跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.62) 您好!臺灣時間:2025/11/19 02:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邱泓翔
研究生(外文):QIU, HONG-XIANG
論文名稱:應用超臨界二氧化碳電鍍銅膜與銅奈米線之研究
論文名稱(外文):Studies of Electroplating Cu-Film and Cu-Nanowires in The Supercritical Carbon Dioxide
指導教授:林昭任林昭任引用關係
指導教授(外文):LIN, ZHAO-REN
口試委員:許瑞祺蔡敬誠
口試委員(外文):XU, RUI-QICAI, JING-CHENG
口試日期:2016-10-17
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:105
語文別:中文
論文頁數:128
中文關鍵詞:超臨界二氧化碳陽極氧化鋁電沉積銅膜機械強度
外文關鍵詞:supercritical carbon dioxide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:341
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
本研究為利用超臨界二氧化碳(SC-CO2)電鍍來探討平面銅電鍍特性變化,並以陽極氧化鋁膜板為基板製備銅奈米線。超臨界二氧化碳銅電鍍操作壓力為10.2~20.4MPa、溫度35℃、攪拌轉速350rpm,結果發現在超臨界二氧化碳下電鍍,銅膜為多結晶之結構;且晶粒尺寸隨著壓力的增加而減小,根據文獻壓力可以加快成核速率與超臨界下形成的乳化鍍液具有週期電鍍特性(periodic-plating-characteristic),這類似脈衝電鍍效果,導致晶粒尺寸減小,壓力0.1MPa時晶粒尺寸58.6nm,隨著壓力上升至13.6MPa時晶粒尺寸減小至52.1nm。且銅膜硬度隨著晶粒尺寸的減小而上升,由常壓下0.1MPa晶粒尺寸58.6nm時的0.48GPa,提升至超臨界二氧化碳下13.6MPa晶粒尺寸52.1nm時的2.51GPa,機械性質整整提高約5倍。此外,在超臨界二氧化碳下進行奈米孔洞電鍍反應,比常壓電鍍具有較高的填孔率,因為在超臨界二氧化碳下幾乎沒有表面張力。

This study is to investigate the characteristic of copper electroplating in supercritical carbon dioxide(SC-CO2) electroplating process, and to apply this technology to produce Cu-nanowires in anodic aluminum oxide template. SC-CO2 is electroplating with operation pressure form 10.2 to 20.4MPa and temperature at 35℃, fixed rotational speed 350 rpm. Experimental result reveals, that the Cu-film is polycrystalline structure, and that the grain size of the Cu-film decreases with increasing pressure under SC-CO2 electroplating. According to the reference:(i) pressure can enhance nucleation rate, (ii) the emulsified electrolyte by SC-CO2 have a periodic plating characteristic when Sc–CO2–E is applied; this acts like pulsation electroplating leading to a decrease in grain size. At 0.1MPa the grain size is 58.6nm. By increasing the pressure to 13.6MPa, the grain size is reduced to 52.1nm. It was found that the copper film hardness is highly dependent on the grain size. For example, Cu-film at generated 0.1MPa hardness of the resulting Cu-film is 0.48GPa;in contrast, the hardness is about five-time higher 2.51GPa when the Cu-film was generated at 13.6MPa. In addition, the electroplating in supercritical carbon dioxide have higher filling rate rather than in ambient condition, because SC-CO2 has extremely low surface tension.

目錄
中文摘要........................I
Abstract........................II
目錄..........................IV
圖目錄.........................VIII
表目錄.........................XIII
第一章 緒論......................1
第二章 文獻回顧....................4
2.1 電鍍.......................4
2.1.1 電鍍的原理.................4
2.1.2 銅電鍍...................6
2.1.3 銅電鍍之添加劑...............10
2.2 超臨界電鍍...................16
2.2.1超臨界流體................16
2.2.2 超臨界二氧化碳..............18
2.2.3 超臨界二氧化碳乳化鍍液-界面活性劑.....22
2.2.4 超臨界二氧化碳乳化電鍍...........27
2.2.5 超臨界電鍍影響參數.............31
2.2.6 超臨界二氧化碳銅電鍍............37
2.3 陽極氧化鋁...................42
2.3.1陽極氧化鋁介紹..............42
2.3.2 生長機制..................44
2.3.3 阻擋層(barrier layer) .............46
2.4 究動機與目的..................49
第三章 實驗方法與步驟...............50
3.1 藥品與儀器...................50
3.1.1 藥品...................50
3.1.2 實驗儀器.................51
3.1.3 高壓反應設備...............52
3.1.4 分析儀器.................53
3.2 實驗架構與流程圖................54
3.2.1 實驗流程圖................55
3.3 超臨界電鍍實驗架設及其電流效率計算.......56
3.3.1 超臨界電鍍實驗架設............56
3.3.2 電流效率計算................60
3.4 陽極氧化鋁模板.................62
3.4.1 基材前處理................62
3.4.2 陽極氧化鋁製備..............63
3.4.3 填孔率分析之試片處理............67
3.5 銅電鍍.....................68
3.5.1改變操作壓力銅上銅電鍍..........69
3.5.2陽極氧化鋁上銅電鍍............71
3.6 分析儀器介紹..................72
3.6.1掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) ...................72
3.6.2 X-Ray繞射儀(X-Ray Diffraction, XRD) .....73
3.6.3 能量散射光譜儀(Energy Dispersive Spectrometers, EDS) ...................74
3.6.4 奈米壓痕試驗機(Triboscope, Hysitron USA) ...75
3.6.5 原子力顯微鏡(Atomic Force Microscope, AFM) .77
第四章 結果與討論..................78
4.1 電流效率與乳化的討論..............79
4.2 電鍍銅膜探討..................84
4.2.1 表面形貌分析...............84
4.2.2 結晶構造分析...............97
4.2.3 機械性質分析...............100
4.3 銅奈米線探討..................102
4.3.1 陽極氧化鋁形態觀察.............102
4.3.2 結晶構造分析................103
4.3.3 填孔率比較................105
4.3.4 阻擋層效應.................111
第五章 結論與未來展望...............119
5.1 結論......................119
5.2 未來展望....................121
參考文獻........................122

參考文獻

[1] T. F. M. Chang, M. Sone, A. Shibata, C. Ishiyama, Y. Higo, “Bright nickel film deposited by supercritical carbon dioxide emulsion using additive-free Watts bath”, Electrochimica Acta, 55 (2010) 6469–6475.

[2] 田福助, “電化學-理論與應用”, 高立圖書有限公司, (2014).

[3] 余鐵城, “表面處理”, 全華科技圖書股份有限公司, (1992).

[4] 張榮珍, “表面處理”, 文京圖書有限公司, (1992).

[5] 張裕祺, “表面處理”, 高立圖書有限公司, (1992).

[6] 白蓉生, “銅電鍍還原與實戰”, 台灣電路板協會, (2009).

[7] 賴耿陽, “實用電鍍技術全集”, 復漢出版社, (1998).

[8] A. Radisic, O. Luhn, H. G. G. Philipsen, Z. E. Mekki, M. Honore, S. Rodet, S. Armini, C. Drijbooms, H. Bender, W. Ruythooren, “Copper plating for 3D interconnects”, Microelectronic Engineering, 88 (2011) 701–704.

[9] K. Kondo, T. Matsumoto, K. Watanabe, “Role of Additives for Copper Damascene Electrodeposition Experimental Study on Inhibition and Acceleration Effects”, Journal of The Electrochemical Society, 151 (2004) C250-C255.

[10] Z. V. Feng, X. Li, A. A. Gewirth, “Inhibition Due to the Interaction of Polyethylene Glycol, Chloride, and Copper in Plating Baths: A Surface-Enhanced Raman Study”, J. Phys. Chem. B, 107 (2003) 9415-9423.

[11] K. R. Hebert, S. Adhikari, J. E. Houser, “Chemical Mechanism of Suppression of Copper Electrodeposition by Poly(ethylene glycol)”, Journal of The Electrochemical Society, 152 (2005) C324-C329.

[12] T. P. Moffat, D. Wheeler, and D. Josell, “Electrodeposition of Copper in the SPS-PEG-Cl Additive System”, Journal of The Electrochemical Society, 151 (2004) C262-C271.

[13] U. Landau, R. Akolkar, “Wafer-scale Current and Potential Transients during Copper Metallization of Semiconductor Interconnects”, The Electrochemical Society, 206 (2004) 1116.

[14] K. E. Toghill, M. A. Mendez, P. Voyame, “Electrochemistry in supercritical fluids: A mini review”, Electrochemistry Communications, 44 (2014) 27–30.

[15] J. Hu, W. Deng, “Application of supercritical carbon dioxide for leather processing”, Journal of Cleaner Production, 113 (2016) 931-946.

[16] M. Stangl, M. Liptak, J. Acker, V. Hoffmann, S. Baunack, K. Wetzig, “Influence of incorporated non-metallic impurities on electromigration in copper damascene interconnect lines”, Thin Solid Films, 517 (2009) 2687–2690.

[17] E. Reverchon, R. Adami, “Nanomaterials and supercritical fluids”, J. of Supercritical Fluids, 37 (2006) 1–22.

[18] Z. An, M. Toda , T. Ono, “Improved thermal interface property of carbon nanotube–Cu composite based on supercritical fluid deposition”, Carbon, 75 (2014) 281–288.

[19] J. R. Dean, “Applications of Supercritical Fluids in Industrial Analysis”, Published in USA and Canada by CRC Press, (1993).

[20] M. M. Rahman, M. Sone, H. Uchiyama, M. Sakurai, S. Miyata, T. Nagai, Y. Higo, H. Kameyama, “Novel porous film by electroplating with an emulsion of supercritical CO2”, Surface & Coatings Technology, 201 (2007) 7513–7518.

[21] T. F. M. Chang, M. Sone, “Function and mechanism of supercritical carbon dioxide emulsified electrolyte in nickel electroplating reaction”, Surface & Coatings Technology, 205 (2011) 3890–3899.

[22] 曹恆光, 連大成, “淺談微乳液”, 物理雙月刊, 23 (2001) 488-493.

[23] H. Yoshida, M. Sone, H. Wakabayashi, H. Yan, K. Abe, X. T. Tao, A. Mizushima, S. Ichihara, S. Miyata, “New electroplating method of nickel in emulsion of supercritical carbon dioxide and electroplating solution to enhance uniformity and hardness of plated film”, Thin Solid Films, 446 (2004) 194–199.

[24] 黃秋玉, 林昭任, “應用超臨界二氧化碳電鍍鎳膜與鎳奈米線之研究”, 國立中正大學化學工程學系, (2007).

[25] 侯富雄, 林昭任, “超臨界二氧化碳下黃金電鍍之研究”, 國立中正大學化學工程學系, (2007).

[26] 蔡鎮安, 林昭任, “利用超臨界二氧化碳電鍍碲化鉍熱電奈米線之研究”, 國立中正大學化學工程學系, (2009).


[27] 吳東峰, 林昭任, “應用超臨界二氧化碳電鍍鐵鎳合金與利用PS
球為模板電鍍碲化鉍熱電材料之研究”, 國立中正大學化學工程
學系, (2010).

[28] 沈峙璁, 林昭任, “應用超臨界二氧化碳於電鍍鎳磷合金之研究”, 國立中正大學化學工程學系, (2010).

[29] 莊惠順, 林昭任, “應用超臨界二氧化碳於電鍍銅合金之研究”, 國立中正大學化學工程學系, (2013).

[30] A. M. Rashidi, A. Amadeh, “The effect of current density on the grain size of electrodeposited nanocrystalline nickel coatings”, Surface & Coatings Technology, 202 (2008) 3772–3776.

[31] F. Ebrahimi, Z. Ahmed, “The effect of current density on properties of electrodeposited nanocrystalline nickel”, Journal of Applied Electrochemistry, 33 (2003) 733-739.

[32] T. F. M. Chang, T. Shimizu, C. Ishiyama, M. Sone, “Effects of pressure on electroplating of copper using supercritical carbon dioxide emulsified electrolyte”, Thin Solid Films, 529 (2013) 25–28.

[33] N. Shinoda, T. Shimizu, T.-F. M. Chang, A. Shibata, M. Sone, “Cu electroplating using suspension of supercritical carbon dioxide in copper-sulfate-based electrolyte with Cu particles”, Thin Solid Films, 529 (2013) 29–33.

[34] S. K. Cho, T. Lim, H. K. Lee, J. J. Kim, “A Study on Seed Damage in Plating Electrolyte and Its Repairing in Cu Damascene Metallization”, Journal of The Electrochemical Society, 157 (2010) D187-D192.

[35] E. D. Niemeyer, F. V. Bright, “The pH within PFPE Reverse Micelles Formed in Supercritical CO2”, J. Phys. Chem. B, 102 (1998) 1474-1478.

[36] N. Shinoda, T. Shimizu, T. F. M. Chang, A. Shibata, M. Sone, “Filling of nanoscale holes with high aspect ratio by Cu electroplating using suspension of supercritical carbon dioxide in electrolyte with Cu particles”, Microelectronic Engineering, 97 (2012) 126–129.

[37] J. M. Blackburn, D. P. Long, A. Cabanas, J. J. Watkins, “Deposition of Conformal Copper and Nickel Films from Supercritical Carbon Dioxide”, Science, 294 (2001) 141.

[38] T. Shimizu, Y. Ishimoto, T. F. M. Chang, H. Kinashi,T. Nagoshi, T. Sato, M. Sone, “Cu wiring into nano-scale holes by electrodeposition insupercritical carbon dioxide emulsified electrolyte with a continuous-flow reaction system”, J. of Supercritical Fluids, 90 (2014) 60–64.

[39] M. Balde, A. Vena, B. Sorli, “Fabrication of porous anodic aluminium oxide layers on paper forhumidity sensors”, Sensors and Actuators, B 220 (2015) 829–839.

[40] J. Liu, S. Liu, H. Zhou, C. Xie, Z. Huang, C. Fu, Y. Kuang, “Preparation of self-ordered nanoporous anodic aluminum oxide membranes by combination of hard anodization and mild anodization”, Thin Solid Films, 552 (2014) 75–81.

[41] R. S. Alwitt, “ANODIZING”, Electrochemistry Encyclopaedia Boundary Technologies Inc: Northbrook IL60065-0622 USA, (2002).

[42] J. P. O’Sullivan, G. C. Wood, “Nucleation and growth of porous anodic films on aluminium”, Proc. Roy. Lond. A. Mat., A317 (1970) 511-543.

[43] G. E. J. Poinern, N. Ali, D. Fawcett, “ Progress in Nano-Engineered Anodic Aluminum Oxide Membrane Development”, Materials, 4 (2011) 487-526.

[44] K. Nielsch, F. Muller, A.-P. Li, U. Gosele, “Uniform Nickel Deposition into Ordered Alumina Pores by Pulsed Electrodeposition”, Adv. Mater, 12 (2000) 582-586.

[45] F. Keller, M. S. Hunter, D. L. Robinson, “Structural Features of Oxide Coatings on Aluminum”, J. Electrochem. Soc., 100 (1953) 411-419.

[46] A. Saedi, M. Ghorbani, “Electrodeposition of Ni–Fe–Co alloy nanowire in modified AAO template”, Materials Chemistry and Physics, 91 (2005) 417–423.

[47] Y. Mei, L. J. hua, L. S. Mei, “Electrochemical modification process of anodic alumina membrane”, Trans. Nonferrous Met. SOC. China, 16 (2006) 681-684.

[48] D. R. Uhlmann, J. F. Hays, D. Turnbull, Phys. Chem. Glasses, 7 (1966) 159.

[49] Y. X. Zhuang, J. Z. Jiang, T. J. Zhou, H. Rasmussen, L. Gerward, M. Mezouar, W. Crichton, A. Inoue, “Pressure effects on Al89La6Ni5 amorphous alloy crystallization”, Applied Physics Letters, 77 (2000) 4133-4135.

[50] 邱士益, 蔡文達, “超臨界二氧化碳流體電鍍鎳基複合鍍層性質之研究”, 國立成功大學材料科學及工程學系, (2012).

[51] H. Ma, Y. Zou, A. S. Sologubenko, R. Spolenak, “Copper thin films by ion beam assisted deposition: Strong texture, superior thermal stability and enhanced hardness”, Acta Materialia, 98 (2015) 17–28.

[52] 江幸蓉, 朱訓鵬, “以分子靜力學研究雙晶銅薄膜壓痕及刮痕之變形機制”, 國立中山大學機械與機電工程學系, (2009).

[53] H. Kinashi, T. Nagoshi, T. F. M. Chang, T. Sato, M. Sone, “Mechanical properties of Cu electroplated in supercritical CO2 emulsion evaluated by micro-compression test”, Microelectronic Engineering, 121 (2014) 83–86.

[54] T. Shimizu, N. Shinoda, T. F. M. Chang, A. Shibata, M. Sone, “Crystal growth on novel Cu electroplating using suspension of supercritical CO2 in electrolyte with Cu particles”, Surface & Coatings Technology, 231 (2013) 77–80.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊