跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.167) 您好!臺灣時間:2025/11/01 00:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:宋偉傑
研究生(外文):Sung, Wei-Jie
論文名稱:應用於下視網膜植入具光伏特電池及分區供電之180奈米互補式金氧半256像素感測及雙向刺激晶片設計
論文名稱(外文):THE DESIGN OF 180-NM CMOS 256-PIXEL SENSING AND BIPHASIC STIMULATION CHIPS WITH ON-CHIP PHOTOVOLTAIC CELLS AND DIVISIONAL POWER SUPPLY SCHEME FOR SUBRETINAL PROSTHESES
指導教授:吳重雨
指導教授(外文):Wu, Chung-Yu
口試委員:吳重雨焦傳金邱進峯陳柏宏
口試委員(外文):Wu, Chung-YuChiao, Chuan-ChinChiu, Chin-FongChen,Po-Hung
口試日期:2016-4-15
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程學系 電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:65
中文關鍵詞:下視網膜分區供電主動式象素元件
外文關鍵詞:SubretinalDivisional power supply schemeActive pixel sensor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:274
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:1
本篇論文提出及分析應用於下視網膜互補式金氧半太陽能電池256像素刺激晶片移植系統,晶片架構基於分區供電方式(DPSS)和主動式像素元件(APS)改良輸出刺激電流之效率。實驗之晶片八區分區供電為16x16的光二極體陣列以及控制訊號產生電路。而晶片採用台積電0.18um互補式金氧半CIS製程工藝。最終的晶片尺寸為3mm x 3mm,DPSS11在5mW/cm2 之訊號光以及80mW/cm2 之紅外線背景光照射下量測,負載為10-kΩ時控制訊號頻率為47.68赫茲,輸出的雙向刺激電流有19.9uA;負載為生物模型時控制訊號頻率為45.45赫茲,輸出的雙向刺激電流有19.52uA,累積電荷量為1.1nC。DPSS12在0.4 mW/cm2 之訊號光以及80mW/cm2 之紅外線背景光照射下量測,負載為10-kΩ時控制訊號頻率為30.2赫茲,輸出的雙向刺激電流有19.95uA;負載為生物模型時控制訊號頻率為30.2赫茲,輸出的雙向刺激電流有19.84uA,累積庫倫量為1.64nC,此量測結果驗證了晶片可以正常操作。
A photovoltaic-cell-powered CMOS 256-pixel implantable chip is proposed for subretinal prostheses. In the proposed chip, the divisional power supply scheme (DPSS) and the active pixel sensor (APS) are adopted to improve the efficiency of output stimulation currents and the image sensitivity. The proposed chip consists of a 16x16 photodiode array with 8 DPSS divisions, control signal generator circuits, and photovoltaic cells. It is designed and fabricated in 180-nm CMOS image sensor (CIS) technology. The chip size is 3mm x 3mm. The DPSS11 measured frequency of eight-phase control signals is 47.68 Hz under signal light intensity of 5 mW/cm2 and background IR intensity of 80 mW/cm2. The measured output stimulation current is 19.9 μA under 10-kΩ load. Under the equivalent electrode impedance load, the measured frequency of eight-phase control signals is 45.45 Hz. The measured peak output stimulation current is 19.52 μA and the amount of injected charges per pixel is 1.1 nC. The DPSS12 measured frequency of eight-phase control signals is 30.2 Hz under signal light intensity of 0.4 mW/cm2 and background IR intensity of 80 mW/cm2. The measured output stimulation current is 19.95 μA under 10-kΩ load. Under the equivalent electrode impedance load, the measured frequency of eight-phase control signals is 30.2 Hz. The measured peak output stimulation current is 19.84 μA and the amount of injected charges per pixel is 1.64 nC. The measurement results have verified the correct function of the proposed subretinal implant chip.

DPSS11—CMOS CIS 256-pixel subretinal chip version I
DPSS12-- CMOS CIS 256-pixel subretinal chip version II

CONTENTS
ABSTRACT (CHINESE) i
ABSTRACT (ENGLISH) ii
ACKNOWLEDGEMENTS iv
CONTENTS v
TABLE CAPTIONS vii
FIGURE CAPTIONS viii

CHAPTER 1 INTRODUCTION 1
1.1 Background 1
1.2 Review on the Subretinal Prostheses 4
1.3 Motivation 9
1.4 Main Results and Thesis Organization 10
CHAPTER 2 CHIP ARCHITECTURE AND CIRCUIT DESIGN 11
2.1 Chip Architecture and Operational Principle 11
2.2 Circuit Design 15
2.2.1 Divisional Power Supply Scheme …………………………………..15
2.2.2 Current-Cancellation Circuit ………………………………………..18
2.2.3 Control Signal Generation Curcuit………………………………..........19
2.2.4 Pixel Stimulation Circuit……………………………………………….25
2.3 Post Simulation Results 29
CHAPTER 3 EXPERIMENTAL RESULTS 32
3.1 Measurement Results of Photodiode Test-keys 32
3.2 Measurement Results of Subretinal Chips 39
3.2.1 Measurement Setup…………………………………………………….39
3.2.2 Measurement Results ………………………………………………….41
3.2.3 Discussion…………………………………………………………...53
CHAPTER 4 CONCLUSIONS AND FUTURE WORK 59
4.1 Conclusions 59
4.2 Future Work 61
REFERENCES 62
VITA 65



[1] C.Hamel,”Retinitis pigmentosa,” Orphanet Journal of Rare Diseases, vol. 1, no.1 , article no. 40 ,2006.

[2] D. S. Friedman, B. J. O'Colmain, B. Munoz, S. C. Tomany, C. McCarty et al., “Prevalence of age-related macular degeneration in the United States,” Arch Ophthalmol, vol. 122, no. 4, pp. 564-572, April 2004.

[3] G. Brindley, W. Lewin "The sensation produced by electrical stimulation of the visual cortex". Journal of Physiology 196, pp. 479–93,1968

[4] A. Majji, M. Humayun, J. Weiland, S. Suzuki, S. D’Anna, E. deJuan Jr. (1999). "Long-term histological and electrophysiological results of an inactive epiretinal electrode array implantation in dogs". Investigative Ophthalmology and Visual Science 40 (9): 2073–81.

[5] P. Walter, P. Szurman, M. Vobig, H. Berk, H. Ludtke-Handjery, H.Richter, et. al. (1999). "Successful long-term implantation of electrically inactive epiretinal microelectrode arrays in rabbits". Retina 19 (6): 546–52.
[6] K. Sooksood, E. Noorsal, J. Becker, and M. Ortmanns, " A neural stimulator front-end with arbitrary pulse shape, HV compliance and adaptive supply requiring 0.05mm2 in 0.35μm HVCMOS," IEEE International Solid-State Circuits Conference, pp. 306-308,2011.

[7] C.-C. Chiao, Y.-T. Yang, C. Wan, W.-C. Yang, L.-J. Lin, P.-K. Lin, and C.-Y. Wu,” Responses of rabbit retinal ganglion cells to subretinal electrical stimulation with a silicon-based microphotodiode array,” ARVO Abstract. Invest. Ophtha. Vis. Sci., vol. 33, no. 4, May 2010, pp. 1048-1992.

[8] K. Mathieson, J. Loudin, G. Goetz, P. Huie, L. Wang, T. I. Kamins, L. Galambos, R. Smith, J. S. Harris, A. Sher and D. Palanker, “Photovoltaic retinal prosthesis with high pixel density,” Nature Photonics, vol. 6, pp. 391-397, May. 2012.

[9] C.-L. Lee and C.-C. Hsieh, “A 0.8-V 4096-Pixel CMOS Sense-and-Stimulus Imager for Retinal Prosthesis,” IEEE Transactions on Electron Devices, vol. 60, pp. 1162-1168, 2013.

[10]P.-K. Lin, P.-H. Kuo, Y.-C. Tsai, M.-J. Sui, C.-C. Chiao, T. Noda, J. Ohta, and C.-Y. Wu, “The ex vivo and in vivo electrophysiological investigations of a subretinal photovoltaic prosthesis embedded with solar cells and divisional-power-supply-scheme,” in TEATC (World Research Congress: The Eye and The Chip), 2014.

[11] S. Oh, J.-H. Ahn, S. Lee, H. Ko, J. M. Seo, Y.-S. Goo, and D. Cho, “Light-Controlled Biphasic Current Stimulator IC Using CMOS Image Sensors for High-Resolution Retinal Prosthesis and In Vitro Experimental Results With rd1 Mouse,” IEEE Transactions on Biomedical Engineering, vol. 62, pp. 70-79, 2015.

[12] K. Chen, Z. Yang, L. Hoang, J. Weiland, M. Humayun, and W. Liu, “An integrated 256-channel epiretinal prosthesis,” IEEE J. Solid-State Circuits, vol. 45, pp. 1946-1956, Sept. 2010.

[13] K. Chen, Z. Yang, L. Hoang, J. Weiland, M. Humayun, and W. Liu, “A 37.6mm2 1024-Channel High-Compliance -Voltage SoC for Epiretinal Prostheses,” in IEEE ISSCC Dig. Tech. Papers, 2013, pp. 294-296.

[14] C.-Y. Wu, W.-J. Sung, P.-H. Kuo, C.-K. Tzeng, C.-C. Chiao, and Y.-C. Tsai, “The design of CMOS self-powered 256-pixel implantable chip with on-chip photovoltaic cells and active pixel sensors for subretinal prostheses, ” IEEE Biomedical Circuits and Systems Conference (BioCAS), 2015.

[15] E. Zrenner, V. P. Gabel, F. Gekeler, R. B. Graf et al., "From passive to active subretinal implants, serving as adapting electronic substitution of degenerated photoreceptors," IEEE Proc. neural network Int. Joint Conf., vol 1, 2004.

[16] D. Besch, H. Sachs, P. Szurman., “Extraocular surgery for implantation of an active subretinal visual prosthesis with external connections: feasibility and outcome in seven patients,” British Journal of Ophthalmology, vol. 92, no. 10, pp.1361–1368, 2008.

[17] E. Zrenner, R. Wilke., “Subretinal microelectrode arrays allow blind retinitis pigmentosa patients to recognize letters and combine them to words,” in Biomedical Eng. and Informatics, 2009.

[18] F. Gekeler, P. Szurman, D. Besch, E. Zrenner., "Implantation and explantation of active subretinal visual prostheses using a combined transcutaneous and transchoroidal approach," Nove Acta Leopoldina, vol. 379, pp. 205-216, 2010.

[19] A. Rothermel., “A 1600-pixel subretinal chip with DC-free terminals and ±2V supply optimized for long lifetime and high stimulation efficiency,” ISSCC Dig. Tech. Papers, pp. 144-602, Feb. 2008.

[20] Brandon Bosse, Eberhart Zrenner, Robert Wilk “Standard ERG Equipment Can Be Used to Monitor Functionality of Retinal Implants,” 33rd Annual International Conference of the IEEE EMBS Boston, Massachusetts USA, August 30 - September 3, 2011

[21] K. Mathieson, J. Loudin, G. Goetz, P. Huie, L. Wang, T. I. Kamins, L. Galambos, R. Smith, J. S. Harris, A. Sher and D. Palanker, “Photovoltaic retinal prosthesis with high pixel density,” Nature Photonics, vol. 6, pp. 391-397, May. 2012.

[22] C.-Y. Wu, P.-H. Kuo, P.-K. Lin, Y.-C. Huang, C.-K. Su, H. Li, C.-C. Chiao, Y.-T. Huang, Y.-C. Tsai, J.-W. Pan, T. Noda, and J. Ohta, “A Soar-Cell Powered CMOS Sensing and Stimulation Chip with Divisional Power Supply Scheme for Subretinal Prostheses,” in TEATC (World Research Congress: The Eye and The Chip), 2014.

[23] J. Ohta , T. Tokuda , K Kagawa . Laboratory investigation of microelectronics-based stimulators for large-scale suprachoroidal transretinal stimulation (STS). J Neural Eng. 2007;4:S85–S91.

[24] T. Tokuda, T. Ito, T. Kitao, T. Noda . “ CMOS-based smart-electrode-type retinal stimulator with bullet-shaped bulk Pt electrodes,” 33rd Annual International Conference of the IEEE EMBS Boston, Massachusetts USA, August 30 - September 3, 2011

[25] P. B. Matteucci, P. Byrnes-Preston, S. C. Chen, N. H. Lovell, and G. J. Suaning, "ARM-based visual processing system for prosthetic vision," IEEE Engineering in Medicine and Biology Society, pp. 3921-3924, 2011.

[26] C.-Y. Wu, P.-K. Lin, J. Lin, C. Yang, C. Wan, “Power controlling apparatus applied to biochip and operating method thereof.” U.S. Patent 7 622 702, Mar. 12, 2009.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
1. 應用於生醫訊號記錄系統具截波調變之十六通道 互補式金氧半類比前端生理訊號截取電路
2. 應用於植入式生醫元件之互補式金氧半13.56-MHz高效率主動式二/三倍壓整流器和低壓降穩壓器之設計
3. 應用於脊髓神經訊號記錄之四通道互補式金氧半類比前端生理訊號截取電路
4. 應用於植入式生醫元件之互補式金氧半13.56-MHz高效率主動式一/三倍壓整流器和低壓降穩壓器之設計
5. 應用於腦電訊號記錄之互補式金氧半八通道電流訊號類比前端放大電路
6. 應用於腦電訊號記錄之六十五奈米互補式金氧半八通道具截波調變技術類比前端電路
7. 應用於人體癲癇與帕金森氏症治療之互補式金屬氧化物半導體積體電路系統單晶片與閉迴路神經調控系統設計
8. 應用於植入式人工耳蝸之13.56-MHz互補式金氧半電感耦合電源與晶片系統設計與分析
9. 應用於下視網膜植入具電荷泵升壓電路之四向共用電極180奈米互補式金氧半480像素感測及雙向電流刺激晶片設計
10. 應用於腦電訊號紀錄具載波調變放大器與差動混和型逐次漸進式類比數位轉換器之六十五奈米互補式金氧半八通道類比前端電路設計
11. 應用於帕金森症閉迴路深部腦刺激具雜訊去除電路之四通道互補式金氧半類比前端放大器設計
12. 應用於神經訊號記錄之六十五奈米互補式金氧半八通道類比前端電路
13. 應用於下視網膜植入具電荷泵升壓電路之雙向共用電極180奈米互補式金氧半256像素感測及雙向電流刺激晶片設計
14. 用於量測頭髮部位腦電訊號之主動式梳狀乾電極之研究
15. 應用於植入式生醫元件之互補式金氧半13.56-MHz具有新型低功率相位鍵移解調變器之功率與資料傳送系統