跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.54) 您好!臺灣時間:2026/01/12 23:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡尚庭
研究生(外文):Shang-ting Tsai
論文名稱:輪型機器人之影像避障及追蹤控制
論文名稱(外文):THE IMAGE OBSTACLE AVOIDANCE OF WHEELED MOBILE ROBOT AND TRACKING CONTROL
指導教授:游文雄
指導教授(外文):Wen-Shyong Yu
口試委員:游文雄
口試委員(外文):Wen-Shyong Yu
口試日期:2014-07-31
學位類別:碩士
校院名稱:大同大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:78
中文關鍵詞:前導追隨機器人影像處理模糊視覺伺服迴授控制軌跡追蹤
外文關鍵詞:Guiding-following wheeled mobile robotImage processingFuzzy visual servo feedback controlPath planning
相關次數:
  • 被引用被引用:1
  • 點閱點閱:526
  • 評分評分:
  • 下載下載:130
  • 收藏至我的研究室書目清單書目收藏:1
本論文的目的是實現一個基於影像處理的輪型機器人避障及機器人間之相互追蹤控制,接著我們提出一個模糊視覺伺服迴授控制器使輪型機器人在具有未定參數及外界干擾的環境下, 完成避障軌跡規劃。本體架構整合了三個部分, 分別是影像處理、模糊視覺伺服迴授控制、及前導追隨機器人。藉由WIFI 無線傳輸, 使輪型機器人透過影像處理中的連通標記將物體影像的重心座標擷取出來, 然後計算影像中的物體面積和兩物體間的實際距離, 將結果當作設計控制器的依據, 接著我們使用Lyapunov 穩定準則推導控制器穩定度的條件。在這裡我們將模擬及實驗分為追蹤和避障兩部分, 利用模糊視覺伺服迴授控制器作為實現輪型機器人追蹤和移動, 調整輪型機器人速度與方向以達成物體的追蹤控制。當前導機器人透過影像發現障礙物時, 我們提出一個基於橢圓的避障軌跡規劃, 讓機器人能夠以最短路徑避開障礙物, 而追隨機器人便藉由攝影機以及感測器來得知兩機器人之間的距離。接著將追蹤和避障結合, 當做轉換輪型機器人為前導機器人或追隨機器人的機制。
The main purpose of this thesis is to establish the obstacle avoidance and guidingfollowing path planning trajectory tracking of the wheeled mobile robots using fuzzy visual servo feedback control. The fuzzy visual servo feedback control is proposed for achieving obstacle avoidance and guiding-following path planning trajectory tracking with uncertainties and external friction disturbances. Using fuzzy basis functions, the deviation between the position of WMR and the coordinates of the center of ground path can be reduced, and the speed and direction of the WMR for tracking ground path can be achieved. The structures are integrated by three parts: image processing algorithm, fuzzy visual servo control algorithm, and guiding-following mobile robots. The camera captures the image of the center of gravity coordinates of the ground path by the Connected-Component Labeling of the captured image. Then, we can obtain the relationship between actual distance from obstacle through image object area. A collision-free path planning is then established based on an ellipse trajectory to avoid obstacle for WMR. A switching control strategy is proposed for mobile robots to serve as the guiding or the following one. The stability of the closed-loop system are proved by using Lyapunov function candidate. Finally, simulation and experiments are used to show the effectiveness of the proposed control scheme for obstacle avoidance and guiding-following trajectory tracking of the mobile robots.
ACKNOWLEDGEMENTS I
ABSTRACT (IN ENGLISH) II
ABSTRACT (IN CHINESE) III
TABLES OF CONTENTS VI
LIST OF FIGURES IX
LIST OF TABLES XI
1 INTRODUCTION 1
1.1 Backgroud and motivation 1
1.2 Review of the literature 1
1.3 Overview of the research system 3
1.4 Structure of the Thesis 3
2 CONSTRUCTION AND HARDWARE OF THE X80 AND I90
ROBOTS 5
2.1 The I90 robot 6
2.1.1 WiRobot SDK component 6
2.1.2 DC motors 8
2.2 Sensors of the I90 robot 9
2.2.1 Sharp infrared sensors 10
2.2.2 PTZ network camera 10
2.3 X80 robot 11
IV
2.3.1 Sensors and camera of the X80 robot 11
3 THE IMAGE PROCESSING 15
3.1 RGB color description 15
3.2 Image binarization 16
3.3 The noise of binary image 17
3.3.1 Mathematical morphology 18
3.3.2 Dilation 18
3.3.3 Erosion 19
3.4 Connected components labeling 20
3.5 The center of gravity coordinate of image block 21
4 PROBLEM STATEMENT 25
4.1 Motion equations of the WMRS 25
4.2 Steering angles and distances of the WMR 28
5 THE COLLISION-FREE PATH PLANNING AND TRACKING
CONTROL 31
5.1 The Collision-Free Path Planning 31
5.2 The Tracking Control For The Robot with Fuzzy Control 38
6 THE RESULTS OF EXPERIMENT 43
6.1 Experiment I: Experiments for situation 1 43
6.2 Experiment II:Experiments for situation 2 46
6.3 Experiment III: Experiments for situation 3 50
6.4 Experiment IV: Experiments for situation 4 53
6.5 Experiment V: Experiments for situation 5 56
V
7 CONCLUSIONS AND FUTURE RESEARCH 61
REFERENCES 62
[1] Lu, M.-C., & Wang, W.-Y. (2006). Image-based distance and area measuring systems. IEEE Sensor Jouranl, 6 (2), 495-503.
[2] Hsu, C.-C., Lu,M.-C., Wang, W.-Y., & Lu, Y.-Y. (2009). Three-dimensional measurement of a remote object with a single CCD camera. IEEE Sci.Meas. Technol, 3 (3), 197-207.
[3] Yu, J., Amores, J., Sebe, N., Radeva, P., & Tian, Q. (2008). Distance learning for similarity estimation. IEEE Transactions on Pattern Analysis And Machine Intelligence, 30 (3), 451-462.
[4] Wang, Y., Lang, H., & de Silva, C.W. (2010). A hybrid visual servo controller for robust grasping by wheeled mobile robots. IEEE/ASME Transactions on Mechatronics, 15 (5), 757-769.
[5] Chen, C.C. (2007). The design of autonomous vehicle with real-time object
tracking. Ph.D. dissertation, Dept. Elect. Eng., National Central University
Taoyuan, Taiwan.
[6] Chen, R.P. (2010). The research of distance estimation for moving car-like robots based on real-time image recognition. Ph.D. dissertation, Dept. Elect. Eng., Tatung University, Taipei, Taiwan.
[7] Adetola, V., & Guay, M. (2010). Performance improvement in adaptive control
of linearly parameterized nonlinear systems. IEEE Transactions on Automatic Control, 55 (9), 2182-2186. 62
[8] Hsueh, Y.-C., & Su, S.-F. (2012). Learning error feedback design of direct
adaptive fuzzy control systems. IEEE Transactions on Fuzzy System, 20(3), 536-545
[9] Das, T., & Kar, I.N. (2006). Design and implementation of an adaptive fuzzy
logic-based controller for wheeled mobile robots. IEEE Transactions on Control
System Technology, 14 (3), 501-510.
[10] Lee, Y.H. (2010). Trajectory tracking and error correction control for car-like Robots. Ph.D. dissertation, Dept. Elect. Eng., Tatung University, Taipei, Taiwan.
[11] Ichihara, Y., & Ohnishi, K. (2006). Path planning and tracking control of wheeled mobile robot considering robot’s capacity. Department of System Design Engineering, Keio University.
[12] Wang, F.-J., & Zhang, B. Path tracking control for a four wheel differentially steered vision robot. China Agricultural University, Beijing China, 1608-1611.
[13] Amoozgar, M.H., & Zhang, Y.M. (2012). Trajectory tracking of wheeled mobile
robots: A kinematical approach. IEEE, 275-280.
[14] Chesi, G. (2009). Visual servoing path planning via homogeneous forms and
LMI optimizations. IEEE Transactions on Robotics, 25 (2), 281-291
[15] Lundgren, M. (2003). Path tracking and obstacle avoidance for a miniature
robot. Master Thesis, Department of Computer Science Umea University. 63
[16] Shuen, L.C. (2004). Motion control and obstacle avoidance path planning of a wheeled mobile robot. Ph.D dissertation, Dept. Elect. Eng., National Central
University Taoyuan, Taiwan.
[17] Ge, J., Luo, Y., & Tei, G. (2009). Real-time obstacle avoidance for manipulators and mobile robots. IEEE Transaction on Intelligent Transportation Systems, 10 (2), 283-298.
[18] Yeh, H.-H. (2009). Path planning and control for a mobile robot using visual recognition. Ph.D. dissertation, Dept. Elect. Eng., Tatung University, Taipei, Taiwan.
[19] Tsai, C.-Y., & Song, K.-T. (2009). Visual tracking control of a wheeled mobile robot with system model and velocity quantization robustness. IEEE Transactions on Control System Technology, 17 (3), 520-527
[20] Tsai, C.-F., Tsai, P.-S., & Lin, Y.-H. (2009). Implementation of trajectory
tracking control for wheeled mobile robots based on fuzzy controller. Journal of China University of Science and Technology, 41, 45-65.
[21] Lin, C.-H. (2011). Trajectory tracking control of the guiding and following mobile robots with image processing. Ph.D. dissertation, Dept. Elect. Eng., Tatung University, Taipei, Taiwan.
[22] Chen, H.-Y. (2012). Tracking path strategy of a wheeled mobile robot based
on image recognition. Ph.D. dissertation, Dept. Elect. Eng., Tatung University,
Taipei, Taiwan. 64
[23] Tsai, P.-S., Wang, L.-S., & Chang, F.-R. (2006). Modeling and hierarchical
tracking control of tri-wheeled mobile robots. IEEE Transactions on Robotics, 22 (5), 1055-1062.
[24] K. Shojaei, A.M. Shahri., (2012). Output feedback tracking control of uncertain non-holonomic wheeled mobile robots: a dynamic surface control approach. IEEE Control Theory and Applications, IET, 6 (2), 216-228.
[25] Wenjie Dong, (2012). Tracking Control of Multiple-Wheeled Mobile Robots With Limited Information of a Desired Trajectory. IEEE Transactions on Robotics, 28 (1), 262-268. 65
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top