|
[1]K. Roncone, "Nanotechnology : What Next-GenerationWarriors Will Wear", JOM, January 2004, Volume 56, p31–33 [2]J.E. Melzer, "Integrated Headgear for the Future Force Warrior and Beyond", Defense and Security, May 2005, Volume 5801. [3]L.M. Bossi, L.H. Jones, A. Kelly, D.W. Tack, "A Preliminary Investigation of the Effect of Protective Clothing Weight, Bulk and Stiffness on Combat Mobility Course Performance", Proceedings of the Human Factors and Ergonomics Society 2016 Annual Meeting, September 27, 2016, Volume: 60, p702-706. [4]U. Rohde, A. Sievert, T.R. Ther, A. Witzki and D. Leyk, "Concept For A Predeployment Assessment Of Basic Military Fitness In The German Armed Forces", Journal of Strength and Conditioning Research, November 2015, Volume 29, pS211–S215. [5]R.L Attwells, S.A. Birrell, R.H. Hooper, N.J. Mansfield, "Influence of carrying heavy loads on soldiers'' posture, movements and gait", Taylor & Francis in Ergonomics, February 2007, Volume 49, p1527-1537. [6]T.C. Sell, Y.C. Chu, J.P. Abt, T. Nagai, "Minimal Additional Weight of Combat Equipment Alters Air Assault Soldiers’ Landing Biomechanics", Military Medicine, January 2010, Volume 175, p41-47. [7]M.J. Zieniewicz, D.C. Johnson, D.C. Wong and J.D. Flatt, "The Evolution of Army Wearable Computers", Pervasive computing , October-December 2002, Volume 1 , p30-40. [8]P. Perconti, W.C. Alberts, J. Bajaj, J. Schuster and M. Reed, "Sensors, Nano-Electronics and Photonics for the Army of 2030 and Beyond", Quantum Sensing and Nano Electronics and Photonics XIII, February 2016, Volume 9755, p975506 1-8. [9]C. Li, Z. Pang, Y. Zhang, S. Chu, X. Zhai, H. Xu and Z. Ji, "Research on Design of the Battlefield Soldier Physiological Status Monitoring and Analysis System", Proceedings of the 15th International Conference on Man–Machine–Environment System Engineering, July 2015, volume 356, p117-124,. [10]L. Warne, I. Ali, D. Bopping, D. Hart, C. Pascoe, "The Future Warrior", 9th International Command and Control Research and Technology Symposium, September 2006. [11]T. Saarelainen, J. Jormakka, "C4I2-Tools for the Future Battlefield Warriors", 2010 Fifth International Conference on Digital Telecommunications, 2010. [12]Turner, D. Daniel, Carstens, B. Christian, "Future Force Warrior : Insights From Air Assault Expeditionary Force Assessment", Army Research Laboratory, July 2007. [13]M. Kauchak, "Energy Game Changers", Armor & Mobility September 2011, p11-12. [14]D.R. Palo, J.D. Holladay, R.T. Rozmiarek, C.E. Leong, Y. Wang, J. Hu, Y. Chin, R.A. Dagle, E.G. Baker, "Development of a soldier-portable fuel cell power system Part I: A bread-board methanol fuel processor", Journal of Power Sources 108, 2002, p28–34. [15] R. Gonzales, A.L. Taylor, A.J. Atkinson, W.W. Malloy, V.W. Macdonald and A.P. Cap, "US Army blood program: 2025 and beyond", TRANSFUSION Volume 56, March 2016, pS85-S93. [16] M. Bergqvist, "A correlation study between gluteus medius musclestrength and development of valgus during 2000meter run with external load", Bachelor thesis in Exercise Biomedicine, 2015, 180 credit. [17] O. Robert, "The History of the Soldier’s Load", Australian Army Journal, Winter 2010, Volume 7, p67-88. [18] J.J. Knapik, K.L. Reynolds, E. Harman, "Soldier Load Carriage: Historical, Physiological, Biomechanical,and Medical Aspects. Military Medicine", Military Medicine, January 2004, Volume 169, p45-56. [19] J.F. Seay, "Biomechanics of Load Carriage—Historical Perspectives and Recent Insights", Journal of Strength and Conditioning Research, November 2015, Volume 29, pS129-S133. [20] H. Nolte, C. Chaplin, "The Effects of Load and Speed on the Ground Reaction Forcesof the Soldier During Uphill, Downhill and Level Waking", 33rd International Conference on Biomechanics in Sports, July 2015. [21] V.G. Jairo, G. Moras , J. Baeza , R.J. Sergio, "Force Outputs during Squats Performed Using a Rotational Inertia Device under Stable versus Unstable Conditions with Different Loads", PLOS ONE, April 2016. [22] M.S. Pal, D. Majumdar, A. Pramanik, B. Chowdhury, D. Majumdar, "Optimum load for carriage by Indian soldiers on different uphillgradients at specified walking speed", International Journal of Industrial Ergonomics, March 2014, Volume 44, p260-265. [23] S. Paul, D. Bhattacharyya, T. Chatterjee, D. Majumdar, "Effect of uphill walking with varying grade andspeed during load carriage on muscle activity", Ergonomics, July 2015, Volume 59, p514-525. [24] T. Chatterjee, D. Bhattacharyya, A. Pramanik, M. Pal, D. Majumdar, D. Majumdar, "Soldiers’ load carriage performance in high mountains: a physiological study", Military Medical Research, February 2017. [25] T.H. Lee, "Endurance time, muscular activity, and the hand/arm tremor for different exertion forces of holding", International Journal of Occupational Safetyand Ergonomics, December 2015, Volume 22, p71-76. [26] J.P. Abt, K. Perlsweig, T. Nagai, T.C. Sell, M.D. Wirt, S.M. Lephart, "Effects of Age and Military Service on Strength and Physiological Characteristics of U.S. Army Soldiers", Military Medicine, February 2016, Volume 181, p173-179. [27] K.L. Loverro, T.N. Brown, M.E. Coyne, J.M. Schiffman, "Use of body armor protection with fighting load impacts soldier performance and kinematics", Applied Ergonomics, January 2015, Volume 46, p168-175. [28] J. Drain, R. Orr, R. Attwells, D. Billing, "Load Carriage Capacity of the Dismounted Combatant- A Commander''s Guide", Human Factors Engineering & Man Machine System, Octember 2012. [29] K. Azma, F. Safdari, I. Naseh, R. Emadifar, M. Abedi, Y.H. Aghdam, P.A. Mahboub, "Investigating The Effect of Carrying Backpack and Weapon on the Ground Reaction Force and Moving the Center of Pressure in the Islamic Republic of Iran’s Army Soldiers", Indian Journal of Fundamental and Applied Life Sciences , 2014, Volume 4, p168-176. [30] R.L. Attwells, S.A. Birrell, R.H. Hooper, N.J. Mansfield, "Influence of carrying heavy loads onsoldiers'' posture, movements and gait", Ergonomics Department of Human Sciences, Loughborough University ,Leicestershire, February 2007, Volume 49, p1527-1537. [31] T.F. Devil, "The Modern Warrior’s Combat Load", Task Force Devil Combined Arms Assessment Team ( Devil CAAT ) Dismounted Operations, April - May 2003. [32]J.M. Gilmore, "Nett Warrior", Director, Operational Test and Evaluation, Initial Operational Test and Evaluation ( IOT & E ) Report, May 2015. [33]A.A. Scharine, P.P. Henry, M.S. Binseel, "An Evaluation of Selected Communications Assemblies and Hearing Protection Systems: A Field Study Conducted for the Future Force Warrior Integrated Headgear Integrated Process Team", Army Research Laboratory, April 2005, ARL-TR-3475. [34]J.E. Melzer, "Integrated Headgear for the Future Force Warrior and Beyond", Proc. of SPIE, May 2005 , Volume 5801. [35] M. Wolf, "Historical development of solar cells", Solar Cells, 1976. [36] National Renewable Energy Laboratory National Center for Photovoltaics, "Research Cell Efficiency Records", 2015. [37] R.A. Wibowo, K.H. Kim, "Band gap engineering of RF-sputtered CuInZnSe thin films for indium-reduced thin-film solar cell application", Solar Energy Materials & Solar Cells, June 2009, Volume 93, p941–944. [38] S. Ishizuka , A. Yamada, H. Shibata, P. Fons, K. Sakurai, K. Matsubara, S. Niki, "Large grain Cu(In,Ga)Se2 thin film growth using a Se-radical beam source", Solar Energy Materials & Solar Cells, June 2009, Volume 93, p792–796. [39] C.A. Kaufmann, R. Caballero, T. Unold, R. Hesse, R. Klenk, S. Schorr, M. Nichterwitz, H.W. Schock, "Depth profiling of Cu(In,Ga)Se thin films grown at low temperatures", Solar Energy Materials & Solar Cells, June 2009, Volume 93, p859–863. [40] S. Shirakata, K. Ohkubo, Y. Ishii, T. Nakada, "Effects of CdS buffer layers on photoluminescence properties of Cu(In,Ga)Se solar cells", Solar Energy Materials & Solar Cells, June 2009, Volume 93, p988–992. [41] K. Kushiya, "Key near-term R&D issues for continuous improvement in CIS-based thin-film PV modules", Solar Energy Materials & Solar Cells, June 2009, Volume 93, p1037–1041. [42] K. Matsunaga, T. Komaru, Y. Nakayama, T. Kume, Y. Suzuki, "Mass-production technology for CIGS modules", Solar Energy Materials & Solar Cells, June 2009, Volume 93, p1134–1138. [43] O. Saritas, S. Burmaoglu, "Future of sustainable military operations under emerging energy andsecurity considerations", Technological Forecasting & Social Change, January 2016, Volume 102, p331-343. [44] P. Jackson, D. Hariskos, R. Wuerz, O. Kiowski, A. Bauer, T.M. Friedlmeier, M. Powalla, "Status Solidi-Rapid Res", Phys, 2015, Lett. 7, p28-31. [45] P.S. Vasekar, N.G. Dhere, "Effect of sodium addition on Cu-deficient CuInGaS thin film solar cells", Solar Energy Materials & Solar Cells, June 2009, Volume 93, p69-73. [46] P.M.P. Salome, A. Hultqvist, V. Fjallstrom, M. Edoff, B.G. Aitken, K. Zhang, K. Fuller, C.K. Williams, "Incorporation of Na in Cu(In,Ga)Se Thin-Film Solar Cells: A Statistical Comparison Between Na From Soda-Lime Glass and From a Precursor Layer of NaF", IEEE Journal of Photovoltaics, September 2014, Volume 4, p1659-1664. [47] B.J. Stanbery, "Solid State", Crit. Rev, 2002, p73-117. [48] P. Gecys, E. Markausksa, S. Nishiwaki, S. Buecheler, R.D. Loor, A. Burn, V. Romano, G. Raciukaitis, "CIGS thin-film solar module processing: case of high-speed laser scribing", Scientific Reports, January 2017, volume 7. [49] M. Konagai, Y. Ohtake, T. Okamoto, "Development of Cu(InGa)Se2 Thin Film Solar Cells with Cd-Free Buffer Layers", MRS Online Proceedings Library (OPL), 1996, Volume 426. [50] K. Orgass, H. Woffman, J.A. Thornton, "Alternative back contact materials for thin film Cu(In,Ga)Se solar cells", Thin Solid Films, May 2003, Volumes 431–432, p387-391. [51] A. Rockett, K. Granath, S. Asher, M.M. Jassim, F. Hasoon, R. Matson, "Na incorporation in Mo and CuInSe2 from production processes", Solar Energy Materials and Solar Cells, October 1999, Volume 59, p255-264. [52] J.H. Scofield, A. Duda, D. Albin, B.L. Ballard and P.K. Predecki, "Sputtered Molybdenum Bilayer Back Contact for Copper Indium diselenide-based Polycrystalline Thin-Film Solar Cells", Thin solid Films, November 1994, 260, p26-31. [53] R.S. Araoz, J. Krammer, S. Harndt, T. Koehler, M. Krueger, P. Pistor, A. Jesenek, F. Hergert, M.C. Steiner, C.H. Fischer, "ILGAR In2S3 buffer layers for Cd-free Cu(In,Ga)(S,Se) solar cells with certified efficiencies above 16%", Prog. Photovolt. Res. Appl. 20, November 2012, Volume 20, p855-861. [54] N. Naghavi, S. Spiering, M. Powalla, B. Cavanna, D. Lincot, "High-efficiency copper indium gallium diselenide (CIGS) solar cells with indium sulfide buffer layers deposited by atomic layer chemical vapor deposition (ALCVD) ", Prog. Photovolt. Res. Appl. 11, November 2003, Volume 11, p437-443. [55] M.A. Contreras, T. Nakada, M. Hongo, A.O. Pudov, J.R. Sites, "ZnO/ZnS(O,OH)/Cu(In,Ga)Se/sub 2/Mo solar cell with 18.6% efficiency", Proceedings 3rd World Conference of Photovoltaic Energy Conversion, June 2004, p570. [56] C.S. Jiang, F.S. Hasoon, H.R. Moutinho, H.A. Thani, M.J. Romero, M.A. Jassim, "Direct evidence of a buried homojunction in Cu(In,Ga)Se solar cell", App. Phys. Lett., November 2002, 82, p127-129. [57] R.O. Borges, D. Licont, "Mechanism of Chemical Bath Deposition of Cadmium Sulfide Thin Films in the Amonia-Thiourea System", J. Electrochem. Soc., August 1993, 140, p3464-3473. [58] Y. Hashimoto, N. Kohara, T. Negami, N. Nishitani, T. Wada, "Chemical bath deposition of CdS buffer layer for CIGS solar cells", Solar Energy Materials and Solar Cells, January 1998, Volume 50, p71-77. [59] C. Voss, Y.J. Chang, S. Subramanian, S.O. Ryu, T.J. Lee, C.H. Chang, "Growth Kinetics of Thin-Film Cadmium Sulfide by Ammonia-Thiourea Based CBD", Journal of The Electrochemical Society, September 2004, volume 151, pC655-C660. [60] T.Y. Lee, I.H. Lee, S.H. Jung, C.W. Chung, "Characteristics of CdS thin film deposited on glass and Cu(In,Ga)Selayer using chemical bath deposition", Thin Solid Films, December 2013, volume 548, p64-68. [61] S. Ishizuka, K. Sakurai, A. Yamada, K. Matsubara, P. Fons, K. Iwata, S. nakamura, Y. Kimura, T. Baba, H. Nakanishi, T. Kojima, S. Niki, "Fabrication of wide-gap Cu(In1-XGaX)Se2 thin film solar cells: a study on the correlation of cell performance with highly resistive i-ZnO layer thikness", Solar Energy Materials & Solar Cells, May 2005, volume 87, p541-548. [62] B.L. Williams, V. Zardetto, B. Kniknie, M.A. Verheijen, W.M.M. Kessels, M. Creatore, "The competing roles of i-ZnO in Cu(In,Ga)Se solar cells", Solar Energy Materials and Solar cells, December 2016, volume 157, p798-807. [63] Y. Nagoya, B. Sang, Y. Fujiwara, K. Kushiya, O. Yamase, " Improved performance of Cu(In,Ga)Se2-based submodules with a stacked structure of ZnO window prepared by sputtering", Solar Energy Materials and Solar Cells, January 2003, volume 75, p163-169. [64] M. Jiang, K. Tang, X. Yan, "Characterization of intrinsic ZnO thin film deposited by sputtering and its effects on CuIn1-XGaXSe2 solar cells", Journal of Photonics for Energy, July 2012, 2 , p1-12. [65] W. Vallejo, C.D. Uribe, G. Gordillo, "Synthesis and Characterization of System In(O,OH)S/i-ZnO/n+-ZnO", Hindawi Advances in Physical Chemistry, March 2017, Volume 2017. [66] S. Spiering, A. Nowitzki, F. kessler, M. Igalson, H.A. Maksoud, "Optimization of buffer-window layer system for CIGS thin film devices with indium sulphide buffer by -line evaporation", Solar Energy Materials & Solar Cells, January 2016, Volume 144, p544-550. [67] C.J. Hibberd, E. Chassaing, W. Liu, D.B. Mitzi, D. Lincot, A.N. Tiwari, "Non-vacuum methods for formation of Cu(In, Ga)(Se,S) thin film photovoltaic absorbers", Prog Photovolt, September 2010, Volume 18, p434–452. [68] D.G. Moon, S. Ahn, J.H. Yun, A. Chc, J.Gwak, S. Ahn, K. Shin, K.Yoon, H.D. Lee, H. Pak, S. Kwon, "Ex-situ and in-situ analyses on reaction mechanism of CuInSe2 (CIS) formed by selenization of sputter deposited CuIn precursor with Se vapor", Solar Energy Materials and Solar cells, October 2011, Volume 95, p2786-2794. [69] M. Marudachaliam, H. Hichri, R. Klenk, R.W. Birkmire, W.N. Shafarman, J.M. Schultz, "Preparation of homogeneous Cu(InGa)Se2 films by selenization of metal precursors in H2Se atmosphere", Appl. Phys. Lett., August 1998, Volume 67, p3978. [70] D.A. Nalcu, A. Kunioka, "Sequential Sputtering/Selenization Technique for the Growth of CuInSe2 Thin Films", Japanese Journal of Applied Physics, 1998, Volume 37. [71] F.H. Karg, "Development and manufacturing of CIS thin film solar modules", Solar Energy Materials and Solar Cells, February 2001, Volume 66, p645-653. [72] K. Kushiya, M. Ohshita, I. Hara, Y. Tanaka, B. Sang, Y. Nagoya, M. Tachiyuki, O. Yamase, "Yield issues on the fabrication of 30 cm × 30 cm-sized Cu(In,Ga)S-based thin-film modules", Solar Energy Materials and Solar Cells, January 2003, Volume 75, p171-178. [73] A.M. Gabor, J.R. Tuttle, D.S. Albin, M.A. Contreras, R. Noufi, A.M. Hermann, "High-efficiency CuInXGa1-XSe2 solar-cells made from (InX, Ga1-X)2Se3 precursor films", Applied Physics Letters, June 1998, Volume 65, p198-200. [74] S.M. Schleussner, T. Törndahl, M. Linnarsson, U. Zimmermann, T. Wätjen, M. Edoff, "Development of gallium gradients in three-stage Cu(In,Ga)Se co-evaporation process", Progress in Photovoltaics, July 2011, Volume 20, p284-293. [75] J. Song, S.S. Li, C.H. Huang, O.D. Crisalle, T.J. Anderson, "Device modeling and simulation of the performance of Cu(In1-X,GaX)Se2 solar cells", Solid-State Electronics, January 2004, Volume 48, p73-79. [76] N.G. Dhere, S. Kuttath, H.R. Moutinho, "Morphology of precursors and Cu(In1-X,GaX)Se2 thin films prepared by a two-stage selenization process", Journal of Vacuum Science & Technology A, June 1998, Volume 13, p1078-1082. [77] A. Kinoshita, M. Fukaya, H. Nakanishi, M. Sugiyama, S.F. Chichibu, "Preparation of high Ga-content CuInGaSe2 films by selenization of metal precursors using diethylselenide as a less-hazardus source", Phys. Status Solid, September 2006, Volume 3, p2539-2542. [78] F. Kurdesau, M. Kaelin, V.B. Zalesski, V.I. Kovalewsky, V.F. Gemenok, E.P. Zaretskaya, "In situ resistivity measurements during selenization process", Thin solid Films, March 2004, Volume 451-452, p245-249. [79] P. Berwian, A. Weimar, G. Müller, "In situ resistivity measurements of precursor reaction in the Cu-In-Ga system", Thin Solid Films, May 2003, Volume 431-432, p41-45. [80] W. Liu, J.G. Tian, Q. He, F.Y. Li, C.J. Li, Y. Sun, "Theinfluence of alloy phases in the precursors on the selenization reaction mechanisms", J. Phys. D: Appl. Phys., June 2009 , Volume 42. [81] R. Kamada, W.N. Shafarman, R.W. Birkmire, "Cu(In,Ga)Se2film formation from selenization of mixed metal/metal–selenide precursors", Solar Energy Materials and Solar Cells, March 2010, Volume 94, p451-456. [82] A.M. Gabor, J.R. Tuttle, D.S. Albin, M.A. Contreras, R. Noufi, A.M. Hermann, "High-Efficiency CuInXGa1-XSe2 Solar Cells Made from (InX,Ga1-X)2 Se3Precursor Films", Applied Physics Letters, June 1998, Volume 65. [83] B.J. Stanbery, "Copper Indium Selenides and Related Materials for Photovoltaic Device", Critical Reviews in Solid State and Materials Sciences, June 2010, Volume 27, p73-117. [84] S. Nishhiwaki, T. Satoh, S. Hayashi, Y. Hashimoto, T. Negami, T. Wada, "Preparation of CIGS thin films from In-Ga-Se precursors for high-efficiency solar cells", Materials Research Society, December 1999, Volume 14, p4514-4520. [85] I. Repins, M.A. Contreras, B. Egaas, C. DeHart, J. Scharf, C.L. Perkins, B. To, R. Noufi, "19.9%-Efficient ZnO/CdS/CuInGaSe solar cell with 81.2% fill factor", Prog. Photovolt. Res. Appl., February 2008, Volume 16, p235-239. [86] P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, M. Powalla, "New world record efficiency for Cu(In,Ga)Se thin-film solar cells beyoud 20%", Prog. Photovolt: Res. Appl., January 2011, Volume 19, p894-897. [87] P. Jackson, D. Hariskos, R. Wuerz, W. Wischmann, M. Powalla, "Compositional investigation of potassium doped Cu(In,Ga)Se solar cells with efficiencies up to 20.8%", Phys. Status Solidi RRL, February 2014, Volume 8, p219-222. [88] L. Zhang, Q. He, W.L. Jiang, F.F. Liu, C.J. Li, Y. Sun, "Effects of substrate temperature on the structural and electrical properties of Cu(In,Ga)Se thin films", Solar Energy Materials & Solar cells, January 2009, Volume 93, p114-118. [89] S. Chaisitsak, A. Yamada, M. Konagai, "Preferred Orientation Control of Cu(In1-X,GaX)Se2 (x~0.28) Thin Films and Its Influence on Solar Cell Characteristics", Jpn. J. Appl. Phys., 2002, Volume 41, p507-513. [90] D.H. Shin, Y.M. Shin, J.H. Kim, B.T. Ahn, K.H. Yoon, "Control of the Preferred Orientation of Cu(In,Ga)Se Thin Film by the Surface Modification of Mo Film", Journal of The Electrochemical Society, December 2011, Volume 159, pB1-B5. [91] O. Lundberg, M. Bodegård, J. Malmström, L. Stolt, "Influence of the Cu(In,Ga)Se Thickness and Ga Grading on Solar Cell Performance", Prog. Photovolt: Res. Appl., November 2002, Volume 11, p77-88. [92] M. Edoff, S. Schleussner, E. Wallin, O. Lundberg, "Technological and economical aspects on the influence of reduced Cu(In,Ga)Se thickness and Ga grading for co-evaporated Cu(In,Ga) Se modules", Thin Solid Films, August 2011, Volume 519, p7530-7533. [93] S. Chaisitsak, A. Yamada, M. Konagai, "Preferred Orientation Control of Cu(In1-X,GaX)Se2 (x~0.28) Thin Films and Its Influence on Solar Cell Characteristics", Jpn. J. Appl. Phys., 2002, Volume 41, p507-513. [94] D.H. Shin, Y.M. Shin, J.H. Kim, B.T. Ahn, K.H. Yoon, "Control of the Preferred Orientation of Cu(In,Ga)Se Thin Film by the Surface Modification of Mo Film", Journal of The Electrochemical Society, 2012, Volume 159, pB1-B5. [95] A. Han, Y. Sun, Y. Zhang, X. Liu, F. Meng, Z. Liu, "Comparative study of the role of Ga in CIGS solar cells with different thickness", Thin Solid Films, January 2016, Volume 598, p189-194. [96] A. Rockett, "The Electronic effects of point defects in Cu(InXGa1-X)Se2", Thin Solid Films, February 2000, Volume 361-362, p330-337. [97] J. Song, S.S. Li, C.H. Huang, O.D. Crisalle, T.J. Anderson, "Device modeling and simulation of the performance of Cu(In1−X,GaX)Se2 solar cells", Solid-State Electron, January 2004, Volume 48, p73-79. [98] O. Lundberg, M. Bodegård, J. Malmström, L. Stolt, "Influence of the Cu(In,Ga)Se Thickness and Ga Grading on Solar Cell Performance", Prog. Photovolt: Res. Appl., November 2002, Volume 11, p77-88. [99] E. Jarzembowski, M. Maiberg, F. Obereigner, K. Kaufmann, S. Krause, R. Scheer, "Optical and electrical characterization of Cu(In,Ga)Se thin film solar cells with varied absorber layer thickness", Thin Solid Films, February 2015, Volume 576, p75-80. [100] M. Edoff, S. Schleussner, E. Wallin, O. Lundberg, "Technological and economical aspects on the influence of reduced Cu(In,Ga)Se thickness and Ga grading for co-evaporated Cu(In,Ga)Se modules", Thin Solid Films, August 2011, Volume 519, p7530-7533. [101] D. Rudmann, G. Bilger, M. Kaelin, F.J. Haung, H. Zogg, A.N. Tiwari, "Effect of NaF coevaporation on structural properties of Cu(In,Ga)Se thin films", Thin Solid Film, May 2003, Volume 431-432, p37-40. [102] S. Ye, X. Tan, M. Jiang, B. Fan, K. Tang, S. Zhung, "Impact of different Na-incorporating methods on Cu(In,Ga)Se thin film solar cell with a low-Na substrate", Appl. Opt., 2010, Volume 49, p1662-1665. [103] M.A. Contrearas, B. Egaas, D. King, A. Swartzlander, T. Dullweber, "Texture manipulation of CuInSe thin films", Thin Solid Films, February 2000, Volume 361-362, p167-171. [104] B.Y. Li, Y. Zhang, H. Wang, B. Wang, L. Wu, Y. Sun, "Preferredorientation of Cu(In,Ga)Se thin film deposited on stainless steel substrate", Prog, Photovolt: Res. Appl, February 2012, Volume21, p838-848. [105] S. Ishizuka, A. Yamada, M.M. Islam, H. Shibata, P. Fons, T. Sakurai, K. Akimoto, S. Niki, "Na-inducedvariations in the structural, optical, and electrical properties of Cu(In,Ga)Se thin films", Journal of Applied Physics, August 2009, Volume 106. [106] S.H. Wei, S.B. Zhang, A. Zunger, "Effectsof Na on the electrical and structural properties of CuInSe", J. Appl. Phys., May 1999, Volume 85, p7214-7218. [107] P.T. Erslev, W.N. Shafarman, J.D. Cohen, "Metastableproperties of Cu(In,Ga)Se with and without sodium", Applied Physics Letters, February 2011, Volume 98. [108] S. Ishizuka, A. Yamada, K. Matsubara, P. Fons, K. Sakurai, S. Niki, "Alkai incorporation control in Cu(In,Ga)Se thin films using silicate thin layers and applications in enhancing flexible solar cell efficiency", Applied Physics Letters, September 2008, Volume 93. [109] J. Palm, V. Probst, A. Brummer, W. Stetter, R. Tolle, T.P. Niesen, S. Visbeck, O. Hernandez, M.Wendl, H. Vogt, H. Calwer, B. Freienstein, F. Karg, "CIS module pilot processing applying concurrent rapid selenization and sulfurization of large area thin film precursors", Thin Solid Films, May 2003, Volume 431-432, p514-522. [110] D. Braunger, D. Hariskos, G. Bilger, U. Rau, H.W. Schock, "Influence of sodium on the growth of polycrystalline Cu(In,Ga)Se thin films", Thin Solid Films, February 2000 , Volume 361-362, p161-166. [111] T. Nakada, D. Iga, H. Ohbo, A. Kunioka, "Effect of Sodium on Cu(In,Ga)Se-Based Thin Films and Solar Cells", Jpn, J. Appl. Phys., 1997, Volume 36, p732-737. [112] R. Sakdanuphab, C. Chityuttakan, A. Pankiew, N. Somwang, K. Yoodee, S. Chatraphorn, "Growth characteristics of Cu(In,Ga)Se thin film using 3-stage deposition process with NaF precursor", Journal of Crystal Growth, March 2011, Volume 319, p44-48. [113] F. Kessler, D. Rudmann, "Technological aspects of flexible CIGS solar cells and modules", Solar Energy, December 2004, Volume 77, p685-695. [114] L.M. Mansfield, I.L. Repins, S. Glynn, M.D. Carducci, D.M. Honecker, J.W. Pankow, M.R. Young, C. DeHart, R. Sundaramoorthy, C.L. Beall, B. To, "Sodium-doped molybdenum targets for controllable sodium incorporation in CIGS solar cells", Proceedings of the Conference Record of the IEEE Photovoltaic Specialists Conference, June 2011, PVSC 2011, p3636-3641. [115] P. Blosch, S. Nishiwaki, A. Chirlla, L. Kranz, C. Fella, F. Pianezzi, C. Adelhelm, E. Franzke, S. Vuecheler, A.N. Tiwari, "Sodium-doped molybdenum back contact for flexible Cu(In,Ga)Se solar cells", Thin Solid Films, May 2013, Volume 535, p214-219. [116] A. Rockett, "CuInSe2 for photovoltaic applications", J. Appl. Phys., August 1998, Volume 70 , p81-97. [117] K. Orgassa, H.W. Schock, J.H. Werner, "Alternative back contact materials for thin film Cu (In, Ga) Se solar cells", Thin Solid Films, May 2003, Volume 431, p387-391. [118] A.M. Gabor, J.R. Tuttle, D.S. Albin, M.A. Contreras, R. Noufi, A.M. Hermann, "High‐efficiency CuInXGa1-XSe2 solar cells made from (InX,Ga1-X)2Se3 precursor films", Appl. Phys. Lett, 1998, Volume 65, p198-200. [119] S.B. Zhang, S.H. Wei, Zunger , H.K. Yoshida, "Defect physics of the CuInSe chalcopyrite semiconductor ", Phys. Rev. (B), April 1998 57, p9642-9656. [120] T. Nakada, A. Kunioka, "Direct evidence of Cd diffusion into Cu(In, Ga)Se thin films during chemical-bath deposition process of CdS films", Appl. Phys. Lett., April 1999, Volume 74, p2444-2446. [121] T. Dullweber, G. Hanna, U. Rau, H.W. Schock, "A new approach to high-efficiency solar cells by band gap grading in Cu(In,Ga)Se2 chalcopyrite semiconductors", Energy Mater. Sol Cells, March 2001, Volume 67, p145-150. [122] A. Dhingra, A. Rothwarf, "Computer simulation and modeling of graded bandgap CuInSe/sub 2/CdS based solar cells", IEEE Trans. Electron Dev., April 1996, Volume 43, p613-621. [123] J. Song, S.S. Li, C.H. Huang, O.D. Crisalle, T.J. Anderson, "Device modeling and simulation of the performance of Cu(In1-X,GaX)Se2 solar cells", Solid-state Electron, January 2004, Volume 48, p73-79. [124] F. Kessler, D. Rudmann, "Technological aspects of flexible CIGS solar cells and modules", Solar Energy, December 2004, Volume 77, p685-695. [125] K. Otte, L. Makhova, A. Braun, I. Konovalov, "Flexible Cu (In,Ga)Se2 thin-film solar cells for space application", Thin Solid Films, July 2006, Volume 511–512, p613-622. [126] J. Hedström, H. Ohlsén, M. Bodegärd, A. Kylner, L. Stolt, D. Hariskos, M. Ruckh, H.W. Schock, "ZnO/CdS/Cu(In,Ga)Se/sub 2/ thin film solar cells with improved performance", Conference Record of the IEEE Photovoltaic Specialists Conference, August 2002, Louisville 364. [127] M. Ruckh, D. Schmid, M. Kaiser, Raiser, R. Schäffler, T. Walter and H.W. Schock, "Influence of substrates on the electrical properties of Cu(In,Ga)Se thin films", Solar Energy Materials and Solar Cells, June 1996, Volumes 41–42, Pages 335-343. [128] S. Chaisitsak, A. Yamada, M. Konagai, "Preferred orientation control of Cu(In1-XGaX)Se2 (x≈ 0.28) thin films and its influence on solar cell characteristics", Japanese Journal of Applied Physics, 2002, Volume 41, p507–513. [129] M. Bodegärd, K. Granath and L. Stolt, "Growth of Cu(In,Ga)Se2 thin films by coevaporation using alkaline precursors", Thin Solid Films, February 2000, Volume 361-362, p9-16. [130] D. Rudmann, A.F. Cunha, M. Kaelin, F. Kurdesau, H. Zogg, A.N. Tiwari, G. Bilger, "Efficiency enhancement of Cu(In,Ga)Se2 solar cells due to post-deposition Na incorporation", Applied Physics Letters, February 2004, Volume 84, p1129-1131. [131] M.A. Contreras, B. Egaas, P. Dippo, J. Webb, J. Granata, K. Ramanathan, S. Asher, A. Swartzlander, R. Noufi, "On the role of Na and modifications to Cu(In,Ga)Se/sub 2/ absorber materials using thin-MF (M=Na, K, Cs) precursor layers [solar cells]", Conference Record of the 26th IEEE Photovoltaic Specialists Conference, August 2002 , Anaheim p359. [132] V. Probst, J. Rimmasch, W. Riedl, W. Stetter, J. Holz, H. Harms, F. Karg, H.W. Schock, "The impact of controlled sodium incorporation on rapid thermal processed Cu(InGa)Se/sub 2/-thin films and devices", Conference Record of the 1994 IEEE First World Conference on Photovoltaic Energy Conversion, August 2002, Waikoloa p144. [133] D. Rudmann, G. Bilger, M. Kaelin, F.J. Haug, H. Zogg, A.N. Tiwari, "Effects of NaF coevaporation on structural properties of Cu(In,Ga)Se2 thin films", Thin Solid Films, May 2003, Volume 431–432, p37-40. [134] K. Granath, M. Bodegard, L. Stolt, "The effect of NaF on Cu(In,Ga)Se2 thin film solar cells", Solar Energy Materials and Solar Cells, January 2000, Volume 60, p279-293. [135] R. Caballero, C.A. Kaufmann, T. Eisenbarth, T. Unold, S. Schorr, R. Hesse, R. Klenk, H.W. Schock, "The effect of NaF precursors on low temperature growth of CIGS thin film solar cells on polyimide substrates", physica status solidi (a), March 2009, Volume 206, p1049-1053. [136] O. Lundberg, J. Lu, A. Rockett, M. Edoff, L. Stolt, "Diffusion of indium and gallium in Cu (In,Ga)Se2 thin film solar cells", Journal of Physics and Chemistry of Solids, September 2003, Volume 64, p1499-1504. [137] L.M. Mansfield, I.L. Repins, S. Glynn, J.W. pankow, M.R. Young, C. Dehart, R. Sundaramoorthy, C.L. Beall, B. To, "Sodium-doped molybdenum targets for controllable sodium incorporation in CIGS solar cells", 37th IEEE PVSC, April 2012. [138] R. Klenk, T. Walter, H.W. Schock, D. Cahen, "A model for the successful growth of polycrystalline films of CuInSe2 by multisource physical vacuum evaporation", Advanced Materials, February 1993, Volume 5, p114-119. [139] A.M. Gabor, J.R. Tuttle, D.S. Albin, M.A. Contreras, R. Noufi, A.M. Hermann, "High‐efficiency CuInXGa1-XSe2 solar cells made from (InX,Ga1-X)2Se3 precursor films", Applied Physics Letters, June 1998, p198-200. [140] A.M. Gabor, J.R. Tuttle, M.H. Bode, A. Franz, A.L. Tennant, M.A. Contreras, R. Noufi, D.G. Jensen, A.M. Hermann, "Band-gap engineering in Cu (In, Ga) Se thin films grown from (In, Ga)2Se3 precursors", Solar Energy Materials and Solar Cells, June 1996, Volume 41–42, p247-260. [141] J.E. Granata, J.R. Sites, S. Asher, R. Matson, "Quantitative incorporation of sodium in CuInSe/sub 2/ and Cu(In,Ga)Se/sub 2/ photovoltaic devices", IEEE Xplore Digital Library, August 2002, p387-390. [142] R.J. Matson, J.E. Granata, S.E. Asher, M.R. Young, "Effects of substrate and Na concentration on device properties, junction formation, and film microstructure in CuInSe2 PV devices", AIP Conference Proceedings, March 2008, Volume 462, p542-549. [143] D.W. Niles, K. Ramanathan, F. Hasoon, R. Noufi, B.J. Tielsch, J.E. Fulghum, "Na impurity chemistry in photovoltaic CIGS thin films: Investigation with x-ray photoelectron spectroscopy", Journal of Vacuum Science & Technology A, June 1998, Volume 15, p3044-3049. [144] M. Bodegard, L. Stolt, J. Hedström, "The influence of sodium on the grain structure of CuInSe2 films for photovoltaic applications", 12th European Photovoltaic Solar Energy Conference, 1994, p1743-1746. [145] D. Braunger, D. Hariskos, G. Bilger, U. Rau, H.W. Schock, "Influence of sodium on the growth of polycrystalline Cu(In,Ga)Se2 thin films", Thin Solid Films, February 2000, Volume 361-362, p161-166. [146] R. Herberholz, U. Rau, H.W. Schock, T. Haalboom, T. Godecke, F. Ernst, C. Beilharz, K.W. Benz, D. Cahen, "Phase segregation, Cu migration and junction formation in Cu(In, Ga)Se2", Eur. Phys. J. Appl. Phys., May 1999, Volume 6, p131-139. [147] S. Wagner, P.M. Bridenbaugh, "Multicomponent tetrahedral compounds for solar cells. J", Journal of Crystal Growth, July 1977, Volume 39, p151-159. [148] M. Ruckh, D. Schmid, M. Kaiser, R. Schäffler, T. Walter, H.W. Schock, "Influence of substrates on the electrical properties of Cu(In,Ga)Se2 thin films", Solar Energy Materials and Solar Cells, June 1996, Volume 41-42, p335-343. [149] C.M. Xu, X.L. Xu, J. Xu, X.J. Yang, J. Zuo, N. Kong, W.H. Huang, T.H. Liu, "Composition dependence of the Raman A1 mode and additional mode in tetragonal Cu–In–Se thin films", Semiconductor Science and Technology, September 2004, Volume 19, p1201-1206. [150] D. Papadimitriou, N. Esser, C. Xue, "Structural properties of chalcopyrite thin films studied by Raman spectroscopy", Physica status Solidi B, October 2005, Volume 242, p2633-2643. [151] X.I.V. Fontané, L.C. Barrio, J.Á. García, A.P. Rodríguez, J.R. Morante, "Investigation of compositional inhomogeneities in complex polycrystalline Cu(In,Ga)Se layers for solar cells", Applied Physics Letters, December 2009, Volume 95. [152] S.H. Wei, S.B. Zhang, A. Zunger, "Effects of Na on the electrical and structural properties of CuInSe2", Journal of Applied Physics, May 1999, Volume 85, p7214-7218. [153] S. Wagner, P.M. Bridenbaugh, "Multicomponent tetrahedral compounds for solar cells", Journal of Crystal Growth, July 1977, Volume 39, p151-159. [154] P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte, M. Powalla, "Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6%", physica status solidi (RRL) – Rapid Research Letters, July 2016, Volume 10, p583-586. [155] A.M. Gabor, J.R. Tuttle, M.H. Bode, A. Franz, A.L. Tennant, M.A. Contreras, R. Noufi, D.G. Jensen, A.M. Hermann, "Band-gap engineering in Cu(In,Ga) Se thin films grown from (In,Ga)2Se3 precursors", Solar Energy Materials and Solar Cells, June 1996, Volume 41-42, p247-260. [156] S.H. Wei, A. Zunger, "Band offsets and optical bowings of chalcopyrites and Zn‐based II‐VI alloys", Journal of Applied Physics, June 1998, Volume 78, p3846-3856. [157] D.J. Schroeder, J.L. Hernandez, G.D. Berry, A.A. Rockett, "Hole transport and doping states in epitaxial CuIn1-XGaXSe2", Journal of Applied Physics, June 1998, Volume 83, p1519-1526. [158] G. Hanna, A. Jasenek, U. Rau, H.W. Schock, "Influence of the Ga-content on the bulk defect densities of Cu(In,Ga)Se2", Thin Solid Films, May 2001, Volume 387, p71-73. [159] J. Song, S.S. Li, C.H. Huang, O.D. Crisalle, T.J. Anderson, "Device modeling and simulation of the performance of Cu(In1-X,GaX)Se2 solar cells", Solid-State Electronics, January 2004, Volume 48, p73-79. [160] J. Chantana, M. Murata, T. Higuchi, T. Watanabe, S. Teraji, K. Kawamura, T. Minemoto, "Impact of Ga/(In+Ga) profile in Cu(In,Ga)Se prepared by multi-layer precursor method on its cell performance", Thin Solid Films, April 2014, Volume 556, p499-502. [161] J. Chantana, T. Watanabe, S. Teraji, K. Kawamura, T. Minemoto, "Effect of crystal orientation in Cu(In,Ga)Se2 fabricated by multi-layer precursor method on its cell performance", Applied Surface Science, September 2014, Volume 314, p845-849. [162] H.H. Sung, D.C. Tsai, Z.C. Chang, B.H. Kuo, Y.C. Lin, T.J. Lin, S.C. Liang, F.S. Shieu, "Ga gradient behavior of CIGS thin films prepared through selenization of CuGa/In stacked elemental layers", Surface and Coatings Technology, November 2014, Volume 259, p335-339. [163] M.M. Islam, A. Yamada, T. Sakurai, S. Ishizuka, K. Matsubara, S. Niki, K. Akimoto, "Effect of Ga/Cu Ratio on Polycrystalline Thin Film Solar Cell", Advances in OptoElectronics, April 2011, Volume 2011, p1-6. [164] H. Miyazaki, R. Mikami, A. Yamada, M. Konagai, "Cu(InGa)Se thin film absorber with high Ga contents and its application to the solar cells", Journal of Physics and Chemistry of Solids, September 2003, Volume 64, p2055-2058. [165] M. Saadat, M. Moradi, M. Zahedifar, "CIGS absorber layer with double grading Ga profile for highly efficient solar cells", Superlattices and Microstructures, April 2016, Volume 92, p303-307. [166] A. Aissat, H. Arbouz, J.P. Vilcot, "Optimization and improvement of a front graded bandgap CuInGaSe2 solar cell", Solar Energy Materials and Solar Cells, June 2018, Volume 180, p381-385. [167] M. Gloeckler, J.R. Sites, "Band-gap grading in Cu(In,Ga)Se2 solar cells", Journal of Physics and Chemistry of Solids, November 2005, Volume 66, p1891-1894. [168] M. Pawłowski, P. Zabierowski, R. Bacewicz, N. Barreau, "Influence of Ga-notch position on recombination processes in Cu(In,Ga)Se2-based solar cells investigated by means of photoluminescence", Thin Solid Films, May 2013, Volume 535, p336-339. [169] S.B. Zhang, S.H. Wei, A. Zunger, H.K. Yoshida, "Defect physics of the CuInSe2 chalcopyrite semiconductor", Physical Review B, April 1998, Volume 57, p9642-9656. [170] J.H. Schön, C. Kloc, E. Bucher, "Effect of the Ga-content on the defect properties of CuIn1−XGaXSe2 single crystals", Thin Solid Films, February 2000, Volume 361-362, p411-414. [171] H.H. Sung, D.C. Tsai, Z.C. Chang, T.J. Chung, S.C. Liang, E.C. Chen, F.S. Shieu, "The structural evolution of Cu(In,Ga)Se2 thin film and device performance prepared through a three-stage process", Materials Science in Semiconductor Processing, January 2016, Volume 41, p519-528. [172] S. Lany, A. Zunger, "Limitation of the Open-Circuit Voltage Due to Metastable Intrinsic Defects in Cu(In,Ga)Se2 and Strategies to Avoid These Defects: Preprint", Presented at the 33rd IEEE Photovoltaic Specialists Conference, May 2008. [173] S.H. Wei, S.B. Zhang, A. Zunger, "Effects of Ga addition to CuInSe2 on its electronic, structural, and defect properties", Applied Physics Letters, June 1998, Volume 72, p3199-3201. [174] J. Chantana, D. Hironiwa, T. Watanabe, S. Teraji, T. Minemoto, "Flexible Cu(In,Ga)Se2 solar cell on stainless steel substrate deposited by multi-layer precursor method: Its photovoltaic performance and deep-level defects", Progress in Photovoltaics : Research and Applications, January 2016, Volume 24, p990-1000. [175] T. Minemoto, T. Matsui, H. Takakura, Y. Hamakawa, T. Negami, Y. Hashimoto, T. Uenoyama, M. Kitagawa, "Theoretical analysis of the effect of conduction band offset of window/CIS layers on performance of CIS solar cells using device simulation", Solar Energy Materials and Solar Cells, March 2001, Volume 67, p83-88. [176] S. Teraji, J. Chantana, T. Watanabe, T. Minemoto, "Development of flexible Cd-free Cu(In,Ga)Se2 solar cell on stainless steel substrate through multi-layer precursor method", Journal of Alloys and Compounds, August 2018, Volume 756, p111-116. [177] S. Jung, S. Ahn, J.H. Yun, J. Gwak, D. Kim, K. Yoon, "Effects of Ga contents on properties of CIGS thin films and solar cells fabricated by co-evaporation technique", Current Applied Physics, July 2010, Volume 10, p990-996. [178] K.D. Dahl, H. Wang, J. K. Popp, D.C. Dickin, "Load distribution and postural changes in young adults when wearing a traditional backpack versus the BackTpack", Gait & posture, March 2016, Volume 45, p90-96. [179] I. Dianat, N. Sorkhi, A. Pourhossein, A. Alipour, M.A. Jafarabadi, "Neck, shoulder and low back pain in secondary schoolchildren in relation to schoolbag carriage: Should the recommended weight limits be gender-specific? ", Applied ergonomics, May 2014, Volume 45, p437-442. [180] R.R.E. Motmans, S. Tomlow, D. Vissers, "Trunk muscle activity in different modes of carrying schoolbags", Ergonomics, February 2007, Volume 49, p127-138. [181] K. Grimmer, B. Dansie, S. Milanese, U. Pirunsan, P. Trott, "Adolescent standing postural response to backpack loads: a randomised controlled experimental study", BMC Musculoskeletal Disorders, April 2002, Volume 3, p3-10. [182] D.H.K. Chow, Z.Y. Ou, X.G. Wang, A. Lai, "Short-term effects of backpack load placement on spine deformation and repositioning error in schoolchildren", Ergonomics, January 2010, Volume 53, p56-64. [183] H.A. Orloff, C.M. Rapp, "The effects of load carriage on spinal curvature and posture", Spine, October 2010, Volume 29, p1325-1329. [184] M. Ramprasad, J. Alias, A.K. Raghuveer, "Effect of backpack weight on postural angles in preadolescent children", Indian pediatrics, July 2010, Volume 47, p575-580.
|