跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2026/01/13 21:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李佑全
研究生(外文):You-chang Li
論文名稱:具有自我成形式選擇器之電阻式記憶體
論文名稱(外文):Study on Resistance Random Access Memory with Self-formed Selector
指導教授:蔡宗鳴
指導教授(外文):Tsung-Ming Tsai
學位類別:碩士
校院名稱:國立中山大學
系所名稱:材料與光電科學學系研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:75
中文關鍵詞:電阻式記憶體選擇器自我形成互補式電阻切換記憶體崩潰電流內嵌切換層
外文關鍵詞:self-formedRRAMembedment resistive layergadoliniumvarying forming current complianceomplementary resistive switchingselector
相關次數:
  • 被引用被引用:0
  • 點閱點閱:256
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
非揮發式記憶體已經在現在生活中無所不在,消費性電子產品中處處可見,而Flash記憶體有著與既有製程相符的優點,但也有著存取速度過慢及尺寸微縮的極限,無法真正取代SRAM或是DRAM,導致電子產品發展受到局限,也促使次世代非揮發性記憶體研究。
本論文是對次世代非揮發性記憶體中最被看好的電阻式記憶體進行元件改善,利用內嵌二氧化矽層使得可控制氧離子含量增加,並且利用Pt/ZnO/TiN與Pt/ZnO/SiO2/ZnO/TiN元件比較,釐清內嵌二氧化矽層後造成傳導機制改變,透過改變崩潰電流,提高可控制氧離子數,改變此元件操作端,而自我形成互補式電阻切換記憶體特性(Complementary resistive switches, CRS)。也經由可靠度測試得知內嵌二氧化矽層後,使其元件特性提升。
於內嵌二氧化矽層中摻雜高氧化數的過渡金屬釓後,使得二氧化矽層中含氧量大幅提高,可控制元件極性方向,更可使其產生多層堆疊互補式切換特性(CRS)特性,避免潛行電流產生。
利用Pt/ZnO/Gd:SiO2/ZnO/TiN元件與使用原子層氣相沉積氧化鉿薄膜堆疊後,形成Pt/ZnO/Gd:SiO2/ZnO/HfO2/TiN元件,在大電場作用下,因阻絲於氧化鋅層作用,阻絲與氧化鋅層接近歐姆傳導,因此本元件由氧化鉿層主導傳導機制,可自我形成選擇器,使得大電場發生穿隧傳導機制,且在回掃電壓時電流有急遽下降的現象,將其結果應用於元件上後,成功使其元件on/off ratio上升,增加記憶窗口。
This paper is surrounded by silicon oxide layer embedment in switching layer in resistive random access memory (RRAM).
First use of multi-target magnetron sputtering system making silicon oxide films embedment in ZnO/TiN and covered Pt with top electrode. Materials analysis find that the structure have embedment silicon oxide layer. Through compare measurement in electrical with have embedment silicon oxide layer (Pt/ZnO/SiO2/ZnO/TiN) and single layer (Pt/ZnO/TiN). And further found that self-formed complementary resistive switching behavior induced by varying forming current compliance. The embedment silicon oxide layer can promote reliability of random access memory.
Then use multi-target magnetron sputtering system doped inner transition element (Gd) in silicon oxide films (Pt/ZnO/Gd:SiO2/ZnO/TiN). Through vary current compliance can find four type I-V curve. It’s presumably due to Gd’s outer space has higher orbital. And further found that asymmetric current compliance will change the resistance and polarity direction. In the phenomenon can emergence of complementary resistive switching (CRS) characteristics.
Use Plasma-Enhanced Atomic Layer Deposition System making Hafnium oxide films that pile up (Pt/ZnO/Gd:SiO2/ZnO/HfO2/TiN). Through measurement in electrical can find that use Current-Voltage Fitting and found that reset characteristics operation on tunneling in strong electric field. Different device cross reference to find that behavior is zinc oxide and hafnium oxide interface occur Tunneling. This device has self-formed Selector.
[ 論文審定書 + i ]
[ 論文公開授權書 + ii ]
[ 誌謝 + iii ]
[ 中文摘要 + iv ]
[ Abstract + v ]
[ 目錄 + vii
[ 圖目錄 + ix ]
[ 第一章 序論 + 1 ]
[ 1-1前言 + 1 ]
[ 1-2研究目的與動機 + 2 ]
[ 第二章 文獻回顧 + 3 ]
[ 2-1 記憶體發展及簡介 + 3 ]
[ 2-1-1鐵電式記憶體(FeRAM) + 3 ]
[ 2-1-2磁阻式記憶體(MRAM) + 4 ]
[ 2-1-3相變化記憶體(PCRAM) + 5 ]
[ 2-1-4電阻式記憶體(RRAM) + 6 ]
[ 2-2電阻式記憶體切換機制 + 9 ]
[ 2-2-1阻絲理論(Filament theory) + 9 ]
[ 2-2-2互補式電阻切換記憶體 (Complementary resistive switches, CRS) + 10 ]
[ 2-3絕緣體載子傳導機制 + 12 ]
[ 2-3-1歐姆傳導(Ohmic Conduction) + 13 ]
[ 2-3-2蕭基發射(Schottky emission) + 14 ]
[ 2-3-3普爾-法蘭克發射( Poole-Frenkel emission) + 15 ]
[ 2-3-4跳躍傳導(Hopping Conduction) + 16 ]
[ 2-3-5穿隧(Tunneling) + 17 ]
[ 第三章 實驗設備與原理 + 18 ]
[ 3-1多靶磁控濺鍍系統( Multi-Target Sputter) + 18 ]
[ 3-2 N&;K薄膜特性分析儀(N &; K analyzer) + 19 ]
[ 3-3 傅立葉轉換紅外光譜儀 (Fourier-Transform Infrared Spectrometer) + 19 ]
[ 3-4 X光光電子能譜儀(X-ray Photoelectron Spectroscopy) + 21 ]
[ 3-5電性量測系統 + 22 ]
[ 第四章內嵌二氧化矽層對元件特性影響比較 + 24 ]
[ 4-1 氧化鋅薄膜及氧化鋅內嵌二氧化矽薄膜電阻式記憶體製作流程 + 24 ]
[ 4-1-1氧化鋅薄膜備製 + 26 ]
[ 4-1-2 內嵌二氧化矽薄膜備製 + 26 ]
[ 4-1-3 白金上電極備製 + 27 ]
[ 4-2氧化鋅及二氧化矽薄膜材料分析 + 28 ]
[ 2004/2/1 + Mid-FTIR化學定性分析 ]
[ 2004/2/2 + XPS化學定量分析 ]
[ 4-3氧化鋅薄膜及氧化鋅內嵌二氧化矽薄膜元件電性分析比較 + 30 ]
[ 4-3-1氧化鋅薄膜元件I-V特性 + 30 ]
[ 4-3-2 氧化鋅薄膜元件電流傳導機制及模型建立 + 32 ]
[ 4-3-3氧化鋅內嵌氧化矽薄膜元件I-V特性及模型建立 + 33 ]
[ 4-3-4氧化鋅內嵌二氧化矽薄膜元件電流傳導機制及模型建立 + 33 ]
[ 4-4崩潰電流限流控制互補式電阻式記憶體傳導機制[33] + 35 ]
[ 4-4-1比較不同崩潰電流對氧化鋅內嵌二氧化矽層電阻式記憶體元件特性 + 35 ]
[ 4-4-2不同崩潰電流對氧化鋅內嵌二氧化矽層電阻式記憶體I-V特性之模型 + 36 ]
[ 4-5氧化鋅薄膜及氧化鋅內嵌二氧化矽薄膜元件可靠度比較 + 37 ]
[ 4-5-1元件穩定與可靠度比較 + 37 ]
[ 第五章 內嵌富氧二氧化矽元件互補式電阻式記憶體特性 + 40 ]
[ 5-1 氧化鋅薄膜及氧化鋅內嵌釓金屬摻雜二氧化矽薄膜電阻式記憶體製作流程 + 40 ]
[ 5-1-1氧化鋅薄膜備製 + 41 ]
[ 5-1-2 釓金屬摻雜二氧化矽薄膜備製 + 41 ]
[ 5-1-3 白金上電極備製 + 42 ]
[ 5-2釓金屬摻雜二氧化矽內嵌氧化鋅薄膜材料分析 + 43 ]
[ 5-2-1 Mid-FTIR化學定性分析 + 43 ]
[ 5-2-1 XPS化學定量分析 + 44 ]
[ 5-3釓金屬摻雜二氧化矽內嵌氧化鋅薄膜元件電性分析 + 46 ]
[ 5-3-1釓金屬摻雜二氧化矽內嵌氧化鋅薄膜元件I-V特性 + 46 ]
[ 5-3-2 釓金屬摻雜二氧化矽內嵌氧化鋅薄膜元件電流傳導機制及模型建立 + 48 ]
[ 第六章 原子層氣相沉積氧化鉿薄膜對元件特性影響 + 50 ]
[ 6-1 氧化鋅薄膜、氧化鋅內嵌釓金屬摻雜二氧化矽薄膜及原子層氣相沉積氧化鉿薄膜電阻式記憶體製作流程 + 50 ]
[ 6-2具有原子層氣相沉積氧化鉿薄膜之Pt/ZnO/Gd:SiO2/ZnO/HfO2/TiN元件電性分析 + 51 ]
[ 6-2-1元件I-V特性 + 51 ]
[ 6-3原子層氣相沉積氧化鉿薄膜之四層堆疊結構元件傳導機制比較及模型建立 + 54 ]
[ 6-3-1具有原子層氣相沉積氧化鉿薄膜之四層堆疊結構元件傳導機制比較 + 54 ]
[ 6-3-2具有原子層氣相沉積氧化鉿薄膜之四層推疊結構元件電流擬合機制分析及模型建立 + 55 ]
[ 第七章 結論 + 58 ]
[1]A. Fazio, "Flash memory scaling," MRS bulletin, vol. 29, pp. 814-817, 2004.
[2]G. Meijer, "Who wins the nonvolatile memory race?," Science, vol. 319, pp. 1625-1626, 2008.
[3]R. Cowburn, "Superparamagnetism and the future of magnetic random access memory," Journal of applied physics, vol. 93, pp. 9310-9315, 2003.
[4]S. Lai, "Current status of the phase change memory and its future," in Electron Devices Meeting, 2003. IEDM''03 Technical Digest. IEEE International, 2003, pp. 10.1. 1-10.1. 4.
[5]G. Fox, F. Chu, and T. Davenport, "Current and future ferroelectric nonvolatile memory technology," Journal of Vacuum Science &; Technology B, vol. 19, pp. 1967-1971, 2001.
[6]R. Waser, R. Dittmann, G. Staikov, and K. Szot, "Redox‐based resistive switching memories–nanoionic mechanisms, prospects, and challenges," Advanced Materials, vol. 21, pp. 2632-2663, 2009.
[7]J.-C. Wang, Y.-R. Ye, J.-S. Syu, P.-R. Wu, C.-I. Wu, P.-S. Wang, et al., "Low-power and high-reliability gadolinium oxide resistive switching memory with remote ammonia plasma treatment," Japanese Journal of Applied Physics, vol. 52, p. 04CD07, 2013.
[8]施志承, "氧化鋅薄膜電阻式記憶體製備及於環境操作切換機制之研究," 碩士, 高雄師範大學.
[9]D. A. Buck, "Ferroelectrics for digital information storage and switching," MIT Digital Computer Laboratory1952.
[10]R. Jones, P. Maniar, R. Moazzami, P. Zurcher, J. Witowski, Y. Lii, et al., "Ferroelectric non-volatile memories for low-voltage, low-power applications," Thin Solid Films, vol. 270, pp. 584-588, 1995.
[11]S. Parkin, K. Roche, M. Samant, P. Rice, R. Beyers, R. Scheuerlein, et al., "Exchange-biased magnetic tunnel junctions and application to nonvolatile magnetic random access memory," Journal of Applied Physics, vol. 85, pp. 5828-5833, 1999.
[12]T. Kishi, H. Yoda, T. Kai, T. Nagase, E. Kitagawa, M. Yoshikawa, et al., "Lower-current and fast switching of a perpendicular TMR for high speed and high density spin-transfer-torque MRAM," in Electron Devices Meeting, 2008. IEDM 2008. IEEE International, 2008, pp. 1-4.
[13]S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner, Y.-C. Chen, R. M. Shelby, et al., "Phase-change random access memory: A scalable technology," IBM Journal of Research and Development, vol. 52, pp. 465-479, 2008.
[14]K. Hsieh, "The Current progress of NVM," Macronix International Co, 2011.
[15]A. Chen, S. Haddad, Y. Wu, Z. Lan, T. Fang, and S. Kaza, "Switching characteristics of Cu2O metal-insulator-metal resistive memory," Applied Physics Letters, vol. 91, p. 3517, 2007.
[16]K. M. Kim, B. J. Choi, and C. S. Hwang, "Localized switching mechanism in resistive switching of atomic-layer-deposited TiO 2 thin films," Applied physics letters, vol. 90, pp. 242906-242906-3, 2007.
[17]T.-J. Chu, T.-C. Chang, T.-M. Tsai, H.-H. Wu, J.-H. Chen, K.-C. Chang, et al., "Charge quantity influence on resistance switching characteristic during forming process," Electron Device Letters, IEEE, vol. 34, pp. 502-504, 2013.
[18]W. Zhang, Y. Hu, T.-C. Chang, T.-M. Tsai, K.-C. Chang, H.-L. Chen, et al., "Mechanism of triple ions effect in GeSO resistance random access memory," 2015.
[19]K.-C. Chang, T.-M. Tsai, T.-C. Chang, H.-H. Wu, J.-H. Chen, Y.-E. Syu, et al., "Characteristics and mechanisms of silicon-oxide-based resistance random access memory," Electron Device Letters, IEEE, vol. 34, pp. 399-401, 2013.
[20]K.-C. Chang, T.-C. Chang, T.-M. Tsai, R. Zhang, Y.-C. Hung, Y.-E. Syu, et al., "Physical and chemical mechanisms in oxide-based resistance random access memory," Nanoscale research letters, vol. 10, pp. 1-27, 2015.
[21]K. P. Biju, X. Liu, J. Shin, I. Kim, S. Jung, M. Siddik, et al., "Highly asymmetric bipolar resistive switching in solution-processed Pt/TiO 2/W devices for cross-point application," Current Applied Physics, vol. 11, pp. S102-S106, 2011.
[22]M. Rozenberg, I. Inoue, and M. Sanchez, "Nonvolatile memory with multilevel switching: a basic model," Physical review letters, vol. 92, p. 178302, 2004.
[23]K.-C. Chang, R. Zhang, T.-C. Chang, T.-M. Tsai, T.-J. Chu, H.-L. Chen, et al., "High performance, excellent reliability multifunctional graphene oxide doped memristor achieved by self-protect ive compliance current structure," in Electron Devices Meeting (IEDM), 2014 IEEE International, 2014, pp. 33.3. 1-33.3. 4.
[24]M.-J. Lee, C. B. Lee, D. Lee, S. R. Lee, M. Chang, J. H. Hur, et al., "A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5− x/TaO2− x bilayer structures," Nature materials, vol. 10, pp. 625-630, 2011.
[25]S. Yu, B. Gao, Z. Fang, H. Yu, J. Kang, and H. S. P. Wong, "A Low Energy Oxide‐Based Electronic Synaptic Device for Neuromorphic Visual Systems with Tolerance to Device Variation," Advanced Materials, vol. 25, pp. 1774-1779, 2013.
[26]A. Sawa, "Resistive switching in transition metal oxides," Materials today, vol. 11, pp. 28-36, 2008.
[27]J. Y. Chen, C. L. Hsin, C. W. Huang, C. H. Chiu, Y. T. Huang, S. J. Lin, et al., "Dynamic Evolution of Conducting Nanofilament in Resistive Switching Memories," Nano Letters, vol. 13, pp. 3671-3677, Aug 2013.
[28]S.-G. Park, M. K. Yang, H. Ju, D.-J. Seong, J. M. Lee, E. Kim, et al., "A non-linear ReRAM cell with sub-1μA ultralow operating current for high density vertical resistive memory (VRRAM)," in Electron Devices Meeting (IEDM), 2012 IEEE International, 2012, pp. 20.8. 1-20.8. 4.
[29]E. Linn, R. Rosezin, C. Kugeler, and R. Waser, "Complementary resistive switches for passive nanocrossbar memories," Nature Materials, vol. 9, pp. 403-406, May 2010.
[30]H. S. P. Wong, H. Y. Lee, S. M. Yu, Y. S. Chen, Y. Wu, P. S. Chen, et al., "Metal-Oxide RRAM," Proceedings of the Ieee, vol. 100, pp. 1951-1970, Jun 2012.
[31]S. M. Sze and K. K. Ng, Physics of semiconductor devices: John Wiley &; Sons, 2006.
[32]S. Vahur, A. Teearu, and I. Leito, "ATR-FT-IR spectroscopy in the region of 550–230cm− 1 for identification of inorganic pigments," Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 75, pp. 1061-1072, 2010.
[33]Y.-T. Tseng, T.-M. Tsai, T.-C. Chang, C.-C. Shih, K.-C. Chang, R. Zhang, et al., "Complementary resistive switching behavior induced by varying forming current compliance in resistance random access memory," Applied Physics Letters, vol. 106, p. 213505, 2015.
[34]彭湘詒, "氧離子吸附層於電阻式記憶體切換特性之機制研究," 中山大學材料與光電科學學系研究所學位論文, pp. 1-101, 2014.
[35]H. Guo, X. Yang, T. Xiao, W. Zhang, L. Lou, and J. Mugnier, "Structure and optical properties of sol–gel derived Gd 2 O 3 waveguide films," Applied Surface Science, vol. 230, pp. 215-221, 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊