跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/04 22:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:游進文
研究生(外文):YOU, JIN-WEN
論文名稱:具能量回收之柔性切換交錯式隔離型雙向轉換器
論文名稱(外文):A Soft-Switching Interleaved Isolated Bidirectional Converter with Energy Recycling
指導教授:沈志隆沈志隆引用關係
指導教授(外文):SHEN, CHIH-LUNG
口試委員:楊隆生張健軒范淑媛
口試日期:2018-07-27
學位類別:碩士
校院名稱:國立高雄第一科技大學
系所名稱:電子工程系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:94
中文關鍵詞:雙向直流-直流轉換器高升壓直流-直流轉換器電氣隔離柔性切換交錯控制
外文關鍵詞:bidirectional DC-DC converter,galvanic isolationsoft switching
相關次數:
  • 被引用被引用:0
  • 點閱點閱:314
  • 評分評分:
  • 下載下載:114
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出一具漏感回收之柔性切換交錯式隔離型雙向轉換器。所提出轉換器為傳統SEPIC轉換器之衍生電路,並透過高頻變壓器與結合切換式電容倍壓技術,達到隔離、雙向轉換與交錯控制,因架構對稱交錯特性,使輸入漣波小。此外,透過回收漏電感的能量,使升壓模式與降壓模式中主動開關達到柔性切換,利用交錯式特性使平均電流降低與變壓器操作在I、III象限,藉此提高轉換器效率,適合應用於綠能系統中。在本論文中對所提之隔離具雙向之交錯式電力轉換器進行理論分析、公式推導及動作原理分析、非理想分析。並且透過模擬軟體與硬體實作,驗證所提出轉換器架構之正確性與可行性。
Development of a soft-switch interleaved isolated bidirectional converter is proposed in the thesis. The proposed topology is derived from traditional SEPIC converter. By integrating with high frequency transformer and switched capacitor into power stage, the proposed converter can achieve the merits of isolation, bidirectional transmission and interleaved control. In addition, the proposed converter processes the advantages of symmetric interleaved architecture and small input ripple. By recycling the energy in the inductors, the active switches can be switched under soft-switching transition. The interleaved characteristic declines the average current and ensures the control of transformer can be operated in quadrant I and quadrant III. It is significant to largely improve the conversion efficiency and appear the flexibility of this converter to apply on renewable energy systems. Theoretical analysis, formula derivation, operation principle and non-ideal analysis of the proposed converter is described in the thesis. Moreover, experiment result and software simulation collectively validate the correctness and feasibility of the proposed converter.
摘要.....i
ABSTRACT.....ii
誌謝.....iii
目錄.....iv
表格清單..... vi
圖目錄.....vii
第一章 緒論.....1
1.1 研究背景.....1
1.2 研究目的.....2
1.3 內容大綱.....3
第二章 雙向直流/直流電能轉換器應用與簡介.....4
2.1 雙向直流/直流轉換器應用.....4
2.1.1 獨立型(Stand-Alone)太陽光電系統.....4
2.1.2 混合式電動汽車.....5
2.2 雙向電能轉換器之簡介.....5
第三章 新型隔離式雙向直流/直流轉換器.....8
3.1 所提出轉換器之介紹.....8
3.2 動作原理與操作模式.....9
3.2.1 升壓模式.....9
3.2.2 降壓模式.....16
3.3 穩態分析.....22
3.3.1 升壓模式.....23
3.3.2 降壓模式.....40
3.4 設計注意事項.....57
3.4.1 升壓模式.....58
3.4.2 降壓模式.....60
第四章 軟體模擬與實驗結果.....62
4.1 模擬與實驗波形.....62
4.2 升壓模式.....63
4.3 降壓模式.....68
4.4 轉換器效率.....73
4.5 性能比較.....75
第五章 結論與未來研究方向 .....77
5.1 結論.....77
5.2 未來研究方向.....77
參考文獻.....78

[1]M. H. Ryu, H. S. Kim, J. W. Baek, H. G. Kim, and J. H. Jung, "Effective test bed of 380-v DC distribution system using isolated power converters," IEEE Trans. Ind. Electron., vol. 62, no. 7, pp. 4525-4536, 2015.
[2]S. Ramya and M. Yuvaraj, "Integration of solarcells with power electronic converters for power generation," in 2015 2nd International Conference on Electronics and Communication Systems (ICECS), 2015, pp. 932-937.
[3]M. H. Ryu, H. S. Kim, J. H. Kim, J. W. Baek, and J. H. Jung, "Test bed implementation of 380v DC distribution system using isolated bidirectional power converters," in 2013 IEEE Energy Conversion Congress and Exposition, 2013, pp. 2948-2954.
[4]F. Spallier and P. Brockerhoff, "Influence of dc-link bus voltage on power losses and thermal behavior of a bidirectional two-level dc-ac converter," in 2013 Eighth International Conference and Exhibition on Ecological Vehicles and Renewable Energies (EVER), 2013, pp. 1-4.
[5]L. Mao, C. Zhang, Y. Gao, P. Sun, J. Chen, and F. Zhao, "DC bus voltage control of a free-piston linear generator," in 2016 Eleventh International Conference on Ecological Vehicles and Renewable Energies (EVER), 2016, pp. 1-7.
[6]F. Yi and W. Cai, "Modeling, control, and seamless transition of the bidirectional battery-driven switched reluctance motor-generator drive based on integrated multiport power converter for electric vehicle applications," IEEE Trans. Power Electron., vol. 31, no. 10, pp. 7099-7111, 2016.
[7]C. M. Lai, Y. H. Cheng, M. H. Hsieh, and Y. C. Lin, "Development of a bidirectional DC/DC converter with dual-battery energy storage for hybrid electric vehicle system," IEEE Transactions on Vehicular Technology, vol. 67, no. 2, pp. 1036-1052, 2018.
[8]M. Arazi, A. Payman, M. B. Camara, and B. Dakyo, "Analysis of a bidirectional resonant converter for wide battery voltage range in electric vehicles application," in 2017 IEEE Vehicle Power and Propulsion Conference (VPPC), 2017, pp. 1-6. F.
[9]Akar, Y. Tavlasoglu, E. Ugur, B. Vural, and I. Aksoy, "A bidirectional nonisolated multi-input DC-DC converter for hybrid energy storage systems in electric vehicles," IEEE Transactions on Vehicular Technology, vol. 65, no. 10, pp. 7944-7955, 2016.
[10]Z. Amjadi and S. S. Williamson, "Digital control of a bidirectional DC/DC switched capacitor converter for hybrid electric vehicle energy storage system applications," IEEE Transactions on Smart Grid, vol. 5, no. 1, pp. 158-166, 2014.
[11]D. Han, J. Noppakunkajorn, and B. Sarlioglu, "Comprehensive efficiency, weight, and volume comparison of sic- and si-based bidirectional DC-DC converters for hybrid electric vehicles," IEEE Transactions on Vehicular Technology, vol. 63, no. 7, pp. 3001-3010, 2014.
[12]F. M. Ibanez, J. M. Echeverria, D. Astigarraga, and L. Fontan, "Multimode step-up bidirectional series resonant DC/DC converter using continuous current mode," IET Power Electronics, vol. 9, no. 4, pp. 710-718, 2016.
[13]W. Sun, H. Wu, H. Hu, and Y. Xing, "Modified LLC resonant converter with secondary paralleled bidirectional switch for applications with hold-up time requirement," IET Power Electronics, vol. 10, no. 3, pp. 398-404, 2017.
[14]E. Babaei, Z. Saadatizadeh, and C. Cecati, "High step-up high step-down bidirectional DC/DC converter," IET Power Electronics, vol. 10, no. 12, pp. 1556-1571, 2017.
[15]M. J. Rana and M. A. Abido, "Energy management in DC microgrid with energy storage and model predictive controlled AC-DC converter," IET Generation, Transmission & Distribution, vol. 11, no. 15, pp. 3694-3702, 2017.
[16]S. Li, K. M. Smedley, D. R. Caldas, and Y. W. Martins, "Hybrid bidirectional DC-DC converter with low component counts," IEEE Trans. Ind. Appl., vol. 54, no. 2, pp. 1573-1582, 2018.
[17]M. P. Akter, S. Mekhilef, N. M. L. Tan, and H. Akagi, "Modified model predictive control of a bidirectional AC-DC converter based on lyapunov function for energy storage systems," IEEE Trans. Ind. Electron., vol. 63, no. 2, pp. 704-715, 2016.
[18]X. Pan, L. Zhang, J. Xiao, F. H. Choo, A. K. Rathore, and P. Wang, "Design and implementation of a communication network and operating system for an adaptive integrated hybrid AC/DC microgrid module," CSEE Journal of Power and Energy Systems, vol. 4, no. 1, pp. 19-28, 2018.
[19]L. Cao, K. H. Loo, and Y. M. Lai, "Output-impedance shaping of bidirectional dab DC-DC converter using double-proportional-integral feedback for near-ripple-free DC bus voltage regulation in renewable energy systems," IEEE Trans. Power Electron., vol. 31, no. 3, pp. 2187-2199, 2016.
[20]V. F. Pires, D. Foito, and A. Cordeiro, "A DC-DC converter with quadratic gain and bidirectional capability for batteries/supercapacitors," IEEE Trans. Ind. Appl., vol. 54, no. 1, pp. 274-285, 2018.
[21]T. J. Liang, H. H. Liang, S. M. Chen, J. F. Chen, and L. S. Yang, "Analysis, design, and implementation of a bidirectional double-boost DC-DC converter," IEEE Trans. Ind. Appl., vol. 50, no. 6, pp. 3955-3962, 2014.
[22]H. A. Alsiraji, A. A. A. Radwan, and R. El-Shatshat, "Modelling and analysis of a synchronous machine-emulated active intertying converter in hybrid AC/DC microgrids," IET Generation, Transmission & Distribution, vol. 12, no. 11, pp. 2539-2548, 2018.
[23]Y. Yang, J. Ma, C. N. M. Ho, and Y. Zou, "A new coupled-inductor structure for interleaving bidirectional DC-DC converters," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 3, no. 3, pp. 841-849, 2015.
[24] T. J. Liang and J. H. Lee, "Novel high-conversion-ratio high-efficiency isolated bidirectional DC-DC converter," IEEE Trans. Ind. Electron., vol. 62, no. 7, pp. 4492-4503, 2015.
[25]Z. Ding, C. Yang, Z. Zhang, C. Wang, and S. Xie, "A novel soft-switching multiport bidirectional DC-DC converter for hybrid energy storage system," IEEE Trans. Power Electron., vol. 29, no. 4, pp. 1595-1609, 2014.
[26]Y. Zhang, Y. Gao, J. Li, and M. Sumner, "Interleaved switched-capacitor bidirectional DC-DC converter with wide voltage-gain range for energy storage systems," IEEE Trans. Power Electron., vol. 33, no. 5, pp. 3852-3869, 2018.
[27]Y. F. Wang, L. K. Xue, C. S. Wang, P. Wang, and W. Li, "Interleaved high-conversion-ratio bidirectional DC-DC converter for distributed energy-storage system-circuit generation, analysis, and design," IEEE Trans. Power Electron., vol. 31, no. 8, pp. 5547-5561, 2016.
[28]P. Xuewei and A. K. Rathore, "Novel bidirectional snubberless naturally commutated soft-switching current-fed full-bridge isolated DC/DC converter for fuel cell vehicles," IEEE Trans. Ind. Electron., vol. 61, no. 5, pp. 2307-2315, 2014.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top