|
References [1] S. X, https://www.spacex.com/news. [2] A.N. Hayhurst, A.D. Lawrence, Emissions of nitrous oxide from combustion sources, Progress in Energy and Combustion Science, 18 (1992)529-552. [3] W.H. Lipkea, D. Milks, R.A. Matula, Nitrous Oxide Decomposition and its Reaction with Atomic Oxygen, Combustion Science and Technology, 6(1973) 257-267. [4] J.S.D. A.R Ravishankara, Robert W. Portmann, Nitrous Oxide (N2O): The Dominant Ozone-Depleting Substance Emitted in the 21st Century, Science Express, 2009, pp. 9. [5] E.P. Agencey, Overview of green house gases by source of nitrous oxide, U.S EPA, 2017. [6] N.C.f.B. Information, PubChem Database. Nitrous oxide. [7] A.V. Bridgwater, Review of fast pyrolysis of biomass and product upgrading, Biomass and Bioenergy, 38 (2012) 68-94. [8] B. GradoŃ, NITROUS OXIDE THERMAL DECOMPOSITION IN THE FLAME TEMPERATURE RANGE AT ATMOSPHERIC PRESSURE, Combustion Science and Technology, 178 (2006) 1477-1489. [9] G.P. Sutton, Biblarz, Oscar, Rocket Propulsion Elements (7the ed.), John Wiley & Sons2001. [10] D.J.F. Gregory Mungas, Nitrous oxide fuel blend monopropellants, Fags.org, 2009. [11] J. Tomeczek, B. GradoŃ, The Role of Nitrous Oxide in the Mechanism of Thermal Nitric Oxide Formation within Flame Temperature Range, Combustion Science and Technology, 125 (1997) 159-180. [12] Z. Y.B, The oxidation of nitrogen in combustion and explosions, Acta 91 Physiochemistry, USSR, 21 (1946) 577-628. [13] wolffrum.J, Bildung von stickstoffoxiden bei der Verbrennung, 1972. [14] P.C.a.P. Malte, D.T, The role of energy- releasing kinetics in NOx formation: Fuel-lean, jet stirred CO-air combustion, Combustion Science and Technology, 9 (1974) 221-231. [15] J. Tomeczek, B. Gradoń, The role of N2O and NNH in the formation of NO via HCN in hydrocarbon flames, Combust Flame, 133 (2003) 311-322. [16] S.A. Frolik, Hybrid rockets, Aerospace America, 41 (2003) 68-68. [17] T. Newman-Lehman, R. Grana, K. Seshadri, F. Williams, The structure and extinction of nonpremixed methane/nitrous oxide and ethane/nitrous oxide flames, P Combust Inst, 34 (2013) 2147-2153. [18] C.H. Chen, Effects of Diluent addition on combustion characteristics of methane/nitrous oxide inverse diffusion flame, Aeronautics & Astronautics, National Cheng Kung University, Tainan, 2018. [19] T. Hulgaard, K. Dam‐Johansen, Homogeneous nitrous oxide formation and destruction under combustion conditions, AIChE journal, 39 (1993) 1342-1354. [20] F. Dietzsch, A. Scholtissek, F. Hunger, C. Hasse, The impact of thermal diffusion on the structure of non-premixed flames, Combust Flame, 194(2018) 352-362. [21] A.R. Khan, S. Anbusaravanan, L. Kalathi, R. Velamati, C. Prathap, Investigation of dilution effect with N2/CO2 on laminar burning velocity of premixed methane/oxygen mixtures using freely expanding spherical flames, Fuel, 196 (2017) 225-232. [22] O.A. Powell, P. Papas, C. Dreyer, Laminar Burning Velocities for Hydrogen-, Methane-, Acetylene-, and Propane-Nitrous Oxide Flames, Combustion Science and Technology, 181 (2009) 917-936. [23] D. Razus, M. Mitu, V. Giurcan, C. Movileanu, D. Oancea, Methaneunconventional oxidant flames. Laminar burning velocities of nitrogen diluted methane–N2O mixtures, Process Safety and Environmental Protection, 114 (2018) 240-250. [24] Y. Deguchi, Industrial applications of laser diagnostics, CRC Press. [25] G.K.R. Mehta, M.K and Strahle, W.C, Correlations between light emission, Acoustic emission and ion density in premixed turbulent flames, 18th symposium on combustion, The combustion Institute, 1981, pp. 1051-1059. [26] D.F.G.D.M.V.H.J.H.W.P.O. Witze, Combustion Flow Diagnostics. [27] J. Qi, W. Wong, C. Leung, D. Yuen, Temperature field measurement of a premixed butane/air slot laminar flame jet with Mach–Zehnder Interferometry, Applied Thermal Engineering, 28 (2008) 1806-1812. [28] S. Sharma, G. Sheoran, C. Shakher, Investigation of temperature and temperature profile in axi-symmetric flame of butane torch burner using digital holographic interferometry, Optics and Lasers in Engineering, 50 (2012) 1436-1444. [29] Z.N. Ashrafi, M. Ashjaee, M. Askari, Two-dimensional temperature field measurement of a premixed methane/air flame using Mach–Zehnder interferometry, Optics Communications, 341 (2015) 55-63. [30] M. Ahmadi, M.S. Avval, T. Yousefi, M. Goharkhah, B. Nasr, M. Ashjaee, Temperature measurement of a premixed radially symmetric methane flame jet using the Mach–Zehnder Interferometry, Optics and Lasers in Engineering, 49 (2011) 859-865. [31] B.A. Rabee, The effect of inverse diffusion flame burner-diameter on flame characteristics and emissions, Energy, 160 (2018) 1201-1207. [32] W.E. Kaskan, The dependence of flame temperature on mass burning velocity, Symposium (International) on Combustion, 6 (1957) 134-143. [33] Ö.L. Gülder, D.R. Snelling, R.A. Sawchuk, Influence of hydrogen addition to fuel on temperature field and soot formation in diffusion flames, Symposium (International) on Combustion, 26 (1996) 2351-2358. [34] D.G. Nicol, R.C. Steele, N.M. Marinov, P.C. Malte, The importance of the nitrous oxide pathway to NOx in lean-premixed combustion, ASME 1993 International Gas Turbine and Aeroengine Congress and Exposition, American Society of Mechanical Engineers, 1993, pp. V03CT17A003-V003CT017A003. [35] M. de las Obras-Loscertales, T. Mendiara, A. Rufas, L.F. de Diego, F. García-Labiano, P. Gayán, A. Abad, J. Adánez, NO and N2O emissions in oxyfuel combustion of coal in a bubbling fluidized bed combustor, Fuel, 150(2015) 146-153. [36] J.A. Vanderhoff, S.W. Bunte, A.J. Kotlar, R.A. Beyer, Temperature and concentration profiles in hydrogen nitrous oxide flames, Combust Flame, 65 (1986) 45-51. [37] A. Colorado, V. McDonell, S. Samuelsen, Direct emissions of nitrous oxide from combustion of gaseous fuels, International Journal of Hydrogen Energy, 42 (2017) 711-719. [38] J. Miao, C.W. Leung, C.S. Cheung, Z.H. Huang, H.S. Zhen, Effect of hydrogen addition on overall pollutant emissions of inverse diffusion flame, Energy, 104 (2016) 284-294. [39] A. Kotb, H. Saad, A comparison of the thermal and emission characteristics of co and counter swirl inverse diffusion flames, International Journal of Thermal Sciences, 109 (2016) 362-373. [40] H.K. Kim, Kim, Yongmo, Lee, Sang Min, Ahn, Kook Young, NO reduction in 0.03-0.2MW oxy-fuel combustor using flue gas recirculation technology, 2007. [41] B.M. Kumfer, S.A. Skeen, R.L. Axelbaum, Soot inception limits in laminar diffusion flames with application to oxy–fuel combustion, Combust Flame, 154 (2008) 546-556. [42] Y. Jung, K.C. Oh, C. Bae, H.D. Shin, The effect of oxygen enrichment on incipient soot particles in inverse diffusion flames, Fuel, 102 (2012) 199-207. [43] S. Park, Y. Kim, Effects of nitrogen dilution on the NOx formation characteristics of CH4/CO/H2 syngas counterflow non-premixed flames, International Journal of Hydrogen Energy, 42 (2017) 11945-11961. [44] D.E.Rosner, Transport processes in chemically reacting flow systems Butter-worths series in chemical engineering, (1986). [45] C.F.C. J.O.Hirschfelder, R.B.Bird, Molecular theory of gases and liquids, John Wiley & Sons, (1954). [46] R. Hilbert, F. Tap, H. El-Rabii, D. Thévenin, Impact of detailed chemistry and transport models on turbulent combustion simulations, Progress in Energy and Combustion Science, 30 (2004) 61-117. [47] S. Chapman, F. Dootson, XXII. A note on thermal diffusion, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 33(1917) 248-253. [48] M.H. Lefebvre, E.S. Oran, K. Kailasanath, P.J. Vantiggelen, The Influence of the Heat-Capacity and Diluent on Detonation Structure, Combust Flame, 95 (1993) 206-218. [49] A. Ern§, V. Giovangigli∥, Thermal diffusion effects in hydrogen-air and methane-air flames, Combustion Theory and Modelling, 2 (1998) 349-372. [50] A.n. Salazar, On thermal diffusivity, European Journal of Physics, 24(2003) 351-358. [51] M. Arias-Zugasti, D.E. Rosner, Soret transport, unequal diffusivity, and dilution effects on laminar diffusion flame temperatures and positions, Combust Flame, 153 (2008) 33-44. [52] F. Yang, C.K. Law, C.J. Sung, H.Q. Zhang, A mechanistic study of Soret diffusion in hydrogen–air flames, Combust Flame, 157 (2010) 192-200. [53] J.F.G. R.J.Kee, M.D.Smooke,J.AMiller, A Fortran program for modeling steady laminar one-dimensional premixed flames, Report SAND858240, Sandia National Laboratories, NM, 1993. [54] G.D. Smith G, Frenklach M, Moriarty N, Eiteneer B, Goldenberg M, et al, Gri-Mech 3.0, (http://www.me.berkeley.edu/gri_mech/). [55] R.J.D.-L.G. Kee, Warnatz, J, Coltrin, M.E., and Miller J.A, A Fortran Computer Code Package for the Evaluation of Gas-Phase Multicomponent Transport Properties, 1986. [56] A.E. Lutz, R.J. Kee, J.F. Grcar, F.M. Rupley, OPPDIF: A Fortran program for computing opposed-flow diffusion flames, United States, 1997. [57] Y. Zhao, H. Zhao, R.-q. Lv, J. Zhao, Review of optical fiber Mach–Zehnder interferometers with micro-cavity fabricated by femtosecond laser and sensing applications, Optics and Lasers in Engineering, 117 (2019) 7-20. [58] S.K.R. Chih-Ting Chen, Yueh-Heng Li, MZI Measurements on ab oxidant-diluted N2O/CH4 Inverse diffusion flame, 9th ECMPortugal, 2019. [59] NIST, Refractive index of species, in: R.i.o. gases (Ed.) https://refractiveindex.info. [60] G. R., Fluid Mechanics Measurements, Taylor & Francis2017. [61] M. Takeda, H.Ina, and S.Kobayashi, Fourier-transform method of fringepattern analysis for computer-based topography and interferometry, Journal of the Optical Society of America, 72(1) (1982) 156-160. [62] C.J. Dasch, One-dimensional tomography: a comparison of abel, onionpeeling, and filtered back projection methods, Applied Optics, 31(8) (1992)1146-1152.
|