跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.138) 您好!臺灣時間:2025/12/07 05:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃朝晟
研究生(外文):Tsao-Cheng Huang
論文名稱:有機可溶電活性聚亞甲胺與電活性聚亞醯胺及其奈米碳管複合材料之合成與性質研究
論文名稱(外文):Preparation and Properties of Organo-Soluble Electroactive Polyazomethine and Electroactive Polyimide as well as Their Carbon Nanotube Composites
指導教授:葉瑞銘葉瑞銘引用關係吳吉輝
指導教授(外文):Jui-Ming YehChi-Phi Wu
學位類別:博士
校院名稱:中原大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:161
中文關鍵詞:電活性高分子聚亞甲胺聚亞醯胺防腐蝕電致變色
外文關鍵詞:polyazomethinespolyimidecorrosionelectrochromicelectroactive polymer
相關次數:
  • 被引用被引用:6
  • 點閱點閱:461
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以氧化偶合法合成電活性聚亞甲胺與電活性聚亞醯胺高分子及其奈米碳管複合材料為研究之方向。聚亞甲胺高分子有優越之光學性質與熱穩定特性,但傳統之聚亞甲胺高分子因溶解度差而限制其應用。為增加溶解度,文獻多合成具側鏈之聚亞甲胺高分子為主,此方法可提升聚亞甲胺之溶解度,但同時卻大大降低聚亞甲胺高分子之熱性質與導電特性。
本研究所合成之新型電活性聚亞甲胺具有良好之溶解度可溶於NMP, DMAc, DMF等溶劑,並使導電度由10-8 S/cm提升至10-4 S/cm。由TGA量測可得其熱裂解點約為530 oC,證明其熱穩定性優越,實驗同時發現經由電位控制可使電活性聚亞甲胺具有電致變色之特性。
電活性聚亞醯胺高分子則著重於防蝕特性之研究,由文獻得知聚苯胺具有防腐蝕之特性,其主因在於聚苯胺塗佈於金屬材料上,可形成鈍性氧化層並以SEM與ESCA鑑定證實。主鏈苯胺寡聚體之氧化還原特性亦可使電活性聚亞醯胺高分子具有電致變色之應用。
此外為使電活性高分子具有較高之導電特性,本文使用Friedel-Crafts acylation reaction之方式改質奈米碳管,使碳管表面帶有胺基官能基,並利用氧化偶合反應合成電活性聚亞甲胺與聚亞醯胺/奈米碳管複合材料,經由傅利葉轉換紅外線光譜儀、紫外光可見光光譜儀、循環伏特安培儀等儀器研究其電荷轉移之機制與導電性質。



Electroactive polymer (polyazomethines, polyimide) and electroactive polymer/carbon nanotube composite were synthesized through simple oxidative coupling polymerization in this thesis. Conjugated polyazomethines are interesting class of conjugated polymers containing nitrogen atoms in a polymer backbone. However, their insolubility in organic solvents usually limited their processing. To promote the solubility of polyazomethines, flexible alkyl or alkoxy side groups was synthesized on aromatic rings. All polymers synthesized from this approach were found to be soluble in common organic solvents, but conductivity of as-prepared polymers was found much lower (σ~10-8 S/cm) than those of reported polyazomethines (σ~10-4 S/cm) and sacrificing their thermal stability. This novel electroactive polyazomethines (EPA) with aniline pentamer in the main chain was found to exhibit good solubility in organic solvents, good film formation ability, high thermal stability at operational temperature of ~ 530 oC and acceptable electrical conductivity of 2.1 × 10-4 S/cm.
The aniline pentamer-based Electroactive polyimide (AP-based EPI) coating was found to exhibit enhanced corrosion protection effect on cold-rolled steel (CRS) electrodes as compared to that of corresponding non-electroactive (NEPI) coating based on a series of electrochemical measurements in 5 wt % NaCl electrolyte. Significant enhancement of corrosion protection of AP-based EPI coating on CRS electrodes as compared to NEPI counterpart might probably be attributed to the redox catalytic property of as-prepared AP-based EPI coatings, inducing the formation of passive layer of metal oxide, which was identified by Scanning electron microscopy (SEM) observation and Electron spectroscopy for chemical analysis (ESCA) studies. The electrochromic performance of AP-based EPI was investigated by electrochromic photographs and UV-visible absorption spectra.
Polymer/carbon nanotubes (CNTs) composites have been tremendous interest since CNTs first observation by Iijima. Owing to its unique properties CNTs is considered to be the ideal candidates for applications as fillers in composite materials to enhance mechanical and electrical properties. However, electroactive polymer/CNTs composites have seldom been mentioned. In this study, electroactive polymer/CNTs composites were synthesized through oxidative coupling polymerization. The conductivity of electroactive polymer/CNTs are higher than the value obtained from as-prepared electroactive polymer after doped with HCl. Fourier-transform infrared (FTIR) and UV-Vis spectra reveal that the aniline oligomer segment on the electroactive polymer could interact with CNTs. The results of cyclic voltammetry (CV) studies indicate enhanced electrochemical and charge transfer behavior of electroactive polymer /CNTs composite.



目錄
中文摘要 I
英文摘要 II
目錄 IV
圖目錄 VII
表目錄 X
第一章 導論 1
1.1導電高分子簡介 1
1.1.1基本能帶理論 2
1.1.2共軛高分子的導電理論 4
1.1.3導電高分子的聚合方式 5
1.1.4導電高分子的類型 5
1.1.5聚苯胺的簡介 6
1.1.6聚亞甲胺(Polyazomethines)之簡介 8
1.2 電活性高分子之簡介 10
1.2.1噻吩寡聚體 10
1.2.2苯胺寡聚體 12
1.2.3苯胺寡聚體文獻回顧 13
1.2.4苯胺寡聚體之電活性高分子 14
1.3聚亞醯胺簡介 18
1.3.1聚亞醯胺的種類與合成 19
1.3.2聚亞醯胺的特性 20
1.3.3聚亞醯胺之應用 21
1.4奈米碳管簡介 23
1.4.1 奈米碳管發展歷史 23
1.4.2奈米碳管之特性 27
1.4.3奈米碳管表面有機化改質分類 29
1.5高分子/奈米碳管導合材料的製備方法 35
1.6研究動機 39
1.7參考文獻 40
第二章 48
電活性聚亞甲胺共聚物之合成及性質探討 48
2.1摘要 49
2.2聚亞甲胺(Polyazomethines)之簡介 50
2.2.1合成聚亞甲胺之方法 51
2.3實驗 57
2.3.1實驗藥品 57
2.3.2實驗分析儀器 60
2.3.3實驗分析儀器之測量條件 61
2.4電活性聚亞甲胺高分子之合成 64
2.4.1亞甲胺寡聚體合成 64
2.4.2電活性聚亞甲胺合成 65
2.5鑑定 66
2.5.1亞甲胺寡聚體 66
2.5.2電活性聚亞甲胺之合成鑑定 69
2.5.3電活性聚亞甲胺溶解度與分子量之測試 72
2.5.4電活性聚亞甲胺化學氧化分析 74
2.5.5電活性聚亞甲胺之電活性測試 75
2.5.6電活性聚亞甲胺之電致變色應用 77
2.5.7電活性聚亞甲胺之熱性質分析 79
2.5.8導電度測試 80
2.6結論 81
2.7參考文獻 82
第三章 85
電活性聚亞醯胺塗料製備及其在防腐蝕與電變色之應用研究 85
3.1摘要 86
3.2有機高分子防蝕機制 86
3.3 實驗 91
3.3.1實驗藥品 91
3.3.2實驗分析儀器 93
3.4電活性聚亞醯胺之合成 95
3.4.1亞醯胺酸寡聚體合成 95
3.4.2電活性聚亞醯胺合成 96
3.5 鑑定 97
3.5.1亞醯胺寡聚體與電活性聚亞醯胺之鑑定 97
3.5.2電活性聚亞醯胺酸與聚亞醯胺之合成鑑定 100
3.5.3電活性聚亞醯胺酸溶解度與分子量之測試 101
3.5.4電活性聚亞醯胺酸之化學氧化測試 102
3.5.5電活性聚亞醯胺酸與聚亞醯胺之電活性測試 103
3.5.6電活性聚亞醯胺之防腐蝕測試 105
3.5.7鈍性氧化層之鑑定 109
3.5.8電活性聚亞醯胺之電致變色 111
3.5.9導電度測試 113
3.6結論 114
3.7參考文獻 115
第四章 117
電活性高分子/奈米碳管複合材料之合成與鑑定 117
4.1摘要 118
4.2聚苯胺/奈米碳管複合材料之簡介 118
4.3 實驗 124
4.3.1實驗藥品 124
4.4實驗 126
4.4.1奈米碳管之改質 126
4.4.2電活性聚亞醯胺/奈米碳管複合材料之合成 127
4.4.3電活性聚亞甲胺/奈米碳管複合材料之合成 128
4.5結果與討論 129
4.5.1奈米碳管之鑑定 129
4.5.1.1 奈米碳管之FTIR鑑定 129
4.5.1.2 奈米碳管之TGA鑑定 130
4.5.1.3 奈米碳管之XPS鑑定 131
4.5.2電活性聚亞醯胺/奈米碳管複合材料之鑑定 132
4.5.2.1奈米碳管SEM之鑑定 132
4.5.2.2電活性聚亞醯胺/奈米碳管之FTIR鑑定 133
4.5.2.3電活性聚亞醯胺酸/奈米碳管之UV鑑定 135
4.5.2.4電活性聚亞醯胺/奈米碳管之CV鑑定 136
4.5.2.5電活性聚亞醯胺/奈米碳管導電度鑑定 138
4.5.3電活性聚亞甲胺/奈米碳管複合材料之鑑定 139
4.5.3.1電活性聚亞甲胺/奈米碳管SEM之鑑定 140
4.5.3.2電活性聚亞甲胺/奈米碳管FTIR之鑑定 141
4.5.3.3電活性聚亞甲胺/奈米碳管UV-Vis之鑑定 142
4.5.3.4電活性聚亞甲胺/奈米碳管CV之鑑定 143
4.5.3.5電活性聚亞甲胺/奈米碳管導電度測試之鑑定 144
4.6結論 145
4.7參考文獻 146
第五章 總結與未來展望 148
5.1總結 148
5.2未來展望 150



圖目錄
圖1-1不同材料的導電度及材料屬性分界 3
圖1-2金屬、半導體和絕緣體三種不同物質的能隙與能帶圖 3
圖1-3 Polaron和Bipolaron之能帶示意圖 4
圖1-4苯胺八聚體之五種不同型式的氧化態 7
圖1-5聚苯胺的摻雜及氧化還原之四種型態變化 8
圖1-6亞甲胺歷年文獻發表分佈圖 9
圖1-7胺基封端苯胺寡聚體製備之電活性高分子 13
圖1-8縮合型聚亞醯胺 19
圖1-9加成型聚亞醯胺 20
圖1-10碳球、碳管與石墨烯之同素異形體 23
圖1-11 Iijima發表之奈米碳管單層多層結構TEM圖 24
圖1-12單層、雙層與多層奈米碳管示意圖 25
圖1-13 Schematic representation of a 2D graphite layer 26
圖1-14 armchair, zigzag and chiral structures 示意圖 26
圖1-15奈米碳管表面有機化改質分類 29
圖1-16奈米碳管之堆疊與表面缺陷示意圖 30
圖1-17單層奈米碳管有機官能化流程 31
圖1-18奈米碳管酸化之時間v.s.奈米碳管長度與羧基比例 31
圖1-19奈米碳管之管壁共價鍵官能基化 32
圖1-20奈米碳管與有機分子之π-π interactions 33
圖1-21以π-π interactions修飾奈米碳管之示意圖 33
圖1-22石墨烯修飾奈米碳管之吸附與包覆示意圖 34
圖1-23 Friedel-Crafts改質奈米碳管表面 38
圖2-1 Azomethines與Polyazomethines之歷年發表分佈圖 49
圖2-2芳香族為主鏈之聚亞甲胺高分子 53
圖2-3噻吩為主鏈之聚亞甲胺高分子 54
圖2-4 Chen及其團隊合成之聚亞甲胺高分子 54
圖2-5三苯胺合成之Donor-Acceptor聚亞甲胺高分子 55
圖2-6 Sek及其團隊合成之聚亞甲胺高分子 55
圖2-7 Niu及其團隊合成之聚亞甲胺高分子 56
圖2-8 Zhu及其團隊合成之線鏈型與分支型聚亞甲胺高分子 56
圖2-9電活性測試反應槽裝置圖 63
圖2-10標準四點探針示意圖 63
圖2-11電活性聚亞甲胺反應步驟 65
圖2-12亞甲胺寡聚體之質譜圖譜 66
圖2-13 (a)亞甲胺寡聚體; (b)經6N HCl攪拌後亞甲胺寡聚體之1H核磁共振圖譜 67
圖2-14亞甲胺寡聚體之13C核磁共振圖譜 68
圖2-15亞甲胺寡聚體之2D核磁共振碳氫圖譜 68
圖2-16 (a)亞甲胺寡聚體; (b)聚亞甲胺高分子之UV-Vis圖譜 70
圖2-17 (a)亞甲胺寡聚體; (b)聚亞甲胺高分子之FTIR圖譜 70
圖2-18聚亞甲胺高分子之1H核磁共振圖譜 71
圖2-19電活性聚亞甲胺化學氧化之UV-Vis圖 74
圖2-20電活性聚亞甲胺之CV圖 75
圖2-21電活性聚亞甲胺之氧化還原態結構 76
圖2-22電活性聚亞甲胺於不同電位下之UV-Vis吸收圖譜 77
圖2-23電活性聚亞甲胺之UV-Vis吸收值、波長與電位之3D圖譜 78
圖2-24電活性聚亞甲胺於不同電位下之顏色變化圖 78
圖2-25電活性聚亞甲胺之TGA圖 79
圖3-1 世界地圖 [1] 86
圖3-2鹽酸溶液下鈍性氧化層形成之機制圖[11] (a)氧化形成鈍性氧化層 (b)還原逆反應 88
圖3-3鹽霧測試:(a)環氧樹脂; (b)聚苯胺/環氧樹脂1%塗佈1000小時; (c)聚苯胺/環氧樹脂5%; (d)聚苯胺/環氧樹脂10%塗佈2000小時 89
圖3-4 (a)鈍性氧化層之生成機制; (b)阻隔氧氣穿透機制 90
圖3-5電活性聚亞醯胺酸與電活性聚亞醯胺之反應步驟圖 96
圖3-6亞醯胺酸寡聚體之質譜圖 98
圖3-7亞醯胺寡聚體之1H-NMR圖譜 98
圖3-8亞醯胺寡聚體之FTIR圖譜 99
圖3-9 (a)電活性聚亞醯胺酸; (b)電活性聚亞醯胺之FTIR圖譜 100
圖3-10電活性聚亞醯胺酸之化學氧化UV-Vis圖譜 102
圖3-11 (a)電活性聚亞醯胺酸; (b)電活性聚亞醯胺之CV圖譜 103
圖3-12 (a)電活性聚亞醯胺酸; (b)電活性聚亞醯胺之氧化還原態結構 104
圖3-13工作電極剖面圖 105
圖3-14循環伏特安培儀工作裝置圖 105
圖3-15塔伏曲線分析圖 (a)純鐵片; (b)聚亞醯胺; (c)電活性聚亞醯胺 108
圖3-16掃描式電子顯示鏡分析圖 (a)冷軋鋼 (b)電活性聚亞醯胺之冷軋鋼表面 (c)鈍性氧化層之生成機制 109
圖3-17 (a)未塗佈冷軋鋼; (b)塗佈電活性聚亞醯胺冷軋鋼表面之化學分析電子儀光譜圖 110
圖3-18電活性聚亞醯胺於1.0M H2SO4中,不同電位之UV-Vis吸收圖譜 111
圖3-19電活性聚亞醯胺之UV吸收、波長與電位之3D圖譜 112
圖3-20電活性聚亞醯胺於不同電位下之顏色變化圖 112
圖4-1苯胺與奈米碳管迴流之反應機制 119
圖4-2聚苯胺/多層奈米碳管複合材料之合成步驟與FTIR圖譜 120
圖4-3電化學聚合製備之聚苯胺/單層奈米碳管複合物SEM圖形 120
圖4-4 EB聚苯胺/奈米碳管之FTIR圖表 121
圖4-5聚苯胺/多層碳管奈米複合材料形成機構示意圖 121
圖4-6水溶性之磺酸化聚苯胺/奈米碳管UV-Vis圖譜 122
圖4-7 Friedel-Crafts acylation reaction之反應步驟 122
圖4-8聚苯胺/奈米碳管之UV-Vis與CV圖譜 123
圖4-9聚苯胺/奈米碳管複合材料之(a) I-V圖與(b)電極之SEM圖 123
圖4-10電活性聚亞醯胺/奈米碳管複合材料之合成步驟 127
圖4-11電活性聚亞甲胺/奈米碳管複合材料之合成步驟 128
圖4-12奈米碳管、改質奈米碳管與改質劑之FTIR圖譜 129
圖4-13奈米碳管與改質之奈米碳管之TGA圖 130
圖4-14奈米碳管與改質之奈米碳管之XPS圖 131
圖4-15 (a)市售奈米碳管; (b)改質奈米碳管; (c)電活性聚亞醯胺/奈米碳管之SEM圖 132
圖4-16電活性聚亞醯胺/奈米碳管複合材料之FTIR圖譜 134
圖4-17電活性聚亞醯胺酸/奈米碳管複合材料之FTIR圖譜 134
圖4-18電活性聚亞醯胺酸/奈米碳管複合材料之UV-Vis圖譜 135
圖4-19 (a)電活性聚亞醯胺酸/奈米碳管; (b)電活性聚亞醯胺/奈米碳管複合材料之CV圖 137
圖4-20電活性聚亞醯胺/奈米碳管複合材料之導電度 138
圖4-21 (a)市售奈米碳管; (b)改質奈米碳管; (c)電活性聚亞甲胺/奈米碳管之SEM圖 140
圖4-22電活性聚亞甲胺/奈米碳管之FTIR圖 141
圖4-23電活性聚亞甲胺/奈米碳管之UV-Vis圖 142
圖4-24電活性聚亞甲胺/奈米碳管之CV圖 143





表目錄
表1-1 常見的電活性高分子 2
表2-1 電活性聚亞甲胺高分子之溶解度a與分子量b數據分析 73
表3-1 電活性聚亞醯胺酸高分子之溶解度a與分子量b數據分析 101
表3-2聚亞醯胺與電活性聚亞醯胺所得之腐蝕電位、極化電阻、腐蝕電流、腐蝕速率與保護效率值 108
表4-1電活性聚亞醯胺/奈米碳管複合材料之導電度 138



1.7
1.D. Chapman, R. J. Warm, A. G. Fitzgerald, A. D. Yoffe, Trans Faraday Soc., 294,60 (1964).
2.H. Shirakawa, S. Ikeda. Polymer, 2,231 (1971).
3.(a) H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, A. J.Heeger J. Chem. Soc., Chem. Commum., 578 (1977).;(b) C. K. Chiang, C.R. Fincher, Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Lousi, S. C. Gau, A. G. MacDiarmid, , Phys. Rev Lett., 39,1098 (1977).
4.A. J. Epstin and A. G. MacDiarmid, Proc. Faraday Soc., Faraday Trans. (1989).
5.R. Harihanan, Ph. D. Dissertation, Chemistry Department, Drexel University, (1994).
6.C. Kittel, Introduction to Solid State Physics, 6th Ed. John Wiley& Sons, Singapore, (1986).
7.J. Stejskal, P. Kratochvil, A. D. Jenkins. , Polymer, 37,367 (1996).
8.E. C. Venancio, C. A. R. Costa, S. A. S. Machado, A. J. Motheo., Electrochem. Commun., 3,229 (2001).
9.S. Uemura, K. Teshima, N. Kobayashi, R. Hirohashi, S. Tokuda., Synth. Met., 101,701 (1999).
10.陳鴻宇,導電性聚苯胺/磺酸化聚胺酯混合材料之研究,國立台灣大學化學工程所碩士論文,(2001)
11.A. G. Green and A. E. Woodhead, J. Chem. Soc. Trans., 97,2388 (1910).
12.L. Langer, Solid State Commun, 26,839 (1978).
13.A. G. MacDiarmid, J. C. Chiang, M. Halpern, W. S. Huang, S. L. Mu, N. L. D. Somasir, Mol. Liq. Cryst., 121,173 (1985).
14.H. R. Allcock, F. W. Lampe in Contemporary Polymer Chemistry, Prentice-Hill:Englewood Cliffs, NJ (1990).
15.A. G. MacDiarmid, A. J. Epstein. Synth. Met., 65,103 (1994).
16.C. J. Yang and S. A. Jenekhe, Chem. Mater., 3,878 (1991).
17.Y. Wei, Y. Yang, and J. M. Yeh, Chem. Mater., 8,2659 (1996).
18.C. Wang, S. Shieh, E. LeGoff, and M. G. Kanatzidis, Macromolecules, 29,3147 (1996).
19.(a) T. E. Olinga, S. Destri, C. Botta, W. Porzio, and R. Consonni, Macromolecules, 31,1070 (1998). (b) S. Destri, I. A. Khotina, and W. Porzio, Macromolecules, 31,1079 (1998).
20.M. Wan, J. Yang., Synth. Met., 73,201 (1995).
21.A. A. Athawale, B. A. Deore, M. V. Kulkami, Mater. Chem. Phys., 60,262 (1999).
22.R.J. Martimer, J. Mater. Chem., 5,696 (1995).
23.M. Leclerc, J. Guay, L. H. Dao, Macromolecules, 22,649 (1989).
24.Y. Wei, W. W. Focke, G. E. Wuck, A.R. and A.G. MacDiarmid, J. Phys. Chem., 93,49 (1989).
25.L. X. Wang, X. B. Jing, F. S. Wang, Synth. Met., 41,745 (1991).
26.F. A. Viva, E. M. Andrade, F. V. Molina, M. I. Florit, J. Electroanal. Chem., 471,180 (1999).
27.W. A. Gazotti Jr., M. J. D. M. Jannini, S. I. Córdoba de Torresi, M. A. De Paoli, J. Electroanal. Chem., 440,193 (1997).
28.D. Macinnes, B.L. Funt, Synth. Met., 25,235 (1988).
29.W. A. Gazotti Jr., R. Faez, M. A. De Paoli, J. Electroanal. Chem., 415,107 (1996).
30.J. F. Pennean, M. Lapkowski, E. M. Genies, New J. Chem., 13,533 (1989).
31.J. C. Lacroix, P. Garcia, J. P. Audiere, R. Clement, O. Kahn, Synth. Met., 44,117 (1991).
32.F. L. Lu, F. Wudl, M. Nowak, and A. J. Heeger, J. Am. Chem. Soc., 108,8311 (1986).
33.F. Wudl, R. O. Angus, F. L. Lu, P. M. Allemand, D. Vachon, M. Nowak, Z. X. Liu, H. Schaffer, and A. J. Heeger, J. Am. Chem. Soc., 109,3677 (1987).
34.Y. Wei, C. Yang, and T. Ding, Tetrahedron Lett., 37,731 (1996).
35.L. Chen, Y. Yu, H. Mao, X. Lu, W. Zhang, and Y. Wei, Mater. Lett., 59,2446 (2005).
36.L. Chen, Y. Yu, H. Mao, X. Lu, W. Zhang, and Y. Wei, Synth. Met., 149,129 (2005).
37.R. A. Singer, J. P. Sadighi, and S. L. Buchwald, J. Am. Chem. Soc., 120,213 (1998).
38.J. P. Sadighi, R. A. Singer, and S. L. Buchwald, J. Am. Chem. Soc., 120,4960 (1998).
39.R. Chen and B. C. Benicewicz, Synth. Met., 146,133 (2004).
40.D. Chao, X. Ma, X. Lu, L. Cui, H. Mao, W. Zhang, and Y. Wei, J. Appl. Polym. Sci., 104,1603 (2007).
41.D. Chao, X. Ma, X. Lu, L. Cui, H. Mao, W. Zhang, and Y. Wei, Macromol. Chem. Phys., 208,658 (2007).
42.D. Chao, X. Lu, J. Chen, X. Zhao, L. Wang, W. Zhang, and Y. Wei, J. Polym. Sci., Part A: Polym. Chem., 44,477 (2006).
43.D. Chao, X. Lu, J. Chen, X. Liu, W. Zhang, and Y. Wei, Polymer, 47,2643 (2006).
44.Z. Y. Wang, C. Yang, J. P. Gao, J. Lin, X. S. Meng, Y. Wei, and S. Li, Macromolecules, 31,2702 (1998).
45.W. Lu, X. Sheng Meng, and Z. Yuan Wang, J. Polym. Sci., Part A: Polym. Chem., 37,4295 (1999).
46.R. Chen and B. C. Benicewicz, Macromolecules, 36,6333 (2003).
47.J. Gao, D. G. Liu, J. M. Sansiñena, and H. L. Wang, Adv. Funct. Mater., 14,537 (2004).
48.L. Huang, J. Hu, L. Lang, X. Wang, P. Zhang, X. Jing, X. Wang, X. Chen, P. I. Lelkes, A. G. MacDiarmid, and Y. Wei, Biomaterials, 28,1741 (2007).
49.L. Huang, X. Zhuang, J. Hu, L. Lang, P. Zhang, Y. Wang, X. Chen, Y. Wei, and X. Jing, Biomacromolecules, 9,850 (2008).
50.D. Chao, J. Zhang, X. Liu, X. Lu, C. Wang, W. Zhang, and Y. Wei, Polymer, 51,4518 (2010).
51.D. Chao, X. Jia, H. Liu, L. He, L. Cui, C. Wang, and E. B. Berda, J. Polym. Sci., Part A: Polym. Chem., 49,1605 (2011).
52.S. A. Zahir, A. Renner, US Patent 4, 100, 140, (1978).
53.M. Bergain, A. Combet, P. Grosjean, Brit. Patent, Spec. 1, 190, 788(1970).
54.林金雀,高性能聚醯亞胺薄膜介紹,化工資訊與商情,(1999)
55.H. H. Huang, G. L. Wilkes and J. G. Carlson, Polymer, 30, 2001(1989).
56.黃冠燁,電活性聚亞醯胺薄膜、塗料及電噴灑粒子之製備與性質探討,中原大學化學研究所博士論文,(2009)
57.黃朝晟,聚亞醯胺/黏土及ABS/黏土奈米複合材料之製備與性質研究,中原大學化學研究所碩士論文,(2003)
58.R. A. D. Hart and W. W. Wright, J. Appl. Polym. Sci., 11,609 (1967).
59.J.A. Kreuz, J. Polym. Sci., Part A: Polym. Chem., 28, 3787(1990).
60.馬振基,塑膠資訊,7 (1997)
61.G. Zhao, T. Ishizaka, H. Kasai, M. Hasegawa, T. Furukawa,H. Nakanishi and H. Oikawa, Chem. Mater., 21, 419(2009).
62.金進興,工業材料,114(1996).
63.陳啟倫,以溶膠凝膠、溶液分散及熔融插層方式製備有機/無機奈米複合材料及其性質之研究,中原大學化學研究所博士論文,(2005)
64.H. Kim, A.A. Abdala and C.W. Macosko, Macromolecules, 43, 6515(2010)
65.R. Iley and H.L. Riley, J. Chem. Soc, 1362(1948)
66.W.R. Davis, R.J. Slawson and G.R. Rigby, Nature, 171, 756(1953)
67.L.J.E. Hofer, E. Sterling and J.T. McCartney, J. Phys. Chem., 59, 1153(1955)
68.H. Lange, A. Huczko, P. Byszewski, E. Mizera and H. Shinohara, Chem. Phys. Lett., 289, 174(1998)
69.S. Iijima, Nature, 354, 56(1991)
70.M. Meyyappan, Carbon nanotubes: science and application, CRC PRESS, New York, pp.4-5 and p.111(2005).
71.林暉凱,聚(三-己基噻吩)與多壁奈米碳管複合材料之研究, 國立中正大學化學工程所碩士論文(2009)。
72.R.H. Baughman, A.A. Zakhidov and W.A. De Heer, Science, 297, 787(2002).
73.R. T. K. Baker and P.S. Harries, Chemistry and physics of carbon, Marcel Dekker, New York, p.83(1978) .
74.林建志,電漿化學氣相沉積順向成長及組裝奈米碳管,國立成功大學材料科學及工程學系博士論文。
75.林彥文,磺酸化導電高分子/奈米碳管複合材料之製備與特性研究,國立中興大學材料科學與工程學系所博士論文(2009)。
76.M.M.J. Treacy, T.W. Ebbesen and J.M. Gibson, Nature, 381, 678(1996).
77.E.W. Wong, P.E. Sheehan and C.M. Lieber, Science, 277, 1971(1997).
78.M.F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly and R.S. Ruoff, Science, 287, 637(2000).
79.M. Terrones, W. K. Hsu, H. W. Kroto, and D. R. M. Walton, Topics in Current Chemistry, 199, 1(1998).
80.M.A. Osman and D. Srivastava, Nanotechnology, 12, 21(2001).
81.N. Hamada, S. Sawada and A. Oshiyama, Phys. Rev. Lett., 68, 1579(1992).
82.R. Saito, M. Fujita, G. Dresselhaus, M. S. Dresselhaus, Appl. Rev. Lett., 60, 2204(1992).
83.J.W.G. Wildoer, L.C. Venema, A.G. Rinzler, R.E. Smalley and C. Dekker, Nature, 391, 59(1998).
84.T.W. Ebbesen, H.J. Lezec, H. Hiura, J.W. Bennett, H.F. Ghaemi and T. Thio, Nature, 382, 54(1996).
85.A. Hirsch, Angew. Chem. Int. Ed., 41,1853 (2002).
86.S. C. Tsang, Y. K. Chen, P. J. F. Harris, and M. L. H. Green, Nature, 372,159 (1994).
87.R. M. Lago, S. C. Tsang, K. L. Lu, Y. K. Chen, and M. L. H. Green, J. Chem. Soc., Chem. Commun.,1355 (1995).
88.H. Hiura, T. W. Ebbesen, and K. Tanigaki, Adv. Mater., 7,275 (1995).
89.J. Liu, A. G. Rinzler, H. Dai, J. H. Hafner, R. K. Bradley, P. J. Boul, A. Lu, T. Iverson, K. Shelimov, C. B. Huffman, F. R. Macias, Y.S. Shon, T. R. Lee, D. T. Colbert, and R. E. Smalley, Science, 280,1253 (1998).
90.A. Kuznetsova, I. Popova, J. T. Yates, M. J. Bronikowski, C. B. Huffman, J. Liu, R. E. Smalley, H. H. Hwu, and J. G. Chen, J. Am. Chem. Soc., 123,10699 (2001).
91.A. Kuznetsova, D. B. Mawhinney, V. Naumenko, J. T. Yates, J. Liu, and R. E. Smalley, Chem. Phys. Lett., 321,292 (2000).
92.M. A. Hamon, J. Chen, H. Hu, Y. Chen, M. E. Itkis, A. M. Rao, P. C. Eklund, and R. C. Haddon, Adv. Mater., 11,834 (1999).
93.M. W. Marshall, S. Popa-Nita, and J. G. Shapter, Carbon, 44,1137 (2006).
94.J. L. Bahr and J. M. Tour, J. Mater. Chem., 12,1952 (2002).
95.D.j. Guo and H.l. Li, Electrochem. Commun., 6,999 (2004).
96.A. Gohier, F. Nekelson, M. Helezen, P. Jegou, G. Deniau, S. Palacin, and M. Mayne-L'Hermite, J. Mater. Chem., 21,4615 (2011).
97.R. J. Chen, Y. Zhang, D. Wang, and H. Dai, J. Am. Chem. Soc., 123,3838 (2001).
98.D. Eder, Chem. Rev., 110,1348 (2010).
99.Y. Jiang, H. Li, Y. Li, H. Yu, K. M. Liew, Y. He, and X. Liu, ACS Nano, 5,2126 (2011).
100.N. Patra, Y. Song, and P. Král, ACS Nano, 5,1798 (2011).
101.曾俊豪,利用新穎電漿技術改質奈米碳管以製備導電複合材料之研究,國立成功大學化學工程研究所博士論文,(1997).
102.P. M. Ajayan, O. Stephan, C. Colliex, and D. Trauth, Science, 265,1212 (1994).
103.L. Vaccarini, G. Desarmot, R. Almairac, S. Tahir, C. Goze, and P. Bernier, AIP Conf. Proc, 544,521 (2000).
104.A. Allaoui, S. Bai, H. M. Cheng, and J. B. Bai, Compos. Sci. Technol., 62,1993 (2002).
105.M. S. P. Shaffer and A. H. Windle, Adv. Mater., 11,937 (1999).
106.B. P. Grady, F. Pompeo, R. L. Shambaugh, and D. E. Resasco, J. Phys. Chem. B, 106,5852 (2002).
107.H. Ago, K. Petritsch, M. S. P. Shaffer, A. H. Windle, and R. H. Friend, Adv. Mater., 11,1281 (1999).
108.E. Kymakis and G. A. J. Amaratunga, Appl. Phys. Lett., 80,112 (2002).
109.S. A. Curran, P. M. Ajayan, W. J. Blau, D. L. Carroll, J. N. Coleman, A. B. Dalton, A. P. Davey, A. Drury, B. McCarthy, S. Maier, and A. Strevens, Adv. Mater., 10,1091 (1998).
110.R. Andrews, D. Jacques, M. Minot, and T. Rantell, Macromol. Mater. Eng., 287,395 (2002).
111.T. McNally, P. Pöschke, P. Halley, M. Murphy, D. Martin, S. E. J. Bell, G. P. Brennan, D. Bein, P. Lemoine, and J. P. Quinn, Polymer, 46,8222 (2005).
112.J. Chen, H. Liu, W. A. Weimer, M. D. Halls, D. H. Waldeck, and G. C. Walker, J. Am. Chem. Soc., 124,9034 (2002).
113.R. Ramasubramaniam, J. Chen, and H. Liu, Appl. Phys. Lett., 83,2928 (2003).
114.M. Cochet, W. K. Maser, A. M. Benito, M. A. Callejas, M. T. Martinez, J.-M. Benoit, J. Schreiber, and O. Chauvet, Chem. Commun.,1450 (2001).
115.H. Zengin, W. Zhou, J. Jin, R. Czerw, D. W. Smith, L. Echegoyen, D. L. Carroll, S. H. Foulger, and J. Ballato, Adv. Mater., 14,1480 (2002).
116.J. Deng, X. Ding, W. Zhang, Y. Peng, J. Wang, X. Long, P. Li, and A. S. C. Chan, Eur. Polym. J., 38,2497 (2002).
117.W. Feng, X. D. Bai, Y. Q. Lian, J. Liang, X. G. Wang, and K. Yoshino, Carbon, 41,1551 (2003).
118.L. Yunze, Z. Chen, X. Zhang, J. Zhang, and Z. Liu, J. Phys. D: Appl. Phys., 37,1965 (2004).
119.J. E. Huang, X. H. Li, J. C. Xu, and H. L. Li, Carbon, 41,2731 (2003).
120.M. Baibarac, I. Baltog, C. Godon, S. Lefrant, and O. Chauvet, Carbon, 42,3143 (2004).
121.S. W. Han, S. J. Oh, L. S. Tan, and J. B. Baek, Carbon, 46,1841 (2008).
122.H. J. Lee, S. W. Han, Y. D. Kwon, L. S. Tan, and J. B. Baek, Carbon, 46,1850 (2008).
123.H. J. Lee, S. J. Oh, J. Y. Choi, J. W. Kim, J. Han, L. S. Tan, and J. B. Baek, Chem. Mater., 17,5057 (2005).
124.I. Y. Jeon, S. W. Kang, L. S. Tan, and J. B. Baek, J. Polym. Sci., Part A: Polym. Chem., 48,3103 (2010).
125.I. Y. Jeon, L. S. Tan, and J. B. Baek, J. Polym. Sci., Part A: Polym. Chem., 48,1962 (2010).
126.D. H. Wang, S. Sihn, A. K. Roy, J. B. Baek, and L. S. Tan, Eur. Polym. J., 46,1404 (2010).
127.I. Y. Jeon and J. B. Baek, Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.), 51,583 (2010).
2.7
1.T. C. Chang, C. H. Li, and S. Y. Li, J. Polym. Res., 1,109 (1994).
2.H. R. Kricheldorf, and G. Schwarz, Handbook of Polymer Synthesis, Part B, New York: Dekker, 1673 (1992).
3.B. Millaud, and C. Strazielle, Polymer, 20,563 (1979)
4.P. W. Morgan, S. L. Kwolek and T. C. Pletcher, Macromolecules, 20, 729 (1987).
5.S. A. Jenekhe and P. O. Johnson, Macromolecules, 23,4419 (1990).
6.C. J. Yang and S. A. Jenekhe, Chem. Mater., 3,878 (1991).
7.C. Wang, S. Shieh, E. LeGoff and M. G. Kanatzidis, Macromolecules, 29,3147 (1996).
8.R. Adams, J. E. Bullock, and W. C. Wilson, J. Am. Chem. Soc., 45,521 (1923).
9.N. Chantarasiri, C. Chulamanee, T. Mananunsap, and N. Muangsin, Polym. Degrad. Stab., 86,505 (2004).
10.S. Liu, W. Sun, B. He, and Z. Shen, Eur. Polym. J., 40,2043 (2004).
11.(a) G. F. D'Alelio, J. V. Crivello, R. K. Schoenig, T. F. Huemmer, J. Macromol. Sei., AI, 1161 (1967). (b) G. F. D'Alelio, W. F. Strazik, D. M. Feigl, R. K. Schoenig, J. Macromol. Sei. Chem.,2,1457 (1968). (c) G. F. D'Alelio, Encyl. Polym. Sci. Technol., 10, 659 (1969).
12.(a) P. W. Morgan, US. Patent 4048148, Sep 13 (1977). (b) P. W. Morgan, US. Patent 4122070, Oct 24 (1978).
13.P. W. Wojtkowski, Macromolecules, 20,740 (1987).
14.S. B. Park, H. Kim, W. C. Zin, and J. C. Jung, Macromolecules, 26,1627 (1993).
15.S. Banerjee and C. Saxena, J. Polym. Sci., Part A: Polym. Chem., 34,3565 (1996).
16.S. Banerjee, C. Saxena, P. K. Gutch, and D. C. Gupta, Eur. Polym. J., 32,661 (1996).
17.A. G. El-Shekeil, H. A. Al-Saady, and F. A. Al-Yusufy, Polym. Int., 44,78 (1997).
18.T. E. Olinga, S. Destri, C. Botta, W. Porzio, and R. Consonni, Macromolecules, 31,1070 (1998).
19.S. Destri, I. A. Khotina, and W. Porzio, Macromolecules, 31,1079 (1998).
20.S. Destri, M. Pasini, C. Pelizzi, W. Porzio, G. Predieri, and C. Vignali, Macromolecules, 32,353 (1998).
21.P. Cerrada, L. Oriol, M. Piñol, J. L. Serrano, P. J. Alonso, J. A. Puértolas, I. Iribarren, and S. Muñoz Guerra, Macromolecules, 32,3565 (1999).
22.P. Kumar Gutch, S. Banerjee, D. C. Gupta, and D. K. Jaiswal, J. Polym. Sci., Part A: Polym. Chem., 39,383 (2001).
23.T. Miyaji, C. Azuma, E. Asaoka, and S. Nakamura, J. Polym. Sci., Part A: Polym. Chem., 38,1064 (2000).
24.E. J. Choi, J. C. Ahn, L. C. Chien, C. K. Lee, W. C. Zin, D. C. Kim, and S. T. Shin, Macromolecules, 37,71 (2003).
25.(a) C. J. Yang and S. A. Jenekhe, Chem. Mater., 6,196 (1994). (b) C.J. Yang and S. A. Jenekhe, Chem. Mater., 7,1276 (1995).
26.(a) C.J. Yang and S. A. Jenekhe, Macromolecules, 28,1180 (1995). (b) C. J. Yang, S. A. Jenekhe, J. S. Meth, and H. Vanherzeele, Ind. Eng. Chem. Res., 38,1759 (1999).
27.C. Wang, S. Shieh, E. LeGoff, and M. G. Kanatzidis, Macromolecules, 29,3147 (1996).
28.O. Thomas, O. Inganas, and M. R. Andersson, Macromolecules, 31,2676 (1998).
29.蔡馥娟,含噻吩環可溶性聚甲亞胺之合成、特性研究與理論電子結構,國立台灣大學化學工程學研究所(2003)。
30.F. C. Tsai, C. C. Chang, C. L. Liu, W. C. Chen, and S. A. Jenekhe, Macromolecules, 38,1958 (2005).
31.G.S. Liou, H.Y. Lin, Y.L. Hsieh, and Y.L. Yang, J. Polym. Sci., Part A: Polym. Chem., 45,4921 (2007).
32.İ. Kaya, S. Koyuncu, and S. Çulhaoğlu, Polymer, 49,703 (2008).
33.D. Sek, A. Iwan, B. Jarzabek, B. Kaczmarczyk, J. Kasperczyk, Z. Mazurak, M. Domanski, K. Karon, and M. Lapkowski, Macromolecules, 41,6653 (2008).
34.H. Niu, P. Luo, M. Zhang, L. Zhang, L. Hao, J. Luo, X. Bai, and W. Wang, Eur. Polym. J., 45,3058 (2009).
35.L. Song, C. Tu, Y. Shi, F. Qiu, L. He, Y. Jiang, Q. Zhu, B. Zhu, D. Yan, and X. Zhu, Macromol. Rapid Commun., 31,443 (2010).
36.D. Chao, J. Zhang, X. Liu, X. Lu, C. Wang, W. Zhang and Y. Wei, Polymer, 51, 4518(2010).
37.Y. Yu, H. Mao, L. Chen, X. Lu, W. Zhang and Y. Wei, Macromol. Rapid Commun., 25, 664(2004).
38.D. Sek, A. Iwan, B. Jarzabek, B. Kaczmarczyk, J. Kasperczyk, Z. Mazurak, M. Domanski, K. Karon and M. Lapkowski, Macromolecules, 41, 6653(2008).
39.H. C. Kim, J. S. Kim, K. S. Kim, H. K. Park, S. Baek, and M. Ree, J. Polym. Sci., Part A: Polym. Chem., 42,825 (2004).
40.J. Gao, D. G. Liu, J. M. Sansiñena, and H. L. Wang, Adv. Funct. Mater., 14,537 (2004).
41.L. Zhao, L. Zhao, Y. Xu, T. Qiu, L. Zhi, and G. Shi, Electrochimica Acta, 55,491 (2009).
42.Y. Guo, A. Mylonakis, Z. Zhang, P. I. Lelkes, K. Levon, S. Li, Q. Feng, and Y. Wei, Macromolecules, 40,2721 (2007).
3.71.http://www.lib.utexas.edu/maps/world_maps/world_rel_803005AI_2003.jpg
2.J. M. Yeh, S. J. Liou, M. C. Lai, Y. W. Chang, C. Y. Huang, C. P. Chen, J. H. Jaw, T. Y. Tsai, and Y. H. Yu, J. Appl. Polym. Sci., 94,1936 (2004).
3.Y. H. Yu, J. M. Yeh, S. J. Liou, and Y. P. Chang, Acta Mater., 52,475 (2004).
4.J. M. Yeh , H. Y. Huang , C. L. Chen , W. F. Su , Y. H. Yu , Surf. Coat. Technol., 200, 2753(2006).
5.J. M. Yeh, C. L. Chen, Y. C. Chen, C. Y. Ma, K. R. Lee, Y. Wei, and S. Li, Polymer, 43,2729 (2002).
6.J. M. Yeh and C. P. Chin, J. Appl. Polym. Sci., 88,1072 (2003).
7.D. W. DeBerry, J. Electrochem. Soc., 132, 1022 (1985).
8.Y. Wei, J. Wang, X. Jia, J.-M. Yeh, and P. Spellane, Polymer, 36,4535 (1995).
9.T. P. McAndrew, S. A. Miller, A. G. Gilicinski, and L. M. Robeson, Proc. Am. Chem. Soc., Div. Polym. Mater Sci. Eng., 74,204 (1996).
10.V. S. Emranuzzaman, Indian J. Chem. Technol., 5,246 (1998).
11.W. K. Lu, R. L. Elsenbaumer, and B. Wessling, Synth. Met., 71,2163 (1995).
12.B. Wessling, Adv. Mater., 6,226 (1994).
13.A. Talo, P. Passiniemi, Forsén, and S. Yläsaari, Synth. Met., 85,1333 (1997).
14.G. M. Spinks, A. J. Dominis, D. E. Tallman, and G. G. Wallace, J. Solid State Electrochem., 6,85 (2002).
15.S. Sathiyanarayanan, S. Muthkrishnan, and G. Venkatachari, Electrochim. Acta, 51,6313 (2006).
16.Y. Chen, X. H. Wang, J. Li, J. L. Lu, and F. S. Wang, Electrochim. Acta, 52,5392 (2007).
17.H. Y. Huang, T. C. Huang, T. C. Yeh, C. Y. Tsai, C. L. Lai, M. H. Tsai, J. M. Yeh, and Y. C. Chou, Polymer, 52,2391(2011).
18.T. C. Huang, Y. A. Su, T. C. Yeh, H. Y. Huang, K. Y. Huang, Y. C. Chou, J. M. Yeh, and Y. Wei, Electrochim. Acta,Accepted (2011).
19.C. J. Weng, J. Y. Huang, K. Y. Huang, Y. S. Jhuo, M. H. Tsai, and J. M. Yeh, Electrochim. Acta, 55,8430 (2010).
20.D. Chao, J. Zhang, X. Liu, X. Lu, C. Wang, W. Zhang, and Y. Wei, Polymer, 51,4518 (2010).
21.D. Chao, X. Ma, X. Lu, L. Cui, H. Mao, W. Zhang, and Y. Wei, J. Appl. Polym. Sci., 104,1603 (2007).
22.D. Chao, X. Jia, H. Liu, L. He, L. Cui, C. Wang, and E. B. Berda, J. Polym. Sci., Part A: Polym. Chem., 49,1605 (2011).
23.J. Gao, D. G. Liu, J. M. Sansiñena, and H. L. Wang, Adv. Funct. Mater., 14,537 (2004).
24.S.Sathyanarayanan, S.K.Dhawan, D.C.Trivedi, and K.Balakrishnan, Corros. Sci., 33,1831 (1992).
25.X. Yang, Y. Jiang, T. Zhao, and Y. Yu, J. Appl. Polym. Sci., 102,222 (2006).
26.W. K. Lu, R. L. Elsenbaumer, and B. Wessling, Synth. Met., 71,2163 (1995).
27.B. Wessling, Adv. Mater., 6,226 (1994).
28.A. Talo, P. Passiniemi, Forsén, and S. Yläsaari, Synth. Met., 85,1333 (1997).
29.G. Spinks, A. Dominis, G. Wallace, and D. Tallman, J. Solid State Electrochem., 6,85 (2002).
30.W. Lu, X. Sheng Meng, and Z. Yuan Wang, J. Polym. Sci., Part A: Polym. Chem., 37,4295 (1999).
31.L. Zhao, L. Zhao, Y. Xu, T. Qiu, L. Zhi, and G. Shi, Electrochim. Acta, 55,491 (2009).
32.R. Chen and B. C. Benicewicz, Macromolecules, 36,6333 (2003).
33.L. Huang, J. Hu, L. Lang, X. Wang, P. Zhang, X. Jing, X. Wang, X. Chen, P. I. Lelkes, A. G. MacDiarmid, and Y. Wei, Biomaterials, 28,1741 (2007).
4.7
1.H. Y. Lim, S. K. Jeong, J. S. Suh, E. J. Oh, Y. W. Park, K. S. Ryu, and C. H. Yo, Synth. Met., 70,1463 (1995)
2.C. Downs, J. Nugent, P. M. Ajayan, D. J. Duquette, and K. S. V. Santhanam, Adv. Mater., 11,1028 (1999).
3.Y. Sun, S. R. Wilson, and D. I. Schuster, J. Am. Chem. Soc., 123,5348 (2001).
4.J. L. Bahr and J. M. Tour, J. Mater. Chem., 12,1952 (2002).
5.M. Cochet, W. K. Maser, A. M. Benito, M. A. Callejas, M. T. Martinez, J.-M. Benoit, J. Schreiber, and O. Chauvet, Chem. Commun.,1450 (2001).
6.H. Zengin, W. Zhou, J. Jin, R. Czerw, D. W. Smith, L. Echegoyen, D. L. Carroll, S. H. Foulger, and J. Ballato, Adv. Mater., 14,1480 (2002).
7.J. E. Huang, X. H. Li, J. C. Xu, and H. L. Li, Carbon, 41,2731 (2003).
8.R. Sainz, A. M. Benito, M. T. Martínez, J. F. Galindo, J. Sotres, A. M. Baró, B. Corraze, O. Chauvet, and W. K. Maser, Adv. Mater., 17,278 (2005).
9.T. M. Wu, Y. W. Lin, and C. S. Liao, Carbon, 43,734 (2005).
10.H. Zhang, H. X. Li, and H. M. Cheng, J. Phys. Chem. B, 110,9095 (2006).
11.I. Y. Jeon, S. W. Kang, L. S. Tan, and J. B. Baek, J. Polym. Sci., Part A: Polym. Chem., 48,3103 (2010).
12.I. Y. Jeon, L. S. Tan, and J. B. Baek, J. Polym. Sci., Part A: Polym. Chem., 48,1962 (2010).
13.E. K. Choi, I. Y. Jeon, S. J. Oh, and J. B. Baek, J. Mater. Chem., 20,10936 (2010).
14.Y. Liao, C. Zhang, Y. Zhang, V. Strong, J. Tang, X. G. Li, K. Kalantar-zadeh, E. M. V. Hoek, K. L. Wang, and R. B. Kaner, Nano Letters, 11,954 (2011).
15.S. Y. Yang, W. N. Lin, Y. L. Huang, H. W. Tien, J. Y. Wang, C. C. Ma, S. M. Li, and Y. S. Wang, Carbon, 49,793 (2011).
16.D. Chao, J. Zhang, X. Liu, X. Lu, C. Wang, W. Zhang, and Y. Wei, Polymer, 51,4518 (2010).
17.S. Quillard, G. Louarn, S. Lefrant, and A. G. Macdiarmid, Phys. Rev. B, 50,12496 (1994).
18.C. Dhand, S. K. Arya, S. P. Singh, B. P. Singh, M. Datta, and B. D. Malhotra, Carbon, 46,1727 (2008).
19.H. Zengin, W. Zhou, J. Jin, R. Czerw, D. W. Smith, L. Echegoyen, D. L. Carroll, S. H. Foulger, and J. Ballato, Adv. Mater., 14,1480 (2002).
20.Y. Furukawa, F. Ueda, Y. Hyodo, I. Harada, T. Nakajima, and T. Kawagoe, Macromolecules, 21,1297 (1988).
21.X. Jiang, Y. Bin and M. Matsuo, Polymer, 46,7418 (2005).
22.R. Adams, J. E. Bullock, and W. C. Wilson, J. Am. Chem. Soc., 45,521 (1923).

電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top