跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.223) 您好!臺灣時間:2025/10/08 13:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:于福賢
研究生(外文):Fu-Hsien Yu
論文名稱:人類免疫缺陷病毒第一型轉架蛋白p6pol 在調控病毒蛋白酶活化過程中的角色
論文名稱(外文):The Role of HIV-1 p6pol Transframe Region in Modulating Protease Activation
指導教授:王錦鈿
指導教授(外文):Chin-Tien Wang
學位類別:博士
校院名稱:國立陽明大學
系所名稱:臨床醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:英文
論文頁數:97
中文關鍵詞:人類免疫缺陷病毒第一型病毒成熟化蛋白酶核醣體框架轉移轉架區域(p6pol 或 p6*)亮氨酸拉鏈四胜肽
外文關鍵詞:HIV-1virus maturationproteaseribosomal frameshifttransframe region (p6pol or p6*)leucine zipper (LZ)tetra-peptide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:265
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
人類免疫缺陷病毒蛋白酶(HIV-1 protease, PR)是病毒基因轉錄時,藉由核
醣體框架轉移, 製作出前趨蛋白 Pr160 gag-pol中 pol基因轉錄的產物。 蛋白酶的功
能在病毒出芽釋出後以雙體形式調控病毒的成熟化, Gag-Pol 蛋白雙體化被認為
是促使內嵌蛋白酶形成雙體並活化的關鍵,然而蛋白酶若提早活化會造成 Gag
蛋白過度切割使病毒顆粒的產量大幅減低。 位於蛋白酶上游的框架轉移區又被稱
做 p6pol或 p6*,被認為具有預防蛋白酶提早活化的功能以確保病毒生成,但是針
對這一假說的研究卻被基因結構所限制(p6*和 p6 gag具有部分重疊的閱讀框架)。
為了克服此限制以釐清 p6*調控蛋白酶活化而不影響 Gag 蛋白閱讀框架, 我
們建構了一系列具有一對蛋白酶的 Gag/Gag-Pol 表現載體,並將成對蛋白酶間的
p6*保留或刪除以觀察因 Gag 蛋白過度切割而削減病毒生成。 當 p6*置入成對蛋
白酶之間確實降低了 Gag 蛋白的過度切割,再者將成對蛋白酶中任一改變為非活
化型蛋白酶也會明顯地降低 Gag 蛋白過度切割; 另外我們也觀察到若是移除成對
蛋白酶間的 p6*則會減低 Gag 蛋白的切割效率。 接著我們根據 Dp6*PR 為原型設
計了一系列的基因結構表現載體(Dp6*PR 表現載體是將 Pol 蛋白融合到非活化
型蛋白酶後方, 且能夠表現適當的病毒組裝與活化), 結果顯示刪除活性蛋白酶
旁的 p6*會讓蛋白酶切割能力顯著降低。 我們更進一步將 leucine zipper(LZ)
易結合雙體序列放入被刪除的 p6*位置, 觀察到病毒顆粒無法生成的結果,使人
聯想到 LZ 的置入促使蛋白酶雙體化進而提早活化。 另外也觀察到僅保留 p6*末
端的四個胺基酸與蛋白酶連接即可有效的恢復病毒生成,且 Gag 切割狀態與野
生型病毒相似。
為了闡明 p6* C 端殘基減緩 LZ 引起的 Gag 蛋白過度切割,我們建構一系列
具有置換性突變以阻斷 p6*/PR 切割位點的表現載體,觀察到具有四個胺基酸的
情況下,阻斷 p6*與蛋白酶間的切割並無法顯著地降低 LZ 所造成的 Gag 切割,
這一結果也暗示了 LZ 雙體化能力連帶使得蛋白酶形成雙體並加強蛋白酶活化,
10
甚至在蛋白酶前驅物狀態下(蛋白酶與其 N 端殘基相連)也能誘發相當程度的酵
素切割活性。 在移除 p6*區域的表現載體也觀察到, P3 位置上單一脯胺酸置換消
除調控病毒成熟化的能力,此結果更強調了 p6* C 端殘基調控蛋白酶活化的重要
性。
目前於病毒組裝過程中 p6*延緩蛋白酶活化的假說仍缺乏支持性的證據,我
們的研究結果發現以 LZ 置換 p6*使 Gag 蛋白過度切割造成病毒組裝遭到破壞,
然而在刪除區域裡僅保留 p6* C 端的四個胺基酸足以觀察到蛋白酶隨病毒釋出 ,
和抵銷 LZ 引起的 Gag 蛋白過度切割,因此證明了 (i )p6*藉由預防蛋白酶提早活
化來確保病毒的組裝, (ii)p6* C 端四個胺基酸是調控蛋白酶活化的關鍵。
關鍵字: 人類免疫缺陷病毒第一型, 病毒成熟化, 蛋白酶,核醣體框架轉移,轉
架區域(p6pol 或 p6*), 亮氨酸拉鏈,四胜肽
Abstract
HIV-1 protease (PR) is encoded by pol, which is initially translated as a
Pr160gag-pol polyprotein by a ribosomal frameshift event. PR functions as a
homodimer mediating virus maturation following virus budding. Gag-Pol
dimerization is believed to trigger embedded PR activation by promoting PR
dimer formation. Early PR activation can lead to markedly reduced virus yields
due to premature Gag cleavage. Within Gag-Pol, truncated p6gag is replaced
by a transframe region (referred to as p6pol or p6*) located directly upstream of
PR. The p6* peptide is believed to ensure virus production by preventing early
PR maturation. Overlapping reading frames between p6* and p6gag present a
challenge to researchers using genetic approaches to studying p6* biological
functions. To determine the role of p6* in PR activation without affecting the
gag reading frame, we constructed a series of Gag/Gag-Pol expression
vectors by duplicating PR with or without p6* between PR pairs, and observed
that PR duplication eliminated virus production due to significant Gag cleavage
enhancement. This effect was mitigated when p6* was placed between the two
PRs. Further, Gag cleavage enhancement was markedly reduced when either
one of the two PRs was mutationally inactivated. Additional reduction in Gag
cleavage efficiency was noted following the removal of p6* from between the
two PRs. Next, we engineered multiple constructs derived from Dp6*PR (an
assembly- and processing-competent construct with Pol fused at the
inactivated PR C terminus). The data indicated that a p6* deletion adjacent to
active PR significantly impaired virus processing. We also observed that the
insertion of a leucine zipper (LZ) dimerization motif in the deleted region
eliminated virus production in a PR activity dependent manner, suggesting that
8
the LZ insertion triggered premature PR activation by facilitating PR dimer
formation. As few as four C-terminal p6* residues remaining at the p6*/PR
junction were sufficient to restore virus yields, with a Gag processing profile
similar to that of the wild type. To clarify the involvement of C terminal p6*
residues in mitigating enhanced LZ-incurred Gag processing, we engineered
constructs containing C-terminal p6* residue substitutions with and without a
mutation blocking the p6*/PR cleavage site. The p6*-PR cleavage blocking did
not significantly reduce the LZ enhancement effect on Gag cleavage when
only four amino acid residues were present between the p6* and PR. This
suggests that the potent LZ dimerization motif may enhance PR activation by
facilitating PR dimer formation, and that PR precursors may trigger sufficient
enzymatic activity without breaking off from the PR N-terminus. We also
observed that a proline substitution at the P3 position eliminated the ability of
p6*-deleted Gag-Pol to mediate virus maturation, thus emphasizing the
importance of C-terminal p6* residues to modulating PR activation.
Supporting evidence for the assumption that p6* retards PR maturation in
the context of virus assembly is lacking. We found that replacing p6* with a
leucine zipper peptide abolished virus assembly due to the significant
enhancement of Gag cleavage. However, C-terminal p6* tetra-peptides
remaining in the deleted region were sufficient for significant PR release, as
well as for counteracting leucine zipper incurred premature Gag cleavage. Our
data provide evidence that (i) p6* ensures virus assembly by preventing early
PR activation and (ii) four C-terminal p6* residues are critical for modulating
PR activation.
Key words: HIV-1 , virus maturation, protease, ribosomal frameshift,
transframe region (p6pol or p6*), leucine zipper (LZ), tetra-peptide
Contents
Acknowledgement 1
Contents 2
Abstract 6
Chinese Abstract (中文摘要) 8
List of Abbreviations 1 0
Chapter 1 Introduction 11
1.1 The History of HIV – Discovery, Origins & Classification 1 2
1.2 The Structure and Genome of HIV-1 1 3
1.3 The Replication Cycle of HIV-1 1 5
1.4 Hypothesis and Aims 19
Chapter 2 Materials and Methods 22
2.1 Plasmids construction & primer design 22
2.2 Bacterial strain & Bacterial Culture Media and Reagents 25
2.3 Cell lines & Cell culture reagents 25
2.4 Other reagents 27
2.5 Plasmid construction methods 29
2.6 Plasmid preparation 30
2.7 Cell culture 32
2.8 Transfection 32
2.9 Infection 33
2.10 Western immunoblot analysis 33
2.11 Statistical analysis 35
Chapter 3 Results 36
3.1 p6* placement between duplicate PR domains mitigated Gag cleavage enhancement 36
3.2 Gag-Pol precursors of PRII and PRp6*PR were incorporated into Gag particles following PR inactivation 37
3.3 Removal of the PR downstream sequence did not exert a major effect on Gag cleavage enhancement due to PR duplication 38
3.4 Inactivating either one of the two PR domains markedly reduced Gag cleavage efficiency 39
3.5 Replacement of p6* with an LZ motif blocks virus production 40
3.6 Carboxyl-terminal p6* residues reduce the LZ-induced enhancement effect on Gag cleavage 41
3.7 LZ replacement mutants produce infectious virions 43
3.8 Removal of PR downstream sequence does not diminish the leucine zipper-induced enhancement effect on Gag cleavage 44
3.9 The C-terminal p6* tetra-peptide is nonspecific when mitigating LZ-induced Gag cleavage enhancement 45
3.10 p6*-PR cleavage blocking does not significantly mitigate leucine zipper-induced Gag cleavage enhancement 45
3.11 Specific C-terminal p6* residues are required to modulate PR maturation 47
3.12 A single amino acid residue change eliminated the ability of p6*-deleted Gag-Pol to mediate virus maturation 48
3.13 Enhanced PR activation due to the LZ replacement of p6* is Gag domain-independent 50
Chapter 4 Discussion and Conclusion 52
References 57
Figures, Tables and Supplement figures 66
Figure 1 Assembly and processing of HIV-1 mutants containing duplicate PR or p6* PR domains. 67
Figure 2 Incorporation of PR and PR-associated Gag-Pol into virus particles. 69
Figure 3 Removal of PR downstream sequences did not significantly impact enhanced Gag cleavage by PR pairs. 70
Figure 4 Inactivation of either one of the two PR domains markedly affected virus maturation. 71
Figure 5 Replacement of p6* with a leucine zipper motif eliminates virus-like particle production. 73
Figure 6 The presence of four C-terminal p6* residues counteracts the leucine zipper enhancement effect on Gag processing. 75
Figure 7 Leucine zipper-induced Gag cleavage enhancement is independent of the downstream PR sequence. 78
Figure 8 C-terminal p6* tetrapeptide mutations mitigate the leucine zipper-induced Gag cleavage enhancement. 79
Figure 9 Effects of C-terminal HIV-1 p6* residue substitutions on virus assembly and processing. 80
Figure 10 Effects of C-terminal p6* amino acid substitutions on protease maturation and virus processing. 83
Figure 11 Effects of C-terminal p6* tetra-peptide mutations on virus processing and infectivity. 85
Figure 12 Effects of C-terminal p6* residue substitutions on the capability of p6*-deleted Gag-Pol mutants to mediate virus maturation. 86
Figure 13 Enhanced Gag-Pol auto-cleavage reduces virus yields and Gag-Pol viral incorporation. 88
Table 1 Primer sequences used for cloning and plasmid construction 89
Table 2 Infectivity of HIV-1 mutants 90
Supplemental Figure 1 HIV-1 virion organization 91
Supplemental Figure 2 Structure of the RNA genome of HIV-1 and proteins encoded by it 92
Supplemental Figure 3 The replicative cycle of HIV 93
Supplemental Figure 4 HIV-1 maturation 94
Supplemental Figure 5 Schematic presentation of the wildtype construct (HIVgpt) 95
Publication list 96
References
1. Weiss RA. How does HIV cause AIDS? Science. 1993;260(5112):1273-9.
2. Douek DC, Roederer M, Koup RA. Emerging concepts in the
immunopathogenesis of AIDS. Annu Rev Med. 2009;60:471 -84.
3. Mabuka J, Nduati R, Odem-Davis K, Peterson D, Overbaugh J.
HIV-specific antibodies capable of ADCC are common in breastmilk and
are associated with reduced risk of transmission in women with high viral
loads. PLoS Pathog. 2012;8(6):e1002739.
4. Cunningham AL, Donaghy H, Harman AN, Kim M, Turville SG.
Manipulation of dendritic cell function by viruses. Curr Opin Microbiol.
2010;13(4):524-9.
5. Doitsh G, Galloway NL, Geng X, Yang Z, Monroe KM, Zepeda O, et al.
Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection.
Nature. 2014;505(7484):509-14.
6. Garg H, Mohl J, Joshi A. HIV-1 Induced Bystander Apoptosis. Viruses.
2012;4(11):3020.
7. Vinay K AK, Jon CA. Robbins Basic Pathology. 9th ed. Saunders; 2012.
8. UNAIDS. Fact sheet - Latest statistics on the status of the AIDS epidemic.
2018.
9. O. KL. The first postmodern pandemic: 25 years of HIV/ AIDS. J Intern
Med. 2008;263(3):218-43.
10. Gottlieb MS. Pneumocystis pneumonia--Los Angeles. 1981. Am J Public
Health. 2006;96(6):980-1; discussion 2-3.
11. Friedman-Kien AE. Disseminated Kaposi's sarcoma syndrome in young
homosexual men. J Am Acad Dermatol. 1981;5(4):468-71.
12. Hymes KB, Cheung T, Greene JB, Prose NS, Marcus A, Ballard H, et al.
Kaposi's sarcoma in homosexual men-a report of eight cases. Lancet.
1981;2(8247):598-600.
13. Basavapathruni A, Anderson KS. Reverse transcription of the HIV-1
pandemic. FASEB J. 2007;21(14):3795-808.
14. CDC. Update on acquired immune deficiency syndrome (AIDS)--United
States. MMWR Morb Mortal Wkly Rep. 1982;31(37):507-8, 13-4.
15. Gallo RC, Sarin PS, Gelmann EP, Robert-Guroff M, Richardson E,
Kalyanaraman VS, et al. Isolation of human T-cell leukemia virus in
acquired immune deficiency syndrome (AIDS). Science.
1983;220(4599):865-7.
16. Barre-Sinoussi F, Chermann JC, Rey F, Nugeyre MT, Chamaret S,
59
Gruest J, et al. Isolation of a T-lymphotropic retrovirus from a patient at
risk for acquired immune deficiency syndrome (AIDS). Science.
1983;220(4599):868-71.
17. Coffin J, Haase A, Levy JA, Montagnier L, Oroszlan S, Teich N, et al.
What to call the AIDS virus? Nature. 1986;321(6065):10.
18. Zhu T, Korber BT, Nahmias AJ, Hooper E, Sharp PM, Ho DD. An African
HIV-1 sequence from 1959 and implications for the origin of the epidemic.
Nature. 1998;391(6667):594-7.
19. Gao F, Bailes E, Robertson DL, Chen Y, Rodenburg CM, Michael SF, et
al. Origin of HIV-1 in the chimpanzee Pan troglodytes troglodytes. Nature.
1999;397(6718):436-41.
20. Faria NR, Rambaut A, Suchard MA, Baele G, Bedford T, Ward MJ, et al.
HIV epidemiology. The early spread and epidemic ignition of HIV-1 in
human populations. Science. 2014;346(6205):56-61.
21. NIH. International Committee on Taxonomy of Viruses. "61.0.6.
Lentivirus". 2002.
22. NIH. International Committee on Taxonomy of Viruses. "61. Retroviridae".
2002.
23. Levy JA. HIV pathogenesis and long-term survival. AIDS.
1993;7(11):1401 -10.
24. Sharp PM, Hahn BH. Origins of HIV and the AIDS pandemic. Cold Spring
Harb Perspect Med. 2011;1(1):a006841.
25. Gilbert PB, McKeague IW, Eisen G, Mullins C, Gueye NA, Mboup S, et al.
Comparison of HIV-1 and HIV-2 infectivity from a prospective cohort
study in Senegal. Stat Med. 2003;22(4):573-93.
26. Reeves JD, Doms RW. Human immunodeficiency virus type 2. J Gen
Virol. 2002;83(Pt 6):1253-65.
27. Benjamin J, Ganser-Pornillos BK, Tivol WF, Sundquist WI, Jensen GJ.
Three-dimensional structure of HIV-1 virus-like particles by electron
cryotomography. J Mol Biol. 2005;346(2):577-88.
28. Freed EO. HIV-1 gag proteins: diverse functions in the virus life cycle.
Virology. 1998;251(1):1 -15.
29. Montagnier L. Human Immunodeficiency Viruses (Retroviridae).
Encyclopedia of Virology.1999.
30. Ratner L, Haseltine W, Patarca R, Livak KJ, Starcich B, Josephs SF, et al.
Complete nucleotide sequence of the AIDS virus, HTLV-III. Nature.
1985;313(6000):277-84.
31. Wain-Hobson S, Sonigo P, Danos O, Cole S, Alizon M. Nucleotide
60
sequence of the AIDS virus, LAV. Cell. 1985;40(1):9-17.
32. Castelli JC LJ. HIV (Human Immunodeficiency Virus). Encyclopedia of
Cancer.2002.
33. Carla K. TL, Brian F., Beatrice H., Preston M., Francince M., et al. HIV
Sequence Compendium. 2008.
34. Ouellet DL, Plante I, Landry P, Barat C, Janelle ME, Flamand L, et al.
Identification of functional microRNAs released through asymmetrical
processing of HIV-1 TAR element. Nucleic Acids Res.
2008;36(7):2353-65.
35. Klase Z, Winograd R, Davis J, Carpio L, Hildreth R, Heydarian M, et al.
HIV-1 TAR miRNA protects against apoptosis by altering cellular gene
expression. Retrovirology. 2009;6:18.
36. Vasudevan AA, Smits SH, Hoppner A, Haussinger D, Koenig BW, Munk
C. Structural features of antiviral DNA cytidine deaminases. Biol Chem.
2013;394(11):1357-70.
37. Garcia JV, Miller AD. Serine phosphorylation-independent
downregulation of cell-surface CD4 by nef. Nature.
1991;350(6318):508-11.
38. Schwartz O, Marechal V, Le Gall S, Lemonnier F, Heard JM. Endocytosis
of major histocompatibility complex class I molecules is induced by the
HIV-1 Nef protein. Nat Med. 1996;2(3):338-42.
39. Stumptner-Cuvelette P, Morchoisne S, Dugast M, Le Gall S, Raposo G,
Schwartz O, et al. HIV-1 Nef impairs MHC class II antigen presentation
and surface expression. Proc Natl Acad Sci U S A. 2001;98(21):12144-9.
40. Chan DC, Kim PS. HIV entry and its inhibition. Cell. 1998;93(5):681 -4.
41. Wyatt R, Sodroski J. The HIV-1 envelope glycoproteins: fusogens,
antigens, and immunogens. Science. 1998;280(5371):1884-8.
42. Arthos J, Cicala C, Martinelli E, Macleod K, Van Ryk D, Wei D, et al.
HIV-1 envelope protein binds to and signals through integrin alpha4beta7,
the gut mucosal homing receptor for peripheral T cells. Nat Immunol.
2008;9(3):301 -9.
43. Pope M, Haase AT. Transmission, acute HIV-1 infection and the quest for
strategies to prevent infection. Nat Med. 2003;9(7):847-52.
44. Haedicke J, Brown C, Naghavi MH. The brain-specific factor FEZ1 is a
determinant of neuronal susceptibility to HIV-1 infection. Proc Natl Acad
Sci U S A. 2009;106(33):14040-5.
45. Daecke J, Fackler OT, Dittmar MT, Krausslich HG. Involvement of
clathrin-mediated endocytosis in human immunodeficiency virus type 1
61
entry. J Virol. 2005;79(3):1581 -94.
46. Miyauchi K, Kim Y, Latinovic O, Morozov V, Melikyan GB. HIV enters cells
via endocytosis and dynamin-dependent fusion with endosomes. Cell.
2009;137(3):433-44.
47. Koch P, Lampe M, Godinez WJ, Muller B, Rohr K, Krausslich HG, et al.
Visualizing fusion of pseudotyped HIV-1 particles in real time by live cell
microscopy. Retrovirology. 2009;6:84.
48. Thorley JA, McKeating JA, Rappoport JZ. Mechanisms of viral entry:
sneaking in the front door. Protoplasma. 2010;244(1 -4):15-24.
49. Permanyer M, Ballana E, Este JA. Endocytosis of HIV: anything goes.
Trends Microbiol. 2010;18(12):543-51.
50. Zheng YH, Lovsin N, Peterlin BM. Newly identified host factors modulate
HIV replication. Immunol Lett. 2005;97(2):225-34.
51. Kaiser D. Doc Kaiser's Microbiology Home Page. 2008. Available from:
web.archive.org/web/20100726222939/http://student.ccbcmd.edu/courses/b
io141/lecguide/unit3/viruses/hivlc.html
52. Hiscott J, Kwon H, Genin P. Hostile takeovers: viral appropriation of the
NF-kappaB pathway. J Clin Invest. 2001;107(2):143-51.
53. Pollard VW, Malim MH. The HIV-1 Rev protein. Annu Rev Microbiol.
1998;52:491 -532.
54. Butsch M, Boris-Lawrie K. Destiny of unspliced retroviral RNA: ribosome
and/or virion? J Virol. 2002;76(7):3089-94.
55. Hallenberger S, Bosch V, Angliker H, Shaw E, Klenk HD, Garten W.
Inhibition of furin-mediated cleavage activation of HIV-1 glycoprotein
gp160. Nature. 1992;360(6402):358-61.
56. Sundquist WI, Krausslich HG. HIV-1 assembly, budding, and maturation.
Cold Spring Harb Perspect Med. 2012;2(7):a006924.
57. Wlodawer A, Erickson JW. Structure-based inhibitors of HIV-1 protease.
Annu Rev Biochem. 1993;62:543-85.
58. Pettit SC, Moody MD, Wehbie RS, Kaplan AH, Nantermet PV, Klein CA,
et al. The p2 domain of human immunodeficiency virus type 1 Gag
regulates sequential proteolytic processing and is required to produce
fully infectious virions. J Virol. 1994;68(12):8017-27.
59. Kaplan AH, Zack JA, Knigge M, Paul DA, Kempf DJ, Norbeck DW, et al.
Partial inhibition of the human immunodeficiency virus type 1 protease
results in aberrant virus assembly and the formation of noninfectious
particles. J Virol. 1993;67(7):4050-5.
60. Frank GA, Narayan K, Bess JW, Jr., Del Prete GQ, Wu X, Moran A, et al.
62
Maturation of the HIV-1 core by a non-diffusional phase transition. Nature
communications. 2015;6:5854.
61. Swanstrom R, Wills JW. Synthesis, Assembly, and Processing of Viral
Proteins. In: Coffin JM, Hughes SH, Varmus HE, editors. Retroviruses.
Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press
Cold Spring Harbor Laboratory Press.; 1997.
62. Lee SK, Potempa M, Swanstrom R. The choreography of HIV-1
proteolytic processing and virion assembly. J Biol Chem.
2012;287(49):40867-74.
63. Gottlinger HG, Sodroski JG, Haseltine WA. Role of capsid precursor
processing and myristoylation in morphogenesis and infectivity of human
immunodeficiency virus type 1. Proc Natl Acad Sci U S A.
1989;86(15):5781 -5.
64. Kohl NE, Emini EA, Schleif WA, Davis LJ, Heimbach JC, Dixon RA, et al.
Active human immunodeficiency virus protease is required for viral
infectivity. Proc Natl Acad Sci U S A. 1988;85(13):4686-90.
65. Peng C, Ho BK, Chang TW, Chang NT. Role of human immunodeficiency
virus type 1 -specific protease in core protein maturation and viral
infectivity. J Virol. 1989;63(6):2550-6.
66. Jacks T, Power MD, Masiarz FR, Luciw PA, Barr PJ, Varmus HE.
Characterization of ribosomal frameshifting in HIV-1 gag-pol expression.
Nature. 1988;331(6153):280-3.
67. Arrigo SJ, Huffman K. Potent inhibition of human immunodeficiency virus
type 1 (HIV-1) replication by inducible expression of HIV-1 PR multimers.
J Virol. 1995;69(10):5988-94.
68. Hill MK, Hooker CW, Harrich D, Crowe SM, Mak J. Gag-Pol supplied in
trans is efficiently packaged and supports viral function in human
immunodeficiency virus type 1. J Virol. 2001;75(15):6835-40.
69. Krausslich HG. Human immunodeficiency virus proteinase dimer as
component of the viral polyprotein prevents particle assembly and viral
infectivity. Proc Natl Acad Sci U S A. 1991;88(8):3213-7.
70. Park J, Morrow CD. Overexpression of the gag-pol precursor from human
immunodeficiency virus type 1 proviral genomes results in efficient
proteolytic processing in the absence of virion production. J Virol.
1991;65(9):5111 -7.
71. Rose JR, Babe LM, Craik CS. Defining the level of human
immunodeficiency virus type 1 (HIV-1) protease activity required for
HIV-1 particle maturation and infectivity. J Virol. 1995;69(5):2751 -8.
63
72. Shehu-Xhilaga M, Crowe SM, Mak J. Maintenance of the Gag/Gag-Pol
ratio is important for human immunodeficiency virus type 1 RNA
dimerization and viral infectivity. J Virol. 2001;75(4):1834-41.
73. Wang CT, Chou YC, Chiang CC. Assembly and processing of human
immunodeficiency virus Gag mutants containing a partial replacement of
the matrix domain by the viral protease domain. J Virol.
2000;74(7):3418-22.
74. Figueiredo A, Moore KL, Mak J, Sluis-Cremer N, de Bethune MP,
Tachedjian G. Potent nonnucleoside reverse transcriptase inhibitors
target HIV-1 Gag-Pol. PLoS Pathog. 2006;2(11):e119.
75. Tachedjian G, Orlova M, Sarafianos SG, Arnold E, Goff SP.
Nonnucleoside reverse transcriptase inhibitors are chemical enhancers
of dimerization of the HIV type 1 reverse transcriptase. Proc Natl Acad
Sci U S A. 2001;98(13):7188-93.
76. Pan YY, Wang SM, Huang KJ, Chiang CC, Wang CT. Placement of
leucine zipper motifs at the carboxyl terminus of HIV-1 protease
significantly reduces virion production. PLoS One. 2012;7(3):e32845.
77. Ludwig C, Leiherer A, Wagner R. Importance of protease cleavage sites
within and flanking human immunodeficiency virus type 1 transframe
protein p6* for spatiotemporal regulation of protease activation. J Virol.
2008;82(9):4573-84.
78. Partin K, Zybarth G, Ehrlich L, DeCrombrugghe M, Wimmer E, Carter C.
Deletion of sequences upstream of the proteinase improves the
proteolytic processing of human immunodeficiency virus type 1. Proc Natl
Acad Sci U S A. 1991;88(11):4776-80.
79. Tessmer U, Krausslich HG. Cleavage of human immunodeficiency virus
type 1 proteinase from the N-terminally adjacent p6* protein is essential
for efficient Gag polyprotein processing and viral infectivity. J Virol.
1998;72(4):3459-63.
80. Paulus C, Ludwig C, Wagner R. Contribution of the Gag-Pol transframe
domain p6* and its coding sequence to morphogenesis and replication of
human immunodeficiency virus type 1. Virology. 2004;330(1):271 -83.
81. Paulus C, Hellebrand S, Tessmer U, Wolf H, Krausslich HG, Wagner R.
Competitive inhibition of human immunodeficiency virus type-1 protease
by the Gag-Pol transframe protein. J Biol Chem. 1999;274(31):21539-43.
82. Louis JM, Dyda F, Nashed NT, Kimmel AR, Davies DR. Hydrophilic
peptides derived from the transframe region of Gag-Pol inhibit the HIV-1
protease. Biochemistry. 1998;37(8):2105-10.
64
83. Bleiber G, Peters S, Martinez R, Cmarko D, Meylan P, Telenti A. The
central region of human immunodeficiency virus type 1 p6 protein (Gag
residues S14-I31) is dispensable for the virus in vitro. J Gen Virol.
2004;85(Pt 4):921 -7.
84. Ho SK, Coman RM, Bunger JC, Rose SL, O'Brien P, Munoz I, et al.
Drug-associated changes in amino acid residues in Gag p2, p7(NC), and
p6(Gag)/p6(Pol) in human immunodeficiency virus type 1 (HIV-1) display
a dominant effect on replicative fitness and drug response. Virology.
2008;378(2):272-81.
85. Ibe S, Shibata N, Utsumi M, Kaneda T. Selection of human
immunodeficiency virus type 1 variants with an insertion mutation in the
p6(gag) and p6(pol) genes under highly active antiretroviral therapy.
Microbiol Immunol. 2003;47(1):71 -9.
86. Whitehurst N, Chappey C, Petropoulos C, Parkin N, Gamarnik A.
Polymorphisms in p1 -p6/p6* of HIV type 1 can delay protease
autoprocessing and increase drug susceptibility. AIDS Res Hum
Retroviruses. 2003;19(9):779-84.
87. Barrie KA, Perez EE, Lamers SL, Farmerie WG, Dunn BM, Sleasman JW,
et al. Natural variation in HIV-1 protease, Gag p7 and p6, and protease
cleavage sites within gag/pol polyproteins: amino acid substitutions in the
absence of protease inhibitors in mothers and children infected by human
immunodeficiency virus type 1. Virology. 1996;219(2):407-16.
88. Song YH, Meng ZF, Xing H, Ruan YH, Li XP, Xin RL, et al. Analysis of
HIV-1 CRF07_BC gag p6 sequences indicating novel deletions in the
central region of p6. Arch Virol. 2007;152(8):1553-8.
89. Chatterjee A, Mridula P, Mishra RK, Mittal R, Hosur RV. Folding regulates
autoprocessing of HIV-1 protease precursor. J Biol Chem.
2005;280(12):11369-78.
90. Ishima R, Torchia DA, Louis JM. Mutational and structural studies aimed
at characterizing the monomer of HIV-1 protease and its precursor. J Biol
Chem. 2007;282(23):17190-9.
91. Louis JM, Clore GM, Gronenborn AM. Autoprocessing of HIV-1 protease
is tightly coupled to protein folding. Nat Struct Biol. 1999;6(9):868-75.
92. Sadiq SK, Noe F, De Fabritiis G. Kinetic characterization of the critical
step in HIV-1 protease maturation. Proc Natl Acad Sci U S A.
2012;109(50):20449-54.
93. Page KA, Landau NR, Littman DR. Construction and use of a human
immunodeficiency virus vector for analysis of virus infectivity. J Virol.
65
1990;64(11):5270-6.
94. Loriaux MM, Rehfuss RP, Brennan RG, Goodman RH. Engineered
leucine zippers show that hemiphosphorylated CREB complexes are
transcriptionally active. Proc Natl Acad Sci U S A. 1993;90(19):9046-50.
95. Chen SW, Chiu HC, Liao WH, Wang FD, Chen SS, Wang CT. The
virus-associated human immunodeficiency virus type 1 Gag-Pol carrying
an active protease domain in the matrix region is severely defective both
in autoprocessing and in trans processing of gag particles. Virology.
2004;318(2):534-41.
96. Boles E, Miosga T. A rapid and highly efficient method for PCR-based
site-directed mutagenesis using only one new primer. Curr Genet.
1995;28(2):197-8.
97. Chiu HC, Yao SY, Wang CT. Coding sequences upstream of the human
immunodeficiency virus type 1 reverse transcriptase domain in Gag-Pol
are not essential for incorporation of the Pr160(gag-pol) into virus
particles. J Virol. 2002;76(7):3221 -31.
98. Burns JC, Friedmann T, Driever W, Burrascano M, Yee JK. Vesicular
stomatitis virus G glycoprotein pseudotyped retroviral vectors:
concentration to very high titer and efficient gene transfer into
mammalian and nonmammalian cells. Proc Natl Acad Sci U S A.
1993;90(17):8033-7.
99. Chen YL, Ts'ai PW, Yang CC, Wang CT. Generation of infectious virus
particles by transient co-expression of human immunodeficiency virus
type 1 gag mutants. J Gen Virol. 1997;78 ( Pt 10):2497-501.
100. Ferris AL, Hizi A, Showalter SD, Pichuantes S, Babe L, Craik CS, et al.
Immunologic and proteolytic analysis of HIV-1 reverse transcriptase
structure. Virology. 1990;175(2):456-64.
101. Hizi A, McGill C, Hughes SH. Expression of soluble, enzymatically active,
human immunodeficiency virus reverse transcriptase in Escherichia coli
and analysis of mutants. Proc Natl Acad Sci U S A. 1988;85(4):1218-22.
102. Liao WH, Wang CT. Characterization of human immunodeficiency virus
type 1 Pr160 gag-pol mutants with truncations downstream of the
protease domain. Virology. 2004;329(1):180-8.
103. Yu FH, Chou TA, Liao WH, Huang KJ, Wang CT. Gag-Pol Transframe
Domain p6* Is Essential for HIV-1 Protease-Mediated Virus Maturation.
PLoS One. 2015;10(6):e0127974.
104. Pettit SC, Clemente JC, Jeung JA, Dunn BM, Kaplan AH. Ordered
processing of the human immunodeficiency virus type 1 GagPol
66
precursor is influenced by the context of the embedded viral protease. J
Virol. 2005;79(16):10601 -7.
105. Yu FH, Huang KJ, Wang CT. C-Terminal HIV-1 Transframe p6*
Tetrapeptide Blocks Enhanced Gag Cleavage Incurred by Leucine Zipper
Replacement of a Deleted p6* Domain. J Virol. 2017;91(10).
106. Chiu HC, Wang FD, Chen YM, Wang CT. Effects of human
immunodeficiency virus type 1 transframe protein p6* mutations on viral
protease-mediated Gag processing. J Gen Virol. 2006;87(Pt 7):2041 -6.
107. Agniswamy J, Sayer JM, Weber IT, Louis JM. Terminal interface
conformations modulate dimer stability prior to amino terminal
autoprocessing of HIV-1 protease. Biochemistry. 2012;51(5):1041 -50.
108. Huang L, Li Y, Chen C. Flexible catalytic site conformations implicated in
modulation of HIV-1 protease autoprocessing reactions. Retrovirology.
2011;8:79.
109. Tang C, Louis JM, Aniana A, Suh JY, Clore GM. Visualizing transient
events in amino-terminal autoprocessing of HIV-1 protease. Nature.
2008;455(7213):693-6.
110. Pettit SC, Gulnik S, Everitt L, Kaplan AH. The dimer interfaces of
protease and extra-protease domains influence the activation of protease
and the specificity of GagPol cleavage. J Virol. 2003;77(1):366-74.
111. Pettit SC, Simsic J, Loeb DD, Everitt L, Hutchison CA, 3rd, Swanstrom R.
Analysis of retroviral protease cleavage sites reveals two types of
cleavage sites and the structural requirements of the P1 amino acid. J
Biol Chem. 1991;266(22):14539-47.
112. Splettstoesser T. Diagram of the HIV virion. 2014.
113. Splettstoesser T. HIV-1 genome. 2014.
114. Rambaut A, Posada D, Crandall KA, Holmes EC. The causes and
consequences of HIV evolution. Nature Reviews Genetics. 2004;5:52.
115. Ganser-Pornillos BK, Yeager M, Sundquist WI. The structural biology of
HIV assembly. Curr Opin Struct Biol. 2008;18(2):203-17.
116. Schur FK, Hagen WJ, Rumlova M, Ruml T, Muller B, Krausslich HG, et al.
Structure of the immature HIV-1 capsid in intact virus particles at 8.8 A
resolution. Nature. 2015;517(7535):505-8.
117. Zhao G, Perilla JR, Yufenyuy EL, Meng X, Chen B, Ning J, et al. Mature
HIV-1 capsid structure by cryo-electron microscopy and all-atom
molecular dynamics. Nature. 2013;497(7451):643-6.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊