|  | 
[1]  C.Hamel,”Retinitis pigmentosa,” Orphanet Journal of Rare Diseases, vol. 1, no.1 , article no. 40 ,2006.
 [2]  D. S. Friedman, B. J. O'Colmain, B. Munoz, S. C. Tomany, C. McCarty et al., “Prevalence of age-related macular degeneration in the United States,” Arch Ophthalmol, vol. 122, no. 4, pp. 564-572, April 2004.
 
 [3] G. Brindley, W. Lewin "The sensation produced by electrical stimulation of the visual cortex". Journal of Physiology 196, pp. 479–93,1968
 
 [4] A. Majji, M. Humayun, J. Weiland, S. Suzuki, S. D’Anna, E. deJuan Jr. (1999). "Long-term histological and electrophysiological results of an inactive epiretinal electrode array implantation in dogs". Investigative Ophthalmology and Visual Science 40 (9): 2073–81.
 
 [5] P. Walter, P. Szurman, M. Vobig, H. Berk, H. Ludtke-Handjery, H.Richter, et. al. (1999). "Successful long-term implantation of electrically inactive epiretinal microelectrode arrays in rabbits". Retina 19 (6): 546–52.
 [6] K. Sooksood, E. Noorsal, J. Becker, and M. Ortmanns, " A neural stimulator front-end with arbitrary pulse shape, HV compliance and adaptive supply requiring 0.05mm2 in 0.35μm HVCMOS," IEEE International Solid-State Circuits Conference, pp. 306-308,2011.
 
 [7] C.-C. Chiao, Y.-T. Yang, C. Wan, W.-C. Yang, L.-J. Lin, P.-K. Lin, and C.-Y. Wu,” Responses of rabbit retinal ganglion cells to subretinal electrical stimulation with a silicon-based microphotodiode array,”  ARVO Abstract. Invest. Ophtha. Vis. Sci., vol. 33, no. 4, May 2010, pp. 1048-1992.
 
 [8] K. Mathieson, J. Loudin, G. Goetz, P. Huie, L. Wang, T. I. Kamins, L. Galambos, R. Smith, J. S. Harris, A. Sher and D. Palanker, “Photovoltaic retinal prosthesis with high pixel density,” Nature Photonics, vol. 6, pp. 391-397, May. 2012.
 
 [9] C.-L. Lee and C.-C. Hsieh, “A 0.8-V 4096-Pixel CMOS Sense-and-Stimulus Imager for Retinal Prosthesis,” IEEE Transactions on Electron Devices, vol. 60, pp. 1162-1168, 2013.
 
 [10]P.-K. Lin, P.-H. Kuo, Y.-C. Tsai, M.-J. Sui, C.-C. Chiao, T. Noda, J. Ohta, and C.-Y. Wu, “The ex vivo and in vivo electrophysiological investigations of a subretinal photovoltaic prosthesis embedded with solar cells and divisional-power-supply-scheme,” in TEATC (World Research Congress: The Eye and The Chip), 2014.
 
 [11] S. Oh, J.-H. Ahn, S. Lee, H. Ko, J. M. Seo, Y.-S. Goo, and D. Cho, “Light-Controlled Biphasic Current Stimulator IC Using CMOS Image Sensors for High-Resolution Retinal Prosthesis and In Vitro Experimental Results With rd1 Mouse,” IEEE Transactions on Biomedical Engineering, vol. 62, pp. 70-79, 2015.
 
 [12] K. Chen, Z. Yang, L. Hoang, J. Weiland, M. Humayun, and W. Liu,  “An integrated 256-channel epiretinal prosthesis,” IEEE J. Solid-State Circuits, vol. 45, pp. 1946-1956, Sept. 2010.
 
 [13] K. Chen, Z. Yang, L. Hoang, J. Weiland, M. Humayun, and W. Liu, “A 37.6mm2 1024-Channel High-Compliance -Voltage SoC for Epiretinal Prostheses,” in IEEE ISSCC Dig. Tech. Papers, 2013, pp. 294-296.
 
 [14] C.-Y. Wu, W.-J. Sung, P.-H. Kuo, C.-K. Tzeng, C.-C. Chiao, and Y.-C. Tsai, “The design of CMOS self-powered 256-pixel implantable chip with on-chip photovoltaic cells and active pixel sensors for subretinal prostheses, ” IEEE Biomedical Circuits and Systems Conference (BioCAS), 2015.
 
 [15] E. Zrenner, V. P. Gabel, F. Gekeler, R. B. Graf et al., "From passive to active subretinal implants, serving as adapting electronic substitution of degenerated photoreceptors," IEEE Proc. neural network Int. Joint Conf., vol 1, 2004.
 
 [16] D. Besch, H. Sachs, P. Szurman., “Extraocular surgery for implantation of an active subretinal visual prosthesis with external connections: feasibility and outcome in seven patients,” British Journal of Ophthalmology, vol. 92, no. 10, pp.1361–1368, 2008.
 
 [17] E. Zrenner, R. Wilke., “Subretinal microelectrode arrays allow blind retinitis pigmentosa patients to recognize letters and combine them to words,” in Biomedical Eng. and Informatics, 2009.
 
 [18] F. Gekeler, P. Szurman, D. Besch, E. Zrenner., "Implantation and explantation of active subretinal visual prostheses using a combined transcutaneous and transchoroidal approach," Nove Acta Leopoldina, vol. 379, pp. 205-216, 2010.
 
 [19] A. Rothermel., “A 1600-pixel subretinal chip with DC-free terminals and ±2V supply optimized for long lifetime and high stimulation efficiency,” ISSCC Dig. Tech. Papers, pp. 144-602, Feb. 2008.
 
 [20] Brandon Bosse, Eberhart Zrenner, Robert Wilk “Standard ERG Equipment Can Be Used to Monitor Functionality of Retinal Implants,” 33rd Annual International Conference of the IEEE EMBS Boston, Massachusetts USA, August 30 - September 3, 2011
 
 [21] K. Mathieson, J. Loudin, G. Goetz, P. Huie, L. Wang, T. I. Kamins, L. Galambos, R. Smith, J. S. Harris, A. Sher and D. Palanker, “Photovoltaic retinal prosthesis with high pixel density,” Nature Photonics, vol. 6, pp. 391-397, May. 2012.
 
 [22] C.-Y. Wu, P.-H. Kuo, P.-K. Lin, Y.-C. Huang, C.-K. Su, H. Li, C.-C. Chiao, Y.-T. Huang, Y.-C. Tsai, J.-W. Pan, T. Noda, and J. Ohta, “A Soar-Cell Powered CMOS Sensing and Stimulation Chip with Divisional Power Supply Scheme for Subretinal Prostheses,” in TEATC (World Research Congress: The Eye and The Chip), 2014.
 
 [23] J. Ohta , T. Tokuda , K Kagawa . Laboratory investigation of microelectronics-based stimulators for large-scale suprachoroidal transretinal stimulation (STS). J Neural Eng. 2007;4:S85–S91.
 
 [24] T. Tokuda, T. Ito, T. Kitao, T. Noda . “ CMOS-based smart-electrode-type retinal stimulator with bullet-shaped bulk Pt electrodes,” 33rd Annual International Conference of the IEEE EMBS Boston, Massachusetts USA, August 30 - September 3, 2011
 
 [25] P. B. Matteucci, P. Byrnes-Preston, S. C. Chen, N. H. Lovell, and G. J. Suaning, "ARM-based visual processing system for prosthetic vision,"  IEEE Engineering in Medicine and Biology Society, pp. 3921-3924, 2011.
 
 [26] C.-Y. Wu, P.-K. Lin, J. Lin, C. Yang, C. Wan, “Power controlling apparatus applied to biochip and operating method thereof.” U.S. Patent 7 622 702, Mar. 12, 2009.
 
 
 |