[1] S. Timoshenko & S. Woinowsky-Krieger, Theory of plates and shells. 2nd edition. McGraw-Hill, New York, 1959.
[2] R.D. Mindlin, Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates. Journal of Applied Mechanics, 18(1): 31~38, 1951.
[3] E. Reissner, The effect of transverse shear deformation on the bending of elastic plates. Journal of Applied Mechanics, 12(2): 69~77, 1945.
[4] E. Kita & N. Kamiya, Trefftz method: an overview. Advances in Engineering Software, 24(1~3): 3~12, 1995.
[5] L.B. Lucy, A numerical approach to the testing of the fission hypothesis. The Astronomical Journal, 82(12): 1013~1024, 1977.
[6] P. Lancaster & K. Salkauskas, Surface generated by moving least-squares methods. Mathematics of Computation, 37(155): 141~158, 1981.
[7] B. Nayroles, G. Touzot & P. Villon, Generalizing the finite element method: Diffuse approximation and diffuse elements. Computational Mechanics, 10(5): 307~318, 1992.
[8] T. Belytschko, Y.Y. Liu & L. Gu, Element-free Galerkin methods. International Journal for Numerical Methods in Engineering, 37(2): 229~256, 1994.
[9] W.K. Liu, S. Jun & Y.F. Zhang, Reproducing kernel particle methods. International Journal for Numerical Methods in Fluids, 20(8~9): 1081~1106, 1995.
[10] W.K. Liu & Y. Chen, Wavelet and multiple scale reproducing kernel methods. International Journal for Numerical Methods in Fluids, 21(10): 901~931, 1995.
[11] W.K. Liu, S. Li & T. Belytschko, Moving least-square reproducing kernel methods (I) Methodology and convergence. Computer Methods in Applied Mechanics and Engineering, 143(1~2): 113~154, 1997.
[12] Y. Krongauz & T. Belytschko, A Petrov-Galerkin Diffuse Element Method (PG DEM) and its comparison to EFG. Computational Mechanics, 19(4): 327~333, 1997.
[13] S.N. Atluri & T. Zhu, A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics. Computational Mechanics, 22(2): 117~127, 1998.
[14] 盛若磐,元素釋放法積分法則與權函數之改良。近代工程計算論壇論文集,國立中央大學土木系,2000。
[15] P.H. Wen & Y.C. Hon, Geometrically Nonlinear Analysis of Reissner-Mindlin Plate by Meshless Computation. Computer Modeling in Engineering and Sciences, 21(3): 177~191, 2007.
[16] Y.M. Wang, S.M. Chen & C.P. Wu, A meshless collocation method based on the differential reproducing kernel interpolation. Computational Mechanics, 45(6): 585~606, 2010.
[17] 徐傳停,受束制之移動最小二乘法在Mindlin平板上之應用。國立成功大學土木工程研究所碩士論文,2013。
[18] 李文歆,應用移動最小二乘法於平版大變形分析。國立成功大學土木工程研究所碩士論文,2015。[19] 苗延鈞,移動最小功法在Mindlin平板問題分析之應用。國立成功大學土木工程研究所碩士論文,2018。[20] E. Trefftz, Ein Gegenstuck zum Ritzschen Verfahren, Proc, 2nd Int. Cong. Appl. Mech., Zurich, pp. 131~137, 1926.
[21] J. Jirousek & N. Leon, A powerful finite element for plate bending. Computer Methods in Applied Mechanics and Engineering, 12(1): 77~96, 1977.
[22] J. Jirousek, Basis for development of large finite elements locally satisfying all field equations. Computer Methods in Applied Mechanics and Engineering, 14(1): 65~92, 1978.
[23] L. Cao, Q.H. Qin, & N. Zhao, A new RBF-Trefftz meshless method for partial differential equations. IOP conference series: materials science and engineering. IOP Publishing, 10(1): 012217, 2010.
[24] K. Washizu, Variational methods in elasticity and plasticity. 3rd edition. Pergamon press, Oxford, 1975.
[25] J.N. Reddy, Energy principles and variational methods in applied mechanics. 2nd edition. John Wiley & Sons, New Jersey, 2002.
[26] H.C. Huang, Static and dynamic analyses of plates and shells: theory, software and applications. Springer Science & Business Media, Berlin, 1989.
[27] Z.C. Li, T.T. Lu, H.Y. Hu & A.H.D. Cheng, Trefftz and collocation methods. WIT press, Southampton, 2008.