跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/12/19 20:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:裴宏原
研究生(外文):Pei, Hong-Yuan
論文名稱:電沉積奈米鈀在碳纖維紙電極上的研究與應用
論文名稱(外文):The applications of electrodeposited palladium nanoparticles on carbon fiber paper electrode
指導教授:袁俊傑袁俊傑引用關係
指導教授(外文):Yuan, Chiun-Jye
口試委員:袁俊傑廖光文楊裕雄
口試委員(外文):Yuan, Chiun-JyeLiao, Kuang-WenYang, Yu-Syong
口試日期:2019-07-01
學位類別:碩士
校院名稱:國立交通大學
系所名稱:分子醫學與生物工程研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:72
中文關鍵詞:奈米鈀碳纖維紙過氧化氫乙醇氧化反應
外文關鍵詞:palladium nanoparticlecarbon fiber paperhydrogen peroxideethanol oxidation reaction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:90
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
根據之前的研究發現碳纖維紙經由不同金屬奈米粒子修飾能對於許多物質有良好的催化性質,為了提升碳纖維紙的催化效果,在此研究中,利用電沉積奈米鈀的方式修飾電極改善電化學特性,加上對於此方法的條件優化並發揮催化特性感測特定物質或是參與其它反應。其中會使用循環伏安法探討電極對於過氧化氫的催化反應及其特性,氧化反應為33.26 μA。以及對於乙醇在鹼性環境中的氧化反應,催化反應峰值達到81.2 mA (541.32 mA cm-2) (68.22 mA mg-1 Pd)。並發現奈米鈀顆粒大小與分布對於不同物質的催化效果也會有影響。經由對於碳纖維紙電極的一系列標準化修飾,期望能將其應用在生物感測器或是燃料電池上。
According to the previous studies, the modification of carbon fiber paper (CFP) electrode with different metal nanoparticles demonstrates great catalytic properties toward many bioactive molecules. In this study, in order to promote the catalytic abilities of CFP, the electrodeposition of palladium nanoparticles (Pd NPs) has adopted to improve the electrochemical characteristics on the surface of CFP. The Pd-based CFP electrodes are optimized to sense or react with specified molecules. The catalytic reaction of hydrogen peroxide is explored by cyclic voltammetry (CV) and the oxidative current is 33.26 μA. In addition, the oxidation reaction of ethanol in alkaline media is also demonstrated by CV. PdNP/CFP electrode exhibits a peak current and current density of 81.2 mA and 541.32 mA cm-2 (or 68.22 mA mg-1 Pd), respectively. Moreover, the morphologies and distribution of Pd NPs on CFP are the factors to affect the catalytic properties. Through the optimal modification on the surface of CFP, we expect it could be applied in the development of biosensor and fuel cell.
Content
中文摘要 i
Abstract ii
Acknowledgement iii
Content iv
Content of Figures and Tables vi
1. Introduction 1
1-1 Carbon fiber paper as electrocatalyst support 1
1-2 Properties and application of palladium nanoparticles 1
1-3 Electrochemical biosensor 2
1-4 Direct ethanol fuel cell 3
1-4.1 Alternative fuels 3
1-4.2 Direct ethanol fuel cell 4
1-5 Motivation and purpose 5
2. Materials and Methods 7
2-1 Materials 7
2-2 Apparatus 7
2-3 Oxygen plasma treats working electrode 7
2-4 Electrodepositing palladium on the surface of carbon fiber paper electrode 7
2-5 Electrode preparation 8
2-6 Electrochemical Analysis 8
3. Results and Discussion 9
3-1 The preparation of palladium nanoparticle-deposited electrode for biosensor 9
3-1.1 The pretreatment of the electrode and electrodeposition of Pd nanoparticles
on the CFP surface 9
3-1.2 Optimization of PdNP-electrodeposited CFP electrode for redox reaction of
H2O2 9
3-2 Characterization of PdNP/CFP for biosensor 11
3-2.1 Scanning electron microscopy and energy dispersive X-ray spectrometry
(EDS) analysis of palladium nanoparticles on CFP electrodes 11
3-2.2 Thermogravimetric analysis of PdNP/CFP electrodes 11
3-3 Electrochemical response of PdNP/CFP electrodes to H2O2 12
3-4 The preparation of palladium nanoparticle-deposited electrode for fuel cell 14
3-4.1 The pretreatment of the electrode and electrodeposition of Pd nanoparticles
  on the CFP surface 14
3-4.2 Optimization of PdNP-electrodeposited CFP electrode for redox reaction of
fuel cell 14
3.5 Characterization of PdNP/CFP for fuel cell 16
3-5.1 Scanning electron microscopy and energy dispersive X-ray spectrometry
(EDS) analysis of palladium nanoparticles on CFP electrodes 16
3-5.2 Thermogravimetric analysis of PdNP/CFP electrodes 16
3-6 Electrochemical behavior of PdNP/CFP for fuel cell 16
3-6.1 Electrochemical behavior of PdNP/CFP in 1M KOH 16
3-6.2 Electrooxidation of ethanol on the PdNP/CFP electrodes 17
4. Conclusions 21
5. Future Work 22
6. References 23

Content of Figures and Tables
Figure 1. The cyclic voltammograms of CFP with or without plasma treatment in potassium phosphate buffer 32
Figure 2. Electrodeposition of palladium on the CFP electrodes 33
Figure 3. Electrochemical response of PdNP/CFP electrodes to hydrogen peroxide 34
Figure 4-A. Optimization of the electrodeposition conditions for Pd on CFP with the electrochemical response of H2O2 for biosensor: Effect of K2PdCl4 concentrations 35
Figure 4-B. Optimization of the electrodeposition conditions for Pd on CFP with the electrochemical response of H2O2 for biosensor: Effect of scanning cycles of CV 37
Figure 4-C. Optimization of the electrodeposition conditions for Pd on CFP with the electrochemical response of H2O2 for biosensor: Effect of scan rates of CV 39
Figure 4-D. Optimization of the electrodeposition conditions for Pd on CFP with the electrochemical response of H2O2 for biosensor: pH values of electroplating solution 41
Figure 5. Scanning electron microscopic images of CFP electrodes with or without plasma treatment 43
Figure 6. Scanning electron microscopic images and energy dispersive X-ray spectrometry of PdNP/CFP electrodes 44
Figure 7. Thermogravimetric analysis of PdNP/CFP electrodes in air 45
Figure 8. Electrochemical response of PdNP/CFP electrodes in potassium phosphate buffer 46
Figure 9. Electrochemical response of PdNP/CFP electrodes to hydrogen peroxide after optimized by protocol A 47
Figure 10. The effect of different pH value potassium phosphate buffer to H2O2 48
Figure 11. Scanning electron microscopic images of PdNP/CFP electrodes and electrochemical response to hydrogen peroxide and ethanol: 2 cycles 49
Figure 12. Scanning electron microscopic images of PdNP/CFP electrodes and electrochemical response to hydrogen peroxide and ethanol: 5 cycles 51
Figure 13. Scanning electron microscopic images of PdNP/CFP electrodes and electrochemical response to hydrogen peroxide and ethanol: 10 cycles 53
Figure 14. Scanning electron microscopic images of PdNP/CFP electrodes and electrochemical response to hydrogen peroxide and ethanol: 20 cycles 55
Figure 15. Scanning electron microscopic images of PdNP/CFP electrodes and electrochemical response to hydrogen peroxide and ethanol: 40 cycles 57
Figure 16. The cyclic voltammograms of ethanol oxidation reaction 59
Figure 17-A. Optimization of the electrodeposition conditions for PdNP on CFP with the electrochemical response of ethanol oxidation for fuel cell: Scan rates of CV 60
Figure 17-B. Optimization of the electrodeposition conditions for PdNP on CFP with the electrochemical response of ethanol oxidation for fuel cell: Scanning cycles of CV 62
Figure 18. Scanning electron microscopic images and energy dispersive X-ray spectrometry of PdNP/CFP electrodes 64
Figure 19. Thermogravimetric analysis of PdNP/CFP electrodes in air 65
Figure 20. Electrochemical behavior of PdNP/CFP electrodes to 1 M KOH 66
Figure 21. CV curves of PdNP/CFP electrodes in 1 M KOH with 1 M ethanol 67
Figure 22. The effect of different potential range to the oxidation of ethanol 68
Figure 23. Chronoamperometric curve of PdNP/CFP electrodes for ethanol oxidation at different potentials 69
Figure 24. The influence of acetaldehyde to ethanol oxidation in 1M KOH 70
Table 1. Energy density and price per kWh of different fuels 71
Table 2. The comparison of the performance of Pd-based carbon electrodes for ethanol oxidation in alkaline media 72
6. References
1. Mathur R, P H Maheshwari, T Dhami, R Sharma, C Sharma. Processing of carbon composite paper as electrode for fuel cell. J Power Sources. 2006. 161(2). 790-798.
2. Mathur R, P H Maheshwari, T Dhami, R Tandon. Characteristics of the carbon paper heat-treated to different temperatures and its influence on the performance of PEM fuel cell. Electrochim Acta. 2007. 52(14). 4809-4817.
3. Tiwari S and J Bijwe. Surface treatment of carbon fibers-a review. Proc Technol. 2014. 14. 505-512.
4. Ma T Y, J Ran, S Dai, M Jaroniec, S Z Qiao. Phosphorus‐Doped Graphitic Carbon Nitrides Grown In Situ on Carbon‐Fiber Paper: Flexible and Reversible Oxygen Electrodes. Angew Chem Int Ed. 2015. 54(15). 4646-4650.
5. Nakamura M, Y Hosako, H Ohashi, M Hamada, K Mihara, Porous carbon electrode material, method for manufacturing the same, and carbon fiber paper. 2004, Google Patents.
6. Huang L, D Chen, Y Ding, S Feng, Z L Wang, M Liu. Nickel–cobalt hydroxide nanosheets coated on NiCo2O4 nanowires grown on carbon fiber paper for high-performance pseudocapacitors. Nano Lett. 2013. 13(7). 3135-3139.
7. Shi J, J Chen, G Li, T An, H Yamashita. Fabrication of Au/TiO2 nanowires@ carbon fiber paper ternary composite for visible-light photocatalytic degradation of gaseous styrene. Catal Today. 2017. 281. 621-629.
8. Ye Z, T Li, G Ma, X Peng, J Zhao. Morphology controlled MnO2 electrodeposited on carbon fiber paper for high-performance supercapacitors. J Power Sources. 2017. 351. 51-57.
9. Wang X, W Li, D Xiong, D Y Petrovykh, L Liu. Bifunctional nickel phosphide nanocatalysts supported on carbon fiber paper for highly efficient and stable overall water splitting. Adv Funct Mater. 2016. 26(23). 4067-4077.
10. Du S, Z Ren, J Wu, W Xi, H Fu. Vertical α-FeOOH nanowires grown on the carbon fiber paper as a free-standing electrode for sensitive H2O2 detection. Nano Res. 2016. 9(8). 2260-2269.
11. Lin C-H, L-Y Wei, J-H Lee, C-L Lien, C-H Lu, C-J Yuan. Effect of anions on the oxidation and reduction of hydrogen peroxide on the gold nanoparticle-deposited carbon fiber paper electrode. Electrochim Acta. 2015. 180. 64-70.
12. Ge J, A Higier, H Liu. Effect of gas diffusion layer compression on PEM fuel cell performance. J Power Sources. 2006. 159(2). 922-927.
13. Park J, H Oh, Y I Lee, K Min, E Lee, J-Y Jyoung. Effect of the pore size variation in the substrate of the gas diffusion layer on water management and fuel cell performance. Appl Energy. 2016. 171. 200-212.
14. Cheng S, R E Rettew, M Sauerbrey, F M Alamgir. Architecture-dependent surface chemistry for Pt monolayers on carbon-supported Au. ACS Appl Mater Inter. 2011. 3(10). 3948-3956.
15. Shao M. Palladium-based electrocatalysts for hydrogen oxidation and oxygen reduction reactions. J Power Sources. 2011. 196(5). 2433-2444.
16. Chen A and C Ostrom. Palladium-based nanomaterials: synthesis and electrochemical applications. Chem Rev. 2015. 115(21). 11999-12044.
17. Meng L, J Jin, G Yang, T Lu, H Zhang, C Cai. Nonenzymatic electrochemical detection of glucose based on palladium− single-walled carbon nanotube hybrid nanostructures. Anal Chem. 2009. 81(17). 7271-7280.
18. Yarulin A, R Crespo-Quesada, E Egorova, L Kiwi-Minsker. Structure sensitivity of selective acetylene hydrogenation over the catalysts with shape-controlled palladium nanoparticles. Kinet Catal. 2012. 53(2). 253-261.
19. Sawangphruk M, A Krittayavathananon, N Chinwipas, P Srimuk, T Vatanatham, S Limtrakul, J Foord. Ultraporous Palladium Supported on Graphene‐Coated Carbon Fiber Paper as a Highly Active Catalyst Electrode for the Oxidation of Methanol. Fuel Cells. 2013. 13(5). 881-888.
20. Shiraz H G and M G Shiraz. Palladium nanoparticle and decorated carbon nanotube for electrochemical hydrogen storage. Int J Hydrogen Energy. 2017. 42(16). 11528-11533.
21. Surmiak S K, C Doerenkamp, P Selter, M Peterlechner, A H Schäfer, H Eckert, A Studer. Palladium Nanoparticle Loaded Bifunctional Silica Hybrid Material: Preparation and Applications as Catalyst in Hydrogenation Reactions. Chem Eur J. 2017. 23(25). 6019-6028.
22. Veisi H, A Sedrpoushan, S Hemmati. Palladium supported on diaminoglyoxime‐functionalized Fe3O4 nanoparticles as a magnetically separable nanocatalyst in Heck coupling reaction. Appl Organomet Chem. 2015. 29(12). 825-828.
23. Johnston D A, M F Cardosi, D H Vaughan. The electrochemistry of hydrogen peroxide on evaporated gold/palladium composite electrodes. Manufacture and electrochemical characterization. Electroanal. 1995. 7(6). 520-526.
24. Hsu C-L, K-S Chang, J-C Kuo. Determination of hydrogen peroxide residues in aseptically packaged beverages using an amperometric sensor based on a palladium electrode. Food Control. 2008. 19(3). 223-230.
25. Zhang F, D Zhou, M Zhou. Ethanol electrooxidation on Pd/C nanoparticles in alkaline media. J Energy Chem. 2016. 25(1). 71-76.
26. Silva J C M, I C de Freitas, A O Neto, E V Spinacé, V A Ribeiro. Palladium nanoparticles supported on phosphorus-doped carbon for ethanol electro-oxidation in alkaline media. Ionics. 2018. 24(4). 1111-1119.
27. Kamarudin M, S K Kamarudin, M Masdar, W R W Daud. Direct ethanol fuel cells. Int J Hydrogen Energy. 2013. 38(22). 9438-9453.
28. Xu H, L-X Ding, C-L Liang, Y-X Tong, G-R Li. High-performance polypyrrole functionalized PtPd electrocatalysts based on PtPd/PPy/PtPd three-layered nanotube arrays for the electrooxidation of small organic molecules. NPG Asia Mater. 2013. 5(11). e69.
29. Huang X, S Tang, X Mu, Y Dai, G Chen, Z Zhou, F Ruan, Z Yang, N Zheng. Freestanding palladium nanosheets with plasmonic and catalytic properties. Nat Nanotechnol. 2011. 6(1). 28.
30. Ghosh S, H Remita, P Kar, S Choudhury, S Sardar, P Beaunier, P S Roy, S K Bhattacharya, S K Pal. Facile synthesis of Pd nanostructures in hexagonal mesophases as a promising electrocatalyst for ethanol oxidation. J Mater Chem A. 2015. 3(18). 9517-9527.
31. Endo T, S Kawajiri, Y Kojima, K Takahashi, T Baba, S Ibaraki, T Takahashi, M Shinohara, Study on maximizing exergy in automotive engines. 2007, SAE Technical Paper.
32. Yan F, L Xu, Y Wang. Application of hydrogen enriched natural gas in spark ignition IC engines: from fundamental fuel properties to engine performances and emissions. Renew Sust Energ Rev. 2017.
33. Sharaf O Z and M F Orhan. An overview of fuel cell technology: Fundamentals and applications. Renew Sust Energ Rev. 2014. 32. 810-853.
34. Yüksel F and B Yüksel. The use of ethanol–gasoline blend as a fuel in an SI engine. Renew Energ. 2004. 29(7). 1181-1191.
35. Kwanchareon P, A Luengnaruemitchai, S Jai-In. Solubility of a diesel–biodiesel–ethanol blend, its fuel properties, and its emission characteristics from diesel engine. Fuel. 2007. 86(7-8). 1053-1061.
36. Papagiannakis R and D Hountalas. Combustion and exhaust emission characteristics of a dual fuel compression ignition engine operated with pilot diesel fuel and natural gas. Energy Convers Manage. 2004. 45(18-19). 2971-2987.
37. Longwell J P, E S Rubin, J Wilson. Coal: energy for the future. Prog Energy Combust Sci. 1995. 21(4). 269-360.
38. Zhou L. Progress and problems in hydrogen storage methods. Renew Sust Energ Rev. 2005. 9(4). 395-408.
39. Lamy C, E Belgsir, J Leger. Electrocatalytic oxidation of aliphatic alcohols: application to the direct alcohol fuel cell (DAFC). J Appl Electrochem. 2001. 31(7). 799-809.
40. Cerritos R C, M Guerra-Balcázar, R F Ramírez, J Ledesma-García, L G Arriaga. Morphological effect of Pd catalyst on ethanol electro-oxidation reaction. Materials. 2012. 5(9). 1686-1697.
41. Demirbas A. Political, economic and environmental impacts of biofuels: A review. Appl Energy. 2009. 86. S108-S117.
41. C. Manochioa, B.R. Andradea, R.P. Rodrigueza, B.S. Moraesb. Ethanol from biomass: A comparative overview. Renew Sust Energ Rev. 2017. 80. 743-755.
42. Demirbas A. Political, economic and environmental impacts of biofuels: A review. Appl Energy. 2009. 86. S108-S117.
43. Huang W, X Y Ma, H Wang, R Feng, J Zhou, P N Duchesne, P Zhang, F Chen, N Han, F Zhao. Promoting Effect of Ni(OH)2 on Palladium Nanocrystals Leads to Greatly Improved Operation Durability for Electrocatalytic Ethanol Oxidation in Alkaline Solution. Adv Mater. 2017. 29(37). 1703057.
44. Bianchini C and P K Shen. Palladium-based electrocatalysts for alcohol oxidation in half cells and in direct alcohol fuel cells. Chem Rev. 2009. 109(9). 4183-4206.
45. Ma L, D Chu, R Chen. Comparison of ethanol electro-oxidation on Pt/C and Pd/C catalysts in alkaline media. Int J Hydrogen Energy. 2012. 37(15). 11185-11194.
46. Monošík R, M Streďanský, E Šturdík. Biosensors-classification, characterization and new trends. Acta Chim Slov. 2012. 5(1). 109-120.
47. Luo X, A Morrin, A J Killard, M R Smyth. Application of nanoparticles in electrochemical sensors and biosensors. Electroanal. 2006. 18(4). 319-326.
48. Ali J, J Najeeb, M A Ali, M F Aslam, A Raza. Biosensors: their fundamentals, designs, types and most recent impactful applications: a review. J Biosens Bioelectron. 2017. 8(235). 2.
49. Clark Jr L C and C Lyons. Electrode systems for continuous monitoring in cardiovascular surgery. Ann NY Acad Sci. 1962. 102(1). 29-45.
50. Morrison D W, M R Dokmeci, U Demirci, A Khademhosseini. Clinical applications of micro-and nanoscale biosensors. Biomedical nanostructures. 2008. 1. 433-458.
51. Perumal V and U Hashim. Advances in biosensors: Principle, architecture and applications. J Appl Biomed. 2014. 12(1). 1-15.
52. Collings A and F Caruso. Biosensors: recent advances. Rep Prog Phys. 1997. 60(11). 1397.
53. Thevenot D R, K Toth, R A Durst, G S Wilson. Electrochemical biosensors: recommended definitions and classification. Pure Appl Chem. 1999. 71(12). 2333-2348.
54. Bakker E. Electrochemical sensors. Anal Chem. 2004. 76. 3285-3298.
55. Liang Z, T Zhao, J Xu, L Zhu. Mechanism study of the ethanol oxidation reaction on palladium in alkaline media. Electrochim Acta. 2009. 54(8). 2203-2208.
56. Lavoie N, P R Malenfant, F M Courtel, Y Abu-Lebdeh, I J Davidson. High gravimetric capacity and long cycle life in Mn3O4/graphene platelet/LiCMC composite lithium-ion battery anodes. J Power Sources. 2012. 213. 249-254.
57. Yuan C-J, C-L Wang, T Y Wu, K-C Hwang, W-C Chao. Fabrication of a carbon fiber paper as the electrode and its application toward developing a sensitive unmediated amperometric biosensor. Biosens Bioelectron. 2011. 26(6). 2858-2863.
58. Yang J, C Tian, L Wang, H Fu. An effective strategy for small-sized and highly-dispersed palladium nanoparticles supported on graphene with excellent performance for formic acid oxidation. J Mater Chem. 2011. 21(10). 3384-3390.
59. Diculescu V C, A-M Chiorcea-Paquim, O Corduneanu, A M Oliveira-Brett. Palladium nanoparticles and nanowires deposited electrochemically: AFM and electrochemical characterization. J Solid State Eelectr. 2007. 11(7). 887-898.
60. Aziz M A and A-N Kawde. Nanomolar amperometric sensing of hydrogen peroxide using a graphite pencil electrode modified with palladium nanoparticles. Microchim Acta. 2013. 180(9-10). 837-843.
61. Karuppiah C, S Palanisamy, S-M Chen. An ultrahigh selective and sensitive enzyme-free hydrogen peroxide sensor based on palladium nanoparticles and nafion-modified electrode. Electrocatalysis-US. 2014. 5(2). 177-185.
62. Nguyen S T, H M L Promoting Effect of Ni(OH)2 on Palladium Nano aw, H T Nguyen, N Kristian, S Wang, S H Chan, X Wang. Enhancement effect of Ag for Pd/C towards the ethanol electro-oxidation in alkaline media. Appl Catal B. 2009. 91(1-2). 507-515.
63. Thotiyl M O, T R Kumar, S Sampath. Pd supported on titanium nitride for efficient ethanol oxidation. J Phys Chem C. 2010. 114(41). 17934-17941.
64. Prabhuram J, R Manoharan, H Vasan. Effects of incorporation of Cu and Ag in Pd on electrochemical oxidation of methanol in alkaline solution. J Appl Electrochem. 1998. 28(9). 935-941.
65. Grdeń M and A Czerwiński. EQCM studies on Pd–Ni alloy oxidation in basic solution. J Solid State Eelectr. 2008. 12(4). 375.
66. Lee J-W, S-I Pyun, S Filipek. The kinetics of hydrogen transport through amorphous Pd82− yNiySi18 alloys (y= 0–32) by analysis of anodic current transient. Electrochim Acta. 2003. 48(11). 1603-1611.
67. Jeong M C, C H Pyun, I H Yeo. Voltammetric studies on the palladium oxides in alkaline media. J Electrochem Soc. 1993. 140(7). 1986-1989.
68. Yang G, Y Zhou, H-B Pan, C Zhu, S Fu, C M Wai, D Du, J-J Zhu, Y Lin. Ultrasonic-assisted synthesis of Pd–Pt/carbon nanotubes nanocomposites for enhanced electro-oxidation of ethanol and methanol in alkaline medium. Ultrason Sonochem. 2016. 28. 192-198.
69. Bin D, B Yang, K Zhang, C Wang, J Wang, J Zhong, Y Feng, J Guo, Y Du. Design of PdAg hollow nanoflowers through galvanic replacement and their application for ethanol electrooxidation. Chem Eur J. 2016. 22(46). 16642-16647.
70. Lin C H. Study on the effect of electrodeposited gold and palladium nanoparticles to the electrochemical properties of carbon fiber paper electrode. NCTU. Master’s Thesis of Institute of Molecular Medicine and Bioengineering. 2014.
71. Yazdan-Abad M Z, M Noroozifar, A Nafiseh, R A Modarresi-Alam, H Saravani.
Pd nanonetwork decorated on the rGO as a high-performance electrocatalyst for ethanol oxidation. Appl Surf Sci. 2018. 462. 112-117.
72. Liu J, Z Luo, J Li, X Yu, J Llorca, D Nasiou, J Arbiol, M Meyns, A Cabot. Graphene-supported palladium phosphide PdP2 nanocrystals for ethanol electrooxidation. Appl Catal B. 2019. 242. 258-266.
73. Yang G, Y Zhou, H B Pan, C Zhu, S Fu, C M Wai, D Du, J J Zhu, Y Lin. Ultrasonic- assisted synthesis of Pd-Pt/carbon nanotubes nanocomposites for     enhanced electro-oxidation of ethanol and methanol in alkaline medium. Ultrason Sonochem. 2016. 28. 192-198.
74. Li S, J Ma, H Huo, J Jin, J Ma, H Yang. Ionic liquids-noncovalently functionalized
multi-walled carbon nanotubes decorated with palladium nanoparticles: A promising electrocatalyst for ethanol electrooxidation. Int J Hydrogen Energ. 2016. 41. 12358-12368.
75. Carvalho L L, A A Tanaka, F Colmati. Palladium-platinum electrocatalysts for the ethanol oxidation reaction: comparison of electrochemical activities in acid and alkaline media. J Solid State Electr. 2018. 22. 1471-1481.
76. Hu C, W Xin. Highly dispersed palladium nanoparticles on commercial carbon black with significantly high electro-catalytic activity for methanol and ethanol oxidation. Int J Hydrogen Energ. 2015. 40(36). 12382-12391.
77. Li Z, R Lin, Z Liu, D Li, H Wang, Q Li. Novel graphitic carbon nitride/graphite carbon/palladium nanocomposite as a high-performance electrocatalyst for the ethanol oxidation reaction. Electrochim Acta. 2016. 191. 606-615.
78. Guo J, R Chen, F C Zhu, S G Sun, H M Villullas. New Understandings of Ethanol Oxidation Reaction Mechanism on Pd/C and Pd2Ru/C Catalysts in Alkaline Direct Ethanol Fuel Cells. Appl Catal B-Environ. 2018. 224. 602-611.
79. Chen H, Z Xing, S Zhu, L Zhang, Q Chang, J Huang, W B Cai, N Kang, C J Zhong, M Shao. Palladium modified gold nanoparticles as electrocatalysts for ethanol electrooxidation. J Power Sources. 2016. 321. 264-269.
80. Sawangphruk M, A Krittayavathananon, N Chinwipasa. Ultraporous palladium on flexible graphene-coated carbon fiber paper as high-performance electro-catalysts for the electro-oxidation of ethanol. J Mater Chem A. 2013. 1. 1030.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top