[1]A. Fazio, "Flash memory scaling," MRS bulletin, vol. 29, pp. 814-817, 2004.
[2]G. Meijer, "Who wins the nonvolatile memory race?," Science, vol. 319, pp. 1625-1626, 2008.
[3]R. Cowburn, "Superparamagnetism and the future of magnetic random access memory," Journal of applied physics, vol. 93, pp. 9310-9315, 2003.
[4]S. Lai, "Current status of the phase change memory and its future," in Electron Devices Meeting, 2003. IEDM''03 Technical Digest. IEEE International, 2003, pp. 10.1. 1-10.1. 4.
[5]G. Fox, F. Chu, and T. Davenport, "Current and future ferroelectric nonvolatile memory technology," Journal of Vacuum Science &; Technology B, vol. 19, pp. 1967-1971, 2001.
[6]R. Waser, R. Dittmann, G. Staikov, and K. Szot, "Redox‐based resistive switching memories–nanoionic mechanisms, prospects, and challenges," Advanced Materials, vol. 21, pp. 2632-2663, 2009.
[7]J.-C. Wang, Y.-R. Ye, J.-S. Syu, P.-R. Wu, C.-I. Wu, P.-S. Wang, et al., "Low-power and high-reliability gadolinium oxide resistive switching memory with remote ammonia plasma treatment," Japanese Journal of Applied Physics, vol. 52, p. 04CD07, 2013.
[8]施志承, "氧化鋅薄膜電阻式記憶體製備及於環境操作切換機制之研究," 碩士, 高雄師範大學.[9]D. A. Buck, "Ferroelectrics for digital information storage and switching," MIT Digital Computer Laboratory1952.
[10]R. Jones, P. Maniar, R. Moazzami, P. Zurcher, J. Witowski, Y. Lii, et al., "Ferroelectric non-volatile memories for low-voltage, low-power applications," Thin Solid Films, vol. 270, pp. 584-588, 1995.
[11]S. Parkin, K. Roche, M. Samant, P. Rice, R. Beyers, R. Scheuerlein, et al., "Exchange-biased magnetic tunnel junctions and application to nonvolatile magnetic random access memory," Journal of Applied Physics, vol. 85, pp. 5828-5833, 1999.
[12]T. Kishi, H. Yoda, T. Kai, T. Nagase, E. Kitagawa, M. Yoshikawa, et al., "Lower-current and fast switching of a perpendicular TMR for high speed and high density spin-transfer-torque MRAM," in Electron Devices Meeting, 2008. IEDM 2008. IEEE International, 2008, pp. 1-4.
[13]S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner, Y.-C. Chen, R. M. Shelby, et al., "Phase-change random access memory: A scalable technology," IBM Journal of Research and Development, vol. 52, pp. 465-479, 2008.
[14]K. Hsieh, "The Current progress of NVM," Macronix International Co, 2011.
[15]A. Chen, S. Haddad, Y. Wu, Z. Lan, T. Fang, and S. Kaza, "Switching characteristics of Cu2O metal-insulator-metal resistive memory," Applied Physics Letters, vol. 91, p. 3517, 2007.
[16]K. M. Kim, B. J. Choi, and C. S. Hwang, "Localized switching mechanism in resistive switching of atomic-layer-deposited TiO 2 thin films," Applied physics letters, vol. 90, pp. 242906-242906-3, 2007.
[17]T.-J. Chu, T.-C. Chang, T.-M. Tsai, H.-H. Wu, J.-H. Chen, K.-C. Chang, et al., "Charge quantity influence on resistance switching characteristic during forming process," Electron Device Letters, IEEE, vol. 34, pp. 502-504, 2013.
[18]W. Zhang, Y. Hu, T.-C. Chang, T.-M. Tsai, K.-C. Chang, H.-L. Chen, et al., "Mechanism of triple ions effect in GeSO resistance random access memory," 2015.
[19]K.-C. Chang, T.-M. Tsai, T.-C. Chang, H.-H. Wu, J.-H. Chen, Y.-E. Syu, et al., "Characteristics and mechanisms of silicon-oxide-based resistance random access memory," Electron Device Letters, IEEE, vol. 34, pp. 399-401, 2013.
[20]K.-C. Chang, T.-C. Chang, T.-M. Tsai, R. Zhang, Y.-C. Hung, Y.-E. Syu, et al., "Physical and chemical mechanisms in oxide-based resistance random access memory," Nanoscale research letters, vol. 10, pp. 1-27, 2015.
[21]K. P. Biju, X. Liu, J. Shin, I. Kim, S. Jung, M. Siddik, et al., "Highly asymmetric bipolar resistive switching in solution-processed Pt/TiO 2/W devices for cross-point application," Current Applied Physics, vol. 11, pp. S102-S106, 2011.
[22]M. Rozenberg, I. Inoue, and M. Sanchez, "Nonvolatile memory with multilevel switching: a basic model," Physical review letters, vol. 92, p. 178302, 2004.
[23]K.-C. Chang, R. Zhang, T.-C. Chang, T.-M. Tsai, T.-J. Chu, H.-L. Chen, et al., "High performance, excellent reliability multifunctional graphene oxide doped memristor achieved by self-protect ive compliance current structure," in Electron Devices Meeting (IEDM), 2014 IEEE International, 2014, pp. 33.3. 1-33.3. 4.
[24]M.-J. Lee, C. B. Lee, D. Lee, S. R. Lee, M. Chang, J. H. Hur, et al., "A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5− x/TaO2− x bilayer structures," Nature materials, vol. 10, pp. 625-630, 2011.
[25]S. Yu, B. Gao, Z. Fang, H. Yu, J. Kang, and H. S. P. Wong, "A Low Energy Oxide‐Based Electronic Synaptic Device for Neuromorphic Visual Systems with Tolerance to Device Variation," Advanced Materials, vol. 25, pp. 1774-1779, 2013.
[26]A. Sawa, "Resistive switching in transition metal oxides," Materials today, vol. 11, pp. 28-36, 2008.
[27]J. Y. Chen, C. L. Hsin, C. W. Huang, C. H. Chiu, Y. T. Huang, S. J. Lin, et al., "Dynamic Evolution of Conducting Nanofilament in Resistive Switching Memories," Nano Letters, vol. 13, pp. 3671-3677, Aug 2013.
[28]S.-G. Park, M. K. Yang, H. Ju, D.-J. Seong, J. M. Lee, E. Kim, et al., "A non-linear ReRAM cell with sub-1μA ultralow operating current for high density vertical resistive memory (VRRAM)," in Electron Devices Meeting (IEDM), 2012 IEEE International, 2012, pp. 20.8. 1-20.8. 4.
[29]E. Linn, R. Rosezin, C. Kugeler, and R. Waser, "Complementary resistive switches for passive nanocrossbar memories," Nature Materials, vol. 9, pp. 403-406, May 2010.
[30]H. S. P. Wong, H. Y. Lee, S. M. Yu, Y. S. Chen, Y. Wu, P. S. Chen, et al., "Metal-Oxide RRAM," Proceedings of the Ieee, vol. 100, pp. 1951-1970, Jun 2012.
[31]S. M. Sze and K. K. Ng, Physics of semiconductor devices: John Wiley &; Sons, 2006.
[32]S. Vahur, A. Teearu, and I. Leito, "ATR-FT-IR spectroscopy in the region of 550–230cm− 1 for identification of inorganic pigments," Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 75, pp. 1061-1072, 2010.
[33]Y.-T. Tseng, T.-M. Tsai, T.-C. Chang, C.-C. Shih, K.-C. Chang, R. Zhang, et al., "Complementary resistive switching behavior induced by varying forming current compliance in resistance random access memory," Applied Physics Letters, vol. 106, p. 213505, 2015.
[34]彭湘詒, "氧離子吸附層於電阻式記憶體切換特性之機制研究," 中山大學材料與光電科學學系研究所學位論文, pp. 1-101, 2014.
[35]H. Guo, X. Yang, T. Xiao, W. Zhang, L. Lou, and J. Mugnier, "Structure and optical properties of sol–gel derived Gd 2 O 3 waveguide films," Applied Surface Science, vol. 230, pp. 215-221, 2004.