跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/09 20:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李安妮
研究生(外文):Eli Putriani
論文名稱:了解1906年梅山地震發生土壤液化區域的P波和S波速度構造分布
論文名稱(外文):Distribution of P and S wave velocities in the area of liquefaction occurred in 1906 Meishan earthquake Southwestern Taiwan
指導教授:石瑞銓石瑞銓引用關係
指導教授(外文):Shih, Ruey-Chyuan
口試委員:張永孚張智雄
口試日期:2018-01-10
學位類別:碩士
校院名稱:國立中正大學
系所名稱:地震研究所
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:英文
論文頁數:134
中文關鍵詞:梅山斷層土壤液化折射震測MASW
外文關鍵詞:Meishan FaultLiquefactionSeismic refractionMASW
相關次數:
  • 被引用被引用:0
  • 點閱點閱:378
  • 評分評分:
  • 下載下載:32
  • 收藏至我的研究室書目清單書目收藏:1
The Southwestern Taiwan has higher potential seismic risks among the island. In
1906 the Meishan earthquake of magnitude 7.1 caused very severe damages. The
associated Meishan fault was believed extended from Meishan westerly to Hsingang area
for 23 km long. However, only the eastern part of the fault could be traces on the surface.
The western part of the Meishan fault was simply proposed from the observed lineation of
sand blow from the middle of the fault, the Minxong area westerly to the Hsingang area.
The purpose of this paper is hope to prove the extension of this fault by using near surface
P wave and S wave velocities and the seismic reflection images acquired across the
suspicious fault location. Totally, we have conducted 20 seismic velocity survey lines,
and one reference seismic reflection lines. The P and S wave velocities variations were
measured and used to analyze depth of the water table, the elastic modulus, soil porosity
and the safety factor for soil liquefaction assessment. Study results show this technique is
effective within 17 m deep from surface and the soil have high liquefaction potential
around the western part of the Meishan. Yet, in the upper part, some areas have hard soil
and from interpreting seismic reflection data was known a small fault (normal fault in
Chiayi area). Finally, study results indicate that high liquefaction potential areas are the
same as those of sand blow area observed in 1906 but which is more likely dependent on
the formation of the soil around the study area. In addition, the seismic method is efficient
and can be applied to a large area.
Tables of contains
Acknowledgments......................................................................................................i
Abstract .................................................................................................................. ii
Table of contents .................................................................................................... iii
List of figure ............................................................................................................ vi
List of tables............................................................................................................. ix
Chapter 1 Introduction ............................................................................................ 1
1.1 The research motivation and purpose ................................................................ 1
1.2 Soil liquefaction ................................................................................................ 6
1.2.1 Process of soil liquefaction ....................................................................... 6
1.2.2 Mechanism of soil liquefaction ................................................................ 9
1.2.3 Factor of liquefaction ............................................................................ 10
1.2.4 Condition for soil liquefaction ............................................................... 10
1.2.5 Effect of soil liquefaction ...................................................................... 11
1.3 Meishan fault and Meishan earthquake ........................................................... 12
1.4 Overview research area ................................................................................... 15
1.4.1 Topography area ..................................................................................... 15
1.4.1 Geology of the study area ....................................................................... 16
1.4.2 Hydrological area ................................................................................... 18
1.5 Previous study ................................................................................................ 19
1.6 The content of study ........................................................................................ 19
Chapter 2 Methods of research .............................................................................. 21
2.1 The Process of research .................................................................................. 22
2.2 Design of line and data collection .................................................................... 23
2.3 Seismic data analysis ...................................................................................... 29
2.3.1 Seismic refractive tomography (SRT) ..................................................... 29
2.3.2 Multi-channel active source surface wave velocity analysis (MASW) ..... 34
2.3.3 Groundwater level .................................................................................. 39
2.3.4 Elastic properties of soil ......................................................................... 42
2.4 Assessment of soil liquefaction ....................................................................... 44
2.4.1 Cyclic resistance ratio (CSR) .................................................................. 44
2.4.1.1 Shear stress reduction factor ....................................................... 45
2.4.1.2 The relationship of attenuation ................................................... 47
iv
2.4.2 Cyclic resistance ratio (CRR)................................................................. 48
2.4.2.1 Bayesian updating rule ............................................................... 49
2.4.2.2 Limit state function .................................................................... 50
2.4.3 Assessment safety factor (FS) ................................................................ 51
Chapter 3 The result of data processing ................................................................ 53
3.1 The result in Minxong area ........................................................................... 53
3.1.1 The result of line 1 Minxong area ........................................................... 57
3.1.2 The result of line 2 Minxong area ........................................................... 60
3.1.3 The result of line 3 Minxong area ........................................................... 63
3.1.4 The result of line 4 Minxong area ........................................................... 66
3.1.5 The result of line 5 Minxong area ........................................................... 69
3.1.6 The result of line 6 Minxong area ........................................................... 72
3.1.7 The result of line 7 Minxong area ........................................................... 75
3.1.8 The result of line 14 Minxong area ......................................................... 78
3.1.9 The result of line 15 Minxong area ......................................................... 81
3.1.10 The result of line 16 Minxong area ....................................................... 84
3.2 The result in Xingkang area .......................................................................... 87
3.2.1 The result of line 8 Xingkang area .......................................................... 89
3.2.2 The result of line 9 Xingkang area .......................................................... 92
3.2.3 The result of line 10 Xingkang area ........................................................ 95
3.2.4 The result of line 11 Xingkang area ........................................................ 98
3.2.5 The result of line 12 Xingkang area ...................................................... 101
3.2.6 The result of line 19 Xingkang area ...................................................... 104
3.3 The result in Yuemei area ........................................................................... 107
3.3.1 The result of line 13 Yuemei area ......................................................... 109
3.3.2 The result of line 17Yuemei area .......................................................... 112
3.3.3 The result of line 18 Yuemei area ......................................................... 115
3.3.4 The result of line 20 Yuemei area ......................................................... 118
3.4 The result seismic reflection data ............................................................... 121
Chapter 4 Discussion and conclusion .................................................................. 122
4.1 Discussion..................................................................................................... 122
4.1.1 Velocity profile an effective with depth ...................................................... 122
4.1.2 Groundwater level ...................................................................................... 122
4.1.3 The similarities and differences line area ................................................... 123
4.1.3.a The result of P wave .......................................................................... 123
v
4.1.3.b The result of S wave .......................................................................... 123
4.1.3.c The result of elastic properties............................................................ 123
4.1.4 The assessment potential of soil liquefaction ............................................. 125
4.1.5 The condition soil liquefaction after earthquake ......................................... 125
4.1.6 The extended of fault.................................................................................. 125
4.1.6 The probability of soil liquefaction ............................................................. 126
4.2 Conclusion .................................................................................................... 129
4.3 Future work and outlook ............................................................................... 129
References ......................................................................................................... 130
Andrus, R., and Stokoe, L. ( 1997). Liquefaction resistance based on shear wave velocity.
NCEER workshop on evaluation of liquefaction resistance of soils, Salt lake city,
utah national center for earthquake engineering research, 89 - 128.
Andrus, R., and Stokoe, L. (1999). A liquefaction evaluation procedure based on Shear
wave velocity. Draf guidelines for evaluating liquefaction resistance using shear
wave velocity measurement and siplified procdure National institute of standart
and technology Guthersbur, 469 – 474.
Andrus, R., and Stokoe, L. (2000). Liquefaction resistance of soils from Shear wave
velocity. Journal of geotechnical and geoenvironmental engineerin,. 1015 - 1025.
Anomohanran, O. (2013). Seismic Refraction Method: A technique for determining the
thickness of stratified substratum. American Journal of applied sciences, 857 -862.
Azwin, I. N., Saad, R., and Nordiana, M. (2013). Applying the seismic refraction
tomography for site characterization. APCBEE Procedia, 227 - 231.
Bery, A. (2013). High resolution in seismic refraction tomography for environmental
study. International journal of geoscience, 792 - 796.
Bonilla, Andy, and Mark, G. (1975). A review of recently active faults in Taiwan. USGS
open file report, 41 -75.
Cetin, K., Seed, R., Kiureghian, A., Tokimatsu, K., Harder, L., Kayen, R., and Moss, R.
(2004). Standard penetration test based probabilistic and deterministic assessment
of seismic soil liquefaction potential. Journal of geotechnical and
geoenvironmental engineering, 1314 - 1340.
Chang, H. C. (1985). Geologic map of taiwan chiayi sheet. Explanatory text for the
geologic map of taiwan, 41 - 120.
Chen, M. (2002). Causes of soil liquefaction, disasters and rehabilitation. Proceedings of
the symposium on active faults and seismic disasters in Taiwan., 107 – 123.
Chen, (2010). Variation of the near surface of P wave and S wave velocities in a soil
liquefaction potential region. Master dissertation, 1 - 94.
131
Chih, P. L., Cheng, C. and Chang, T. S. (2004). The use of MASW method in the
assessment of soil liquefaction potential. Journal of soil dynamics and earthquake
engineering, 689 – 698.
Ehsan P. H. L. (2016). Application of near surface seismic refraction tomography and
multichannel analysis of surfacewaves for geotechnical site characterizations.
Journal of engineering geology, 100 – 113.
Grelle, G., and Guadagno, F. M. (2009). Seismic refraction methodology for groundwater
level determination: “Water seismic inde ”. Journal of applied geophysics, 301 -
320.
Hayashi, K., and Suzuki, H. (2004). CMP cross correlation analysis of multi channel
surface wave data. Journal of exploration geophysics.7 – 13.
Hazen, A. (1918). A Study of the Slip in the Calaveras Dam. Engineering News Record,
1158 - 1164.
Huang, C. (2013). Short note near surface shear wave velocity structure of the Chiayi area,
Taiwan. Bulletin of the seismological society of America,1154 – 1164.
Hung, C., Chien, K., Ho, C., Wang, Wen, S., Lin, C., Wen, Y.,Y. (2015). Groundwater –
strain coupling before the 1999 mw 7.6 Taiwan Chi-Chi earthquake. Journal of
hydrology, 378–384.
Ho, C. S. (1988). An introduction to the geology of taiwan explanatory text of the
geologic map of taiwan.second edition: The ministry of economic affair, Taipe,
Taiwan, R.O.C, 20-230.
Ishihara, K. (1985). Stability of natural deposits during earthquakes. Paper presented at
the proc., 11th int. conf. on soil mechanics and foundation engineering, 245 - 261.
Ismail, A., Bret, D.F., and Metwaly, M. (2014). Comparing continuous profiles from
MASW and shear wave reflection seismic methods. Journal of applied geophysics,
67 - 77.
Kayabali, K. (1996). Soil liquefaction evaluation using shear wave velocity. Journal of
engineering geology, 121 - 127.
132
Kayen, R., Moss, R., Thompson, E., Seed, R., Cetin, K.., Kiureghian, A,. Tokimatsu, K.
(2013). Shear wave velocity based probabilistic and deterministic assessment of
seismic soil liquefaction potential. Journal of geotechnical and geoenvironmental
engineering, 407 - 419.
Kearey, P., M. Brooks, and I. Hill. (2013). An introduction to geophysical exploration.
John Wiley and Sons, 1 - 281.
Kwamboka., (2016). Soil Liquefaction. Mini Thesis Department of civil and construction
einginnering University of Nairobi, 1 - 83.
Liu, K. S., and Tsai, Y. B. (2005). Attenuation relationships of peak ground acceleration
and velocity for crustal earthquakes in Taiwan. Bulletin of the seismological
society of america, 1045.
Moss, R., Seed, R., Kayen, R., Stewart, J., Derkiureghian, A., & Cetin, K. (2006). CPT
Based probabilistic and deterministic assessment of in situ seismic soil
liquefaction potential. Journal of geotechnical and geoenvironmental engineering,
1032 - 1051.
Ravi, K,. and Mittal, M. (2004). Liquefaction behaviour of sand during vibrations. 13th
world conference on earthquake engineeringvancouver, 1 - 7.
Noutash, K., (2012). The evaluation of soil liquefaction potential using shear wave
velocity based on empirical relationships. International journal of engineering
(IJE), 218 - 232.
Omori, F. (1907). Preliminary note on the formosa earthquake of march 17, 1906, the
three earthquakes of Mino Owari, formosa, and San Francisco. Imp. Earthquake
Inves. Comm, 53 - 71.
Park, C., R. Miller., and J. Xia. (1998). Imaging dispersion curves of surface waves on
multi-channel record, SEG Technical Program Expanded Abstracts 1998: SEG
Technical Program Expanded Abstracts, Society of Exploration Geophysicists, p.
1377-1380.
Park, C., R., Miller and Xia, J. (1999). Multichannel analysis of surface waves: Journal of
geophysiscs , 800 - 808.
133
Park, C., R., Miller, Xia, J., and Ivanov, J. (2001). Seismic characterization of
geotechnical sites by Multichannel analysis of surfaces waves (MASW) method.
Tenth international conference on soil dynamics and earthquake engineering
(sdee), 1 - 16.
Pasquet, S., Bodet, L., Dhemaied, A., Mouhri, A., Vitale, Q., Rejiba, F., Flipo, N., and
Guérin, R. (2015). Detecting different water table levels in a shallow aquifer with
combined P wave surface and S-H wave surface, Insights from VP/VS or
Poisson's ratios. Journal of applied geophysic, 38 - 50.
Pegah, E., and & Liu, H. (2016). Application of near-surface seismic refraction
tomography and multichannel analysis of surface waves for geotechnical site
characterizations. Journal of engineering geology, 100 - 113.
Peng, R. C. S., Hui, C. C., Wen, C. L., Lin,Wen, S. C., Shih, T. S., Shih, T. L. (2004).
The Meishan fault and its Shear zones structure in the Near Surface. Ministry of
economic affairs central geological survey, 85 – 98.
Robertson, K.., Woeller, D., and Finn, W. (1992). Seismic cone penetration test for
evaluating liquefaction potential under cyclic loading. Canadian Geotechnical
Journal, 686 – 695.
Seed, H. B., and Idriss. 1971. Simplified procedure for evaluating soil liquefaction
potential: Journal of soil mechanics & foundations, 1- 230.
Sheriff, R. E., and Geldart, L. P. (1995). Exploration seismology, Cambridge university
pres,. 1- 560.
Sawasdee, Y., Chedtaporn, S., Tanit, C. (2013). Joint analysis of shear wave velocity
from SH wave refraction and MASW techniques for SPT-N estimation.
SongklanakarinJ. sci. technol journal, 333 – 344.
Tech, C, A. (1985). Liquefaction of soils during earthquakes. National Academy Press
Washington, D.C, 1 - 258.
Tezcan, A., Keceli., and Ozdemir., Z. (2006). Allowable bearing capacity of shallow
foundations based on shear wave velocity. Geotechnical and geological
engineering journal, 203 - 218.
Thomas, E. (1990). Spherical stress Waves. Weapons laboratory kirtland afb, 1 - 271.
134
Tsao, A. (2017).Subsurface Images of the Meishan Fault and its Nearby Structures by
using the seismic reflection data, Master disertation, 1-115.
Wang, C.,Wu,Y. M., and Yun, X. (2015). Bayesian analysis on earthquake magnitude
related to an active fault in Taiwan. Soil dynamics and earthquake engineering,
18– 26.
Wu, Y. (2017). Assesment of soil liquefaction potential before and after earthquake by
using the variations of Vp and Vs. Master disertation, 1 - 148.
Yeeping, C and Chen, W. L. (2001). Changes of groundwater level due to the 1999 Chi-
Chi earthquake in the Choshui river alluvial fan in Taiwan. Bulletin of the
seismological society of America, 1062 – 1068.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top