|
6. References 1. Mathur R, P H Maheshwari, T Dhami, R Sharma, C Sharma. Processing of carbon composite paper as electrode for fuel cell. J Power Sources. 2006. 161(2). 790-798. 2. Mathur R, P H Maheshwari, T Dhami, R Tandon. Characteristics of the carbon paper heat-treated to different temperatures and its influence on the performance of PEM fuel cell. Electrochim Acta. 2007. 52(14). 4809-4817. 3. Tiwari S and J Bijwe. Surface treatment of carbon fibers-a review. Proc Technol. 2014. 14. 505-512. 4. Ma T Y, J Ran, S Dai, M Jaroniec, S Z Qiao. Phosphorus‐Doped Graphitic Carbon Nitrides Grown In Situ on Carbon‐Fiber Paper: Flexible and Reversible Oxygen Electrodes. Angew Chem Int Ed. 2015. 54(15). 4646-4650. 5. Nakamura M, Y Hosako, H Ohashi, M Hamada, K Mihara, Porous carbon electrode material, method for manufacturing the same, and carbon fiber paper. 2004, Google Patents. 6. Huang L, D Chen, Y Ding, S Feng, Z L Wang, M Liu. Nickel–cobalt hydroxide nanosheets coated on NiCo2O4 nanowires grown on carbon fiber paper for high-performance pseudocapacitors. Nano Lett. 2013. 13(7). 3135-3139. 7. Shi J, J Chen, G Li, T An, H Yamashita. Fabrication of Au/TiO2 nanowires@ carbon fiber paper ternary composite for visible-light photocatalytic degradation of gaseous styrene. Catal Today. 2017. 281. 621-629. 8. Ye Z, T Li, G Ma, X Peng, J Zhao. Morphology controlled MnO2 electrodeposited on carbon fiber paper for high-performance supercapacitors. J Power Sources. 2017. 351. 51-57. 9. Wang X, W Li, D Xiong, D Y Petrovykh, L Liu. Bifunctional nickel phosphide nanocatalysts supported on carbon fiber paper for highly efficient and stable overall water splitting. Adv Funct Mater. 2016. 26(23). 4067-4077. 10. Du S, Z Ren, J Wu, W Xi, H Fu. Vertical α-FeOOH nanowires grown on the carbon fiber paper as a free-standing electrode for sensitive H2O2 detection. Nano Res. 2016. 9(8). 2260-2269. 11. Lin C-H, L-Y Wei, J-H Lee, C-L Lien, C-H Lu, C-J Yuan. Effect of anions on the oxidation and reduction of hydrogen peroxide on the gold nanoparticle-deposited carbon fiber paper electrode. Electrochim Acta. 2015. 180. 64-70. 12. Ge J, A Higier, H Liu. Effect of gas diffusion layer compression on PEM fuel cell performance. J Power Sources. 2006. 159(2). 922-927. 13. Park J, H Oh, Y I Lee, K Min, E Lee, J-Y Jyoung. Effect of the pore size variation in the substrate of the gas diffusion layer on water management and fuel cell performance. Appl Energy. 2016. 171. 200-212. 14. Cheng S, R E Rettew, M Sauerbrey, F M Alamgir. Architecture-dependent surface chemistry for Pt monolayers on carbon-supported Au. ACS Appl Mater Inter. 2011. 3(10). 3948-3956. 15. Shao M. Palladium-based electrocatalysts for hydrogen oxidation and oxygen reduction reactions. J Power Sources. 2011. 196(5). 2433-2444. 16. Chen A and C Ostrom. Palladium-based nanomaterials: synthesis and electrochemical applications. Chem Rev. 2015. 115(21). 11999-12044. 17. Meng L, J Jin, G Yang, T Lu, H Zhang, C Cai. Nonenzymatic electrochemical detection of glucose based on palladium− single-walled carbon nanotube hybrid nanostructures. Anal Chem. 2009. 81(17). 7271-7280. 18. Yarulin A, R Crespo-Quesada, E Egorova, L Kiwi-Minsker. Structure sensitivity of selective acetylene hydrogenation over the catalysts with shape-controlled palladium nanoparticles. Kinet Catal. 2012. 53(2). 253-261. 19. Sawangphruk M, A Krittayavathananon, N Chinwipas, P Srimuk, T Vatanatham, S Limtrakul, J Foord. Ultraporous Palladium Supported on Graphene‐Coated Carbon Fiber Paper as a Highly Active Catalyst Electrode for the Oxidation of Methanol. Fuel Cells. 2013. 13(5). 881-888. 20. Shiraz H G and M G Shiraz. Palladium nanoparticle and decorated carbon nanotube for electrochemical hydrogen storage. Int J Hydrogen Energy. 2017. 42(16). 11528-11533. 21. Surmiak S K, C Doerenkamp, P Selter, M Peterlechner, A H Schäfer, H Eckert, A Studer. Palladium Nanoparticle Loaded Bifunctional Silica Hybrid Material: Preparation and Applications as Catalyst in Hydrogenation Reactions. Chem Eur J. 2017. 23(25). 6019-6028. 22. Veisi H, A Sedrpoushan, S Hemmati. Palladium supported on diaminoglyoxime‐functionalized Fe3O4 nanoparticles as a magnetically separable nanocatalyst in Heck coupling reaction. Appl Organomet Chem. 2015. 29(12). 825-828. 23. Johnston D A, M F Cardosi, D H Vaughan. The electrochemistry of hydrogen peroxide on evaporated gold/palladium composite electrodes. Manufacture and electrochemical characterization. Electroanal. 1995. 7(6). 520-526. 24. Hsu C-L, K-S Chang, J-C Kuo. Determination of hydrogen peroxide residues in aseptically packaged beverages using an amperometric sensor based on a palladium electrode. Food Control. 2008. 19(3). 223-230. 25. Zhang F, D Zhou, M Zhou. Ethanol electrooxidation on Pd/C nanoparticles in alkaline media. J Energy Chem. 2016. 25(1). 71-76. 26. Silva J C M, I C de Freitas, A O Neto, E V Spinacé, V A Ribeiro. Palladium nanoparticles supported on phosphorus-doped carbon for ethanol electro-oxidation in alkaline media. Ionics. 2018. 24(4). 1111-1119. 27. Kamarudin M, S K Kamarudin, M Masdar, W R W Daud. Direct ethanol fuel cells. Int J Hydrogen Energy. 2013. 38(22). 9438-9453. 28. Xu H, L-X Ding, C-L Liang, Y-X Tong, G-R Li. High-performance polypyrrole functionalized PtPd electrocatalysts based on PtPd/PPy/PtPd three-layered nanotube arrays for the electrooxidation of small organic molecules. NPG Asia Mater. 2013. 5(11). e69. 29. Huang X, S Tang, X Mu, Y Dai, G Chen, Z Zhou, F Ruan, Z Yang, N Zheng. Freestanding palladium nanosheets with plasmonic and catalytic properties. Nat Nanotechnol. 2011. 6(1). 28. 30. Ghosh S, H Remita, P Kar, S Choudhury, S Sardar, P Beaunier, P S Roy, S K Bhattacharya, S K Pal. Facile synthesis of Pd nanostructures in hexagonal mesophases as a promising electrocatalyst for ethanol oxidation. J Mater Chem A. 2015. 3(18). 9517-9527. 31. Endo T, S Kawajiri, Y Kojima, K Takahashi, T Baba, S Ibaraki, T Takahashi, M Shinohara, Study on maximizing exergy in automotive engines. 2007, SAE Technical Paper. 32. Yan F, L Xu, Y Wang. Application of hydrogen enriched natural gas in spark ignition IC engines: from fundamental fuel properties to engine performances and emissions. Renew Sust Energ Rev. 2017. 33. Sharaf O Z and M F Orhan. An overview of fuel cell technology: Fundamentals and applications. Renew Sust Energ Rev. 2014. 32. 810-853. 34. Yüksel F and B Yüksel. The use of ethanol–gasoline blend as a fuel in an SI engine. Renew Energ. 2004. 29(7). 1181-1191. 35. Kwanchareon P, A Luengnaruemitchai, S Jai-In. Solubility of a diesel–biodiesel–ethanol blend, its fuel properties, and its emission characteristics from diesel engine. Fuel. 2007. 86(7-8). 1053-1061. 36. Papagiannakis R and D Hountalas. Combustion and exhaust emission characteristics of a dual fuel compression ignition engine operated with pilot diesel fuel and natural gas. Energy Convers Manage. 2004. 45(18-19). 2971-2987. 37. Longwell J P, E S Rubin, J Wilson. Coal: energy for the future. Prog Energy Combust Sci. 1995. 21(4). 269-360. 38. Zhou L. Progress and problems in hydrogen storage methods. Renew Sust Energ Rev. 2005. 9(4). 395-408. 39. Lamy C, E Belgsir, J Leger. Electrocatalytic oxidation of aliphatic alcohols: application to the direct alcohol fuel cell (DAFC). J Appl Electrochem. 2001. 31(7). 799-809. 40. Cerritos R C, M Guerra-Balcázar, R F Ramírez, J Ledesma-García, L G Arriaga. Morphological effect of Pd catalyst on ethanol electro-oxidation reaction. Materials. 2012. 5(9). 1686-1697. 41. Demirbas A. Political, economic and environmental impacts of biofuels: A review. Appl Energy. 2009. 86. S108-S117. 41. C. Manochioa, B.R. Andradea, R.P. Rodrigueza, B.S. Moraesb. Ethanol from biomass: A comparative overview. Renew Sust Energ Rev. 2017. 80. 743-755. 42. Demirbas A. Political, economic and environmental impacts of biofuels: A review. Appl Energy. 2009. 86. S108-S117. 43. Huang W, X Y Ma, H Wang, R Feng, J Zhou, P N Duchesne, P Zhang, F Chen, N Han, F Zhao. Promoting Effect of Ni(OH)2 on Palladium Nanocrystals Leads to Greatly Improved Operation Durability for Electrocatalytic Ethanol Oxidation in Alkaline Solution. Adv Mater. 2017. 29(37). 1703057. 44. Bianchini C and P K Shen. Palladium-based electrocatalysts for alcohol oxidation in half cells and in direct alcohol fuel cells. Chem Rev. 2009. 109(9). 4183-4206. 45. Ma L, D Chu, R Chen. Comparison of ethanol electro-oxidation on Pt/C and Pd/C catalysts in alkaline media. Int J Hydrogen Energy. 2012. 37(15). 11185-11194. 46. Monošík R, M Streďanský, E Šturdík. Biosensors-classification, characterization and new trends. Acta Chim Slov. 2012. 5(1). 109-120. 47. Luo X, A Morrin, A J Killard, M R Smyth. Application of nanoparticles in electrochemical sensors and biosensors. Electroanal. 2006. 18(4). 319-326. 48. Ali J, J Najeeb, M A Ali, M F Aslam, A Raza. Biosensors: their fundamentals, designs, types and most recent impactful applications: a review. J Biosens Bioelectron. 2017. 8(235). 2. 49. Clark Jr L C and C Lyons. Electrode systems for continuous monitoring in cardiovascular surgery. Ann NY Acad Sci. 1962. 102(1). 29-45. 50. Morrison D W, M R Dokmeci, U Demirci, A Khademhosseini. Clinical applications of micro-and nanoscale biosensors. Biomedical nanostructures. 2008. 1. 433-458. 51. Perumal V and U Hashim. Advances in biosensors: Principle, architecture and applications. J Appl Biomed. 2014. 12(1). 1-15. 52. Collings A and F Caruso. Biosensors: recent advances. Rep Prog Phys. 1997. 60(11). 1397. 53. Thevenot D R, K Toth, R A Durst, G S Wilson. Electrochemical biosensors: recommended definitions and classification. Pure Appl Chem. 1999. 71(12). 2333-2348. 54. Bakker E. Electrochemical sensors. Anal Chem. 2004. 76. 3285-3298. 55. Liang Z, T Zhao, J Xu, L Zhu. Mechanism study of the ethanol oxidation reaction on palladium in alkaline media. Electrochim Acta. 2009. 54(8). 2203-2208. 56. Lavoie N, P R Malenfant, F M Courtel, Y Abu-Lebdeh, I J Davidson. High gravimetric capacity and long cycle life in Mn3O4/graphene platelet/LiCMC composite lithium-ion battery anodes. J Power Sources. 2012. 213. 249-254. 57. Yuan C-J, C-L Wang, T Y Wu, K-C Hwang, W-C Chao. Fabrication of a carbon fiber paper as the electrode and its application toward developing a sensitive unmediated amperometric biosensor. Biosens Bioelectron. 2011. 26(6). 2858-2863. 58. Yang J, C Tian, L Wang, H Fu. An effective strategy for small-sized and highly-dispersed palladium nanoparticles supported on graphene with excellent performance for formic acid oxidation. J Mater Chem. 2011. 21(10). 3384-3390. 59. Diculescu V C, A-M Chiorcea-Paquim, O Corduneanu, A M Oliveira-Brett. Palladium nanoparticles and nanowires deposited electrochemically: AFM and electrochemical characterization. J Solid State Eelectr. 2007. 11(7). 887-898. 60. Aziz M A and A-N Kawde. Nanomolar amperometric sensing of hydrogen peroxide using a graphite pencil electrode modified with palladium nanoparticles. Microchim Acta. 2013. 180(9-10). 837-843. 61. Karuppiah C, S Palanisamy, S-M Chen. An ultrahigh selective and sensitive enzyme-free hydrogen peroxide sensor based on palladium nanoparticles and nafion-modified electrode. Electrocatalysis-US. 2014. 5(2). 177-185. 62. Nguyen S T, H M L Promoting Effect of Ni(OH)2 on Palladium Nano aw, H T Nguyen, N Kristian, S Wang, S H Chan, X Wang. Enhancement effect of Ag for Pd/C towards the ethanol electro-oxidation in alkaline media. Appl Catal B. 2009. 91(1-2). 507-515. 63. Thotiyl M O, T R Kumar, S Sampath. Pd supported on titanium nitride for efficient ethanol oxidation. J Phys Chem C. 2010. 114(41). 17934-17941. 64. Prabhuram J, R Manoharan, H Vasan. Effects of incorporation of Cu and Ag in Pd on electrochemical oxidation of methanol in alkaline solution. J Appl Electrochem. 1998. 28(9). 935-941. 65. Grdeń M and A Czerwiński. EQCM studies on Pd–Ni alloy oxidation in basic solution. J Solid State Eelectr. 2008. 12(4). 375. 66. Lee J-W, S-I Pyun, S Filipek. The kinetics of hydrogen transport through amorphous Pd82− yNiySi18 alloys (y= 0–32) by analysis of anodic current transient. Electrochim Acta. 2003. 48(11). 1603-1611. 67. Jeong M C, C H Pyun, I H Yeo. Voltammetric studies on the palladium oxides in alkaline media. J Electrochem Soc. 1993. 140(7). 1986-1989. 68. Yang G, Y Zhou, H-B Pan, C Zhu, S Fu, C M Wai, D Du, J-J Zhu, Y Lin. Ultrasonic-assisted synthesis of Pd–Pt/carbon nanotubes nanocomposites for enhanced electro-oxidation of ethanol and methanol in alkaline medium. Ultrason Sonochem. 2016. 28. 192-198. 69. Bin D, B Yang, K Zhang, C Wang, J Wang, J Zhong, Y Feng, J Guo, Y Du. Design of PdAg hollow nanoflowers through galvanic replacement and their application for ethanol electrooxidation. Chem Eur J. 2016. 22(46). 16642-16647. 70. Lin C H. Study on the effect of electrodeposited gold and palladium nanoparticles to the electrochemical properties of carbon fiber paper electrode. NCTU. Master’s Thesis of Institute of Molecular Medicine and Bioengineering. 2014. 71. Yazdan-Abad M Z, M Noroozifar, A Nafiseh, R A Modarresi-Alam, H Saravani. Pd nanonetwork decorated on the rGO as a high-performance electrocatalyst for ethanol oxidation. Appl Surf Sci. 2018. 462. 112-117. 72. Liu J, Z Luo, J Li, X Yu, J Llorca, D Nasiou, J Arbiol, M Meyns, A Cabot. Graphene-supported palladium phosphide PdP2 nanocrystals for ethanol electrooxidation. Appl Catal B. 2019. 242. 258-266. 73. Yang G, Y Zhou, H B Pan, C Zhu, S Fu, C M Wai, D Du, J J Zhu, Y Lin. Ultrasonic- assisted synthesis of Pd-Pt/carbon nanotubes nanocomposites for enhanced electro-oxidation of ethanol and methanol in alkaline medium. Ultrason Sonochem. 2016. 28. 192-198. 74. Li S, J Ma, H Huo, J Jin, J Ma, H Yang. Ionic liquids-noncovalently functionalized multi-walled carbon nanotubes decorated with palladium nanoparticles: A promising electrocatalyst for ethanol electrooxidation. Int J Hydrogen Energ. 2016. 41. 12358-12368. 75. Carvalho L L, A A Tanaka, F Colmati. Palladium-platinum electrocatalysts for the ethanol oxidation reaction: comparison of electrochemical activities in acid and alkaline media. J Solid State Electr. 2018. 22. 1471-1481. 76. Hu C, W Xin. Highly dispersed palladium nanoparticles on commercial carbon black with significantly high electro-catalytic activity for methanol and ethanol oxidation. Int J Hydrogen Energ. 2015. 40(36). 12382-12391. 77. Li Z, R Lin, Z Liu, D Li, H Wang, Q Li. Novel graphitic carbon nitride/graphite carbon/palladium nanocomposite as a high-performance electrocatalyst for the ethanol oxidation reaction. Electrochim Acta. 2016. 191. 606-615. 78. Guo J, R Chen, F C Zhu, S G Sun, H M Villullas. New Understandings of Ethanol Oxidation Reaction Mechanism on Pd/C and Pd2Ru/C Catalysts in Alkaline Direct Ethanol Fuel Cells. Appl Catal B-Environ. 2018. 224. 602-611. 79. Chen H, Z Xing, S Zhu, L Zhang, Q Chang, J Huang, W B Cai, N Kang, C J Zhong, M Shao. Palladium modified gold nanoparticles as electrocatalysts for ethanol electrooxidation. J Power Sources. 2016. 321. 264-269. 80. Sawangphruk M, A Krittayavathananon, N Chinwipasa. Ultraporous palladium on flexible graphene-coated carbon fiber paper as high-performance electro-catalysts for the electro-oxidation of ethanol. J Mater Chem A. 2013. 1. 1030.
|