design, Structure, and Optical Properties of Organic?Inorganic Perovskites Containing an Oligothiophene Chromophore,” Inorg. Chem., 38, 6246–6256 (1999). [14] A. Kojima1, M. Ikegami, K. Teshima and T. Miyasaka, “Highly Luminescent Lead Bromide Perovskite Nanoparticles Synthesized with Porous Alumina Media,” Chem. Lett., 41, 397–399 (2012). [15] K. Tanakaa, T. Takahashia, T. Bana, T. Kondoa, K. Uchidab and N. Miurab, “Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 CH3NH3PbI3,” Solid State Communi., 127, 619–623 (2003). [16] T. Ishihara, “Optical properties of PbI-based perovskite structures,” J. Lumin., 60&;61, 269–274 (1994). [17] Z. Chenga and J. Lin, “Layered organic–inorganic hybrid perovskites: structure, optical properties, film preparation, patterning and templating engineering,” CrystEngComm, 10, 2646–2662 (2010). [18] J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C. S. Lim, J. A. Chang, Y. H. Lee, H. J. Kim, A. Sarkar, M. K. Nazeeruddin, M. Gratzel and S. I. Seok, “Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors,” Nature Photonics, 7, 486–491 (2013). [19] J. M. Ball, M. M. Lee, A. Heya and H. J. Snaith, “Low-temperature processed meso-superstructured to thin-film perovskite solar cells,” Energy Environ. Sci.,6, 1739–1743 (2013). [20] S. Ryu, J. H. Noh, N. J. Jeon, Y. C. Kim, W. S. Yang, J. W. Seo and S. I. Seok, “Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor,” Energy Environ. Sci., (2014). [21] P. Docampo, J. M. Ball1, M. Darwich1, G. E. Eperon1 and H. J. Snaith, “Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates,” Nature Communi., 4 (2013). [22] S. Sun, T. Salim, N. Mathews, M. Duchamp, C. Boothroyd, G. Xing, T. C. Sumbce and Y. M. Lam, “The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells,” Energy Environ. Sci., 7, 399–407 (2014). [23] J. You, Z. Hong, Y.(Michael) Yang, Q. Chen, M. Cai, T. B. Song, C. C. Chen, S. Lu, Y. Liu, H. Zhou and Y. Yang, “Low-Temperature Solution-Processed Perovskite Solar Cells with High Efficiency and Flexibility,” ACS Nano, 8, 1674–1680 (2014). [24] G. E. Eperon1, V. M. Burlakov, P. Docampo, A. Goriely and H. J. Snaith, “Morphological Control for High Performance, Solution-Processed Planar Heterojunction Perovskite Solar Cells,” Adv. Funct. Mater., 24, 151–157 (2014). [25] B. Conings, L. Baeten, C. D. Dobbelaere, J. D'Haen, J. Manca and H. G. Boyen, “Perovskite-Based Hybrid Solar Cells Exceeding 10% Efficiency with High Reproducibility Using a Thin Film Sandwich Approach,” Adv. Mater., 26, 2041–2046 (2014). [26] Research Cell Efficiency Records (http://www.nrel.gov/ncpv/). [27] R. N. Marks, J. J. M. Halls, D. D. C. Bradley, R. H. Friend and A. B. Holmes, “The photovoltaic response in poly(ppheny1ene vinylene) thin-film devices,” J. Phys. : Condens. Matter., 6, 1379 (1994). [28] C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, M. T. Rispens, L. Sanchez, J. C. Hummelen and T. Fromherz, “The influence of materials work function on the open circuit voltage of plastic solar cells,” Thin Solid Film, 403–404, 368–372 (2002). [29] H. Kim, S. H. Jin, H. Suh and K. Lee, “Origin of the open circuit voltage in conjugated polymer-fullerene photovoltaic cells,” In Organic Photovoltaics IV, 5215, 111 (2004). [30] S. D. Stranks, G. E. Eperon1, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza and H. J. Snaith1, “Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber,” Science, 342, 341–344 (2013). [31] K. Tanaka, T. Takahashi, T. Ban, T. Kondo, K. Uchida and N. Miura, “Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 CH3NH3PbI3,” Solid State Communi., 127, 619–623(2003). [32] P. P. Boix, K. Nonomura, N. Mathews and S. G. Mhaisalkar, “Current progress and future perspectives for organicinorganic perovskite solar cells,” Mater. Today, 17, 16–23 (2014). [33] Q. Chen, H. Zhou, Z. Hong, S. Luo, H. S. Duan, H. H. Wang, Y. S. Liu, G. Li and Y. Yang, “Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process,” J. Am. Chem. Soc., 136, 622–625 (2014). [34] CONDUCTIVE POLYMERS DIVISION Clevios? P VP AI 4083 (http://goo.gl/IyAeUE). [35] Product Specification [6,6]-Phenyl C61 butyric acid methyl ester >99% (http://goo.gl/O5bLJy). [36] V. G. Pedro, E. J. J. Perez, W. S. Arsyad, E. M. Barea, F. F. Santiago, I. M. Sero and J. Bisquert, “General Working Principles of CH3NH3PbX3 Perovskite Solar Cells,” Nano Lett., 14, 888–893 (2014). [37] G. W. Warren and H. Henein, “Solubility of PbCl2 in DMSO and DMSO-water,” Hydrometallurgy, 46, 243–247 (1997). [38] A. Dualeh, N. Tetreault, T. Moehl, P. Gao, M. K. Nazeeruddin and M. Gratzel, “Effect of Annealing Temperature on Film Morphology of Organic–Inorganic Hybrid Pervoskite Solid-State Solar Cells,” Adv. Funct. Mater., 24, 3250–3258 (2014).
|