[1] Criado, M., A. Ferna'ndez-Jime'nez, and A. Palomo, Alkali activation of fly ash: Effect of the SiO2/Na2O ratio Part I: FTIR study,Microporous and Mesoporous Materials 106 (2007) 180–191, 2007.106: p. 180-191.
[2] Gartner, E., Industrially interesting approaches to low-CO2 cements,CEMENT and CONCRETE RESEARCH, 2004.34: p. 1489-1498.
[3] Deventer, J.V., J. Provis, P. Duxson, and D. Brice, Chemical research and climate change as drivers in the commercial adoption of alkali activated materials,Waste Biomass Valor, 2010: p. 1145-1155.
[4] Chi, M., Effects of dosage of alkali-activated solution and curing conditions on the properties and durability of alkali-activated slag concrete,Construction and Building Materials, 2012.35: p. 240-245.
[5] Akçaözog˘lu, S. and C. Ulu, Recycling of waste PET granules as aggregate in alkali-activated blast furnace slag/metakaolin blends,Construction and Building Materials, 2014. 58: p. 31-37.
[6] Roy, D.M., Alkali-activated cements Opportunities and challenges,Cement and Concrete Research, 1999.29: p. 249-254.
[7] Palomo, A., M.W. Grutzeck, and M.T. Blanco, Alkali-activated fly ashes: A cement for the future,Cement and Concrete Research 1999.29: p. 1323-1329.
[8] Yazıcı, H., H. Yig˘iter, A.S. Karabulut, and B. Baradan, Utilization of fly ash and ground granulated blast furnace slag as an alternative silica source in reactive powder concrete,Fuel 87, 2008.87: p. 2401-2407.
[9] Lin, K.-L., The influence of municipal solid waste incinerator fly ash slag blended in cement pastes,Cement and Concrete Research 2005.35: p. 979-986.
[10] Li, C., H. Sun, and L. Li, A review: The comparison between alkali-activated slag (Si+Ca) and metakaolin (Si+Al) cements,Cement and Concrete Research 2010.40: p. 1341-1349.
[11] Hah, M.B., G.L. Saout, F. Winnefeld, and B. Lothenbach, Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags,Cement and Concrete Research, 2011.41(3): p. 301-310.
[12] Collins, F. and J.G. Sanjayan, Strength and shrinkage properties of alkali-activated slag concrete containing porous coarse aggregate,Cement and Concrete Research, 1999.29: p. 607 - 610.
[13] Chi, M. and R. Huang, Effects of Dosage and Modulus Ratio of Alkali-Activated Solution on the Properties of Slag Mortars,Advanced Science Letters, 2012.16(1): p. 7-12.
[14] Chi, M.-c., J.-j. Chang, and R. Huang, Strength and Drying Shrinkage of Alkali-Activated Slag Paste andMortar,Advances in Civil Engineering, 2012.1: p. 1-7.
[15] Chi, M.-c., R. Huang, and T.-L. Weng. Durability and Micro-structural Properties of Alkali-activated Slag Concrete. in 第三屆兩岸四地高性能混凝土國際研討會. 2012. 中國武漢.
[16] Chi, M.-c., J.-j. Chang, R. Huang, and Z.-l. Weng, Effect of Alkali-activators on the Strength Development and Drying Shrinkage of Alkali-activated Binder,Advanced Materials Research, 2012.482-484: p. 1012-1016.
[17] Davidovits, J., Mineral polymers and methods of making them, U. patent, Editor. 1982: USA1982.
[18] Granizo, M. and M. Blanco, Alkaline activation of metakoalin an isothermal conduction calorimetry study,Journal of Thermal Analysis, 1998.52: p. 957-965.
[19] Granizo, M., M. Blanco-Varela, and S. Martínez-Ramírez, Alkali activation of metakaolins: parameters affecting mechanical, structural and microstructural properties,Journal of Material Science 2007.42: p. 2934-2943.
[20] Granizo, M., M. Blanco-Varela, and P. A., Influence of the starting kaolin on alkali-activated materials based on metakaolin-Study of the reaction parameters by isothermal conduction calorimetry,Journal of Material Science, 2000.35: p. 6309-6315.
[21] De Silva, P.S. and F.P. Glasser, Pozzolanic activation of metakaolin,Advance in Cement Research, 1992.4(16): p. 167-178.
[22] De Silva, P.S. and F.P. Glasser, The hydration behaviour of metakaolin-Ca(OH)2 - sulphate binder, in The 9th International Congress on the Chemistry of Cement. 1992. p. 671 -6771992.
[23] Chi, M. and R. Huang, Effect of circulating fluidized bed combustion ash on the properties of roller compacted concrete,Cement & Concrete Composites, 2014.45: p. 148-156.
[24] Criado, M., A.F. Jiménez, I. Sobrados, A. Palomo, and J. Sanz, Effect of relative humidity on the reaction products of alkali activated fly ash,Journal of the European Ceramic Society 2012.32: p. 2799-2807.
[25] Hu, S., X. Guan, and Q. Ding, Research on optimizing components of microfine high-performance composite cementitious materials,Cement and Concrete Research, 2002.32: p. 1871-1875.
[26] Li, D., Z. Xu, Z. Luo, Z. Pan, and C. Lin, The activation and hydration of glassy cementitious materials,Cement and Concrete Research 2002.32: p. 1145-1152.
[27] Ferna´ndez-Jime´nez, A. and A. Palomo, Composition and microstructure of alkali activated fly ash binder: Effect of the activator,Cement and Concrete Research, 2005.35: p. 1984-1992.
[28] Chi, M. and R. Huang, Binding mechanism and properties of alkali-activated fly ash/slag mortars,Construction and Building Materials, 2013.40: p. 291-298.
[29] Chi, M. and Y. Liu, Effects of Fly Ash/Slag Ratio and Liquid/Binder Ratio on Strength of Alkali-activated Fly Ash/Slag Mortars,Applied Mechanics and Materials 2013. 377 p. 50-54.
[30] Ferna´ndez-Jime´nez, A. and A. Palomo. Alkali-activated fly ashes: properties and characteristics. in 11th International Congress on the Chemistry of Cement. 2003. Durban, South Africa.
[31] Terminology, J.D. Chemistry of geopolymeric systems. in Proceedings of 99 geopolymer conference. 1999.
[32] Hos, J., P. McCormick, and L. Byrne, Investigation of a synthetic aluminosilicate inorganic polymer,Journal of Material Science 2002.37: p. 2311-2316.
[33] Bernal, S., R. Gutierrez, and J. Provis, Engineering and durability properties of concretes based on alkali-activated granulated blast furnace slag/metakaolin blends,Construction and Building Materials, 2012.33: p. 99-108.
[34] Chi, M., Y. Liu, and R. Huang, Mechanical and Microstructural Characterization of Alkali-Activated Materials Based on Fly Ash and Slag,International Journal of Engineering and Technology, 2015. 7(1): p. 59-64.
[35] Arellano Aguilar, R., O. Burciaga Díaz, and J. Escalante García, Lightweight concretes of activated metakaolin-fly ash binders, with blast furnace slag aggregates,Constructure and Building Materials, 2010.24: p. 1166-1175.
[36] Rajamma, R., J.A. Labrincha, and V.M. Ferreira, Alkali activation of biomass fly ash–metakaolin blends,Fuel, 2012.98: p. 265-271.
[37] Smith, S., K. Teinsak, J. Chai, and P. Chindaprasirt, Compressive strength and degree of reaction of biomass- and fly ash-based geopolymer,Constructure and Building Materials, 2010.24: p. 236-240.
[38] 吳仁忠, 循環式流化床燃燒灰與粉煤底灰應用於回填料特性之研究, in 材料工程研究所. 2008, 國立台灣海洋大學2008.
[39] Mehta, P.K. and P.J.M. Monteiro, Concrete: Microstructure, Properties, and Materials. Fourth Edition ed. 2013: Prentice-Hall Inc.
[40] Gjørv, O.E., Durability of Concrete Structures,Arabian Journal for Science and Engineering, 2011.36( 2): p. 151-172.
[41] Provis, J.L., R.J. Myers, C.E. White, V. Rose, and J.S.J.v. Deventer, X-ray microtomography shows pore structure and tortuosity in alkali-activated binders,Cement and Concrete Research, 2012.42: p. 855-864.
[42] Fernando, P.-T., C.-G. Joao, and S. Jalali, Alkali-activated binders: A review Part 1. Historical background, terminology, reaction mechanisms and hydration products,Construction and Building Materials, 2008.22: p. 1305-1314.
[43] Aydın, S. and B. Baradan, The effect of fiber properties on high performance alkaliactivated slag/silica fume mortars,Composite B, 2013.45: p. 63-69.
[44] Hu, M., X. Zhu, and F. Long, Alkali-activated fly ash-based geopolymers with zeolite or bentonite as additives,Cement and Concrete Composites, 2009.31(10): p. 762-768.
[45] C. K. Yip and J.S.J.v. Deventer, Microanalysis of calcium silicate hydrate gel formed within a geopolymeric binder,Journal of Materials Science, 2003.38(18): p. 3851-3860.
[46] A. Buchwald, H. Hilbig, and C. Kaps, Alkali-activated metakaolin-slag blends—performance and structure in dependence of their composition,Journal of Materials Science, 2007.42(9): p. 3024-3032
[47] Buchwald, A., R. Tatarin, and D. Stephan, Reaction progress of alkaline-activated metakaolin-ground granulated blast furnace slag blends,Journal of Materials Science, 2009.44(20): p. 5609-5617.
[48] Cheng, T.W. and J.P. Chiu, Fire-resistant geopolymer produced by granulated blast furnace slag,Minerals Engineering, 2003.16(3): p. 205-210.
[49] Yip, C.K., J.L. Provis, G.C. Lukey, and J.S. van Deventer, Carbonate mineral addition to metakaolin-based geopolymers,Cement and Concrete Composites, 2008.30: p. 979-985.
[50] Oswaldo, B.-D.a., E.-G.J. Ivan, A.-A. Rat, and G. Alexander, Statistical analysis of strength development as a function of various parameters on activated metakaolin/slag cements,Journal of the American Ceramic Society 2010.93(2): p. 541-547.
[51] Yunsheng, Z., S. Wei, C. Qianli, and C. Lin, Synthesis and heavy metal immobilization behaviors of slag based geopolymers,Journal of Hazard Materials, 2007.143(1-2): p. 206-213.
[52] Wang, J., X.-l. Wu, J.-x. Wang, C.-z. Liu, Y.-m. Lai, and Z.-k. Hong, Hydrothermal synthesis and characterization of alkali-activated slag-fly ash-metakaolin cementitious materials,Microporous and Mesoporous Materials, 2012.155: p. 186-191.
[53] Zhang, Z., X. Yao, and H. Zhu, Potential application of geopolymers as protection coatings for marine concrete. I. Basic properties,Applied Clay Science 2010.49: p. 1-6.
[54] Krivenko, P. and S. Guziy, Fire resistant alkaline Portland cements. In: , in Alkali activated materials- research, production and utilization 3rd conference. 2007: Prague, Czech Republic. p. 333-3472007.
[55] Jumppanen, U.M., U. Diederichs, and K. Hinrichsmeyer, Materials properties of F-concrete at high temperature, in VTT Research Report 452. 1986, Technical Research Centre of Finland (VTT): Finland1986.
[56] Khale, D. and R. Chaudhary, Mechanism of geopolymerization and factors influencing its development: a review,Journal of Material Science, 2007.42: p. 729-746.
[57] Shi, C., P.V. Krivenko, and D. Roy, Alkali-Activated Cement and Concrete. 2006: Taylor and Francis.
[58] Häkkinen, T., The influence of slag content on the microstructure, permeability and mechanical properties of concrete Part 1 Microstructural studies and basic mechanical properties,Cement and Concrete Research 1993.23(2): p. 407-421.
[59] Douglas, E. and J. Brandstetr, A preliminary study on the alkali activation of ground granulated blast-furnace slag,Cement and Concrete Research 1990.20( 5,): p. 746-756.
[60] Bakharev, T., J.G. Sanjayan, and Y.-B. Cheng, Alkali activation of Australian slag cements,Cement and Concrete Research 1999.29: p. 113 - 120.
[61] 劉建鴻, 鹼活化爐石粉混凝土性質之探討, in 河海工程學系. 2002, 國立台灣海洋大學: 台灣基隆. p. 852002.
[62] 曾偉林, 鹼活化爐石粉基質材料製程與基本特性之探討, in 河海工程學系. 2001, 國立臺灣海洋大學: 台灣基隆. p. 1112001.
[63] 蘇榮章, 鹼活化爐石粉砂漿火害研究, in 營建工程系. 2003, 國立雲林科技大學2003.
[64] 陳志賢, 含矽質廢棄物之無機聚合物, in 土木工程研究所. 2009, 國立成功大學2009.
[65] Chi, M., Y. Liu, and R. Huang, Mechanical and Microstructural Characterization of Alkali-Activated Materials Based on Fly Ash and Slag,IACSIT International Journal of Engineering and Technology, 2015.7(1): p. 59 - 64.
[66] 曾耀進,(2010),IC導線架剪切製程之沖頭壽命研究,國立高雄大學電機工程學系-工業技術整合產業研發碩士專班論文。[67] 黃心怡,(2010),銅鐵異種金屬直流電阻點銲之參數最佳化探討,國立台北科技大學工業工程與管理研究所碩士班論文。[68] 邱奕展,(2012),添加二氧化氯對養殖水水質改善與水質淨化之試驗研究,中興大學環境工程學系所碩士班論文。
[69] 曾宜雯,(2012),多區域垂直配向顯示器的參數優化設計,國立中央大學光電科學研究所碩士班論文。[70] C.He, B. Osback , E. Makovicky , “Pozzolanic reactions of six principal clay minerals: activation, reactivity assessments and technological effects” , Cement and Concrete Research , Vol.25 , No.8 , pp.1691-1702 , 1995.
[71] M.H. Zhang , V.M. Malhotra , “Characteristics of a thermally activated alumino-silicate pozzolanic material and its use in concrete” , Cement and Concrete Research , Vol. 25 , No. 8 , pp. 1713-1725 , 1995.
[72] D.M. Roy , P. Arjunan , M.R. Silsbee , “Effect of silica fume , metakaolin , and low-calcium fly ash on chemical resistance of concrete” , Cement and Concrete Research , Vol. 31 , No. 12 , pp. 1809-1813, 2001.
[73] W. Aquino , D.A. Lange , J. Olek , “The influence of metakaolin and silica fume on the chemistry of alkali–silica reaction products” Cement and Concrete Composites , Vol. 23 , No. 6 , pp. 485-493 , 2001.
[74] J.B.S. Wild , “Investigation of the temperature change and heat evolution of mortar incorporating PFA and metakaolin” , Cement and Concrete Composites , Vol.24 , No. 4 , pp.201-209 , 2002.
[75] E. Badogiannis , G. Kakali , G. Dimopoulou , E. Chaniotakis , S. Tsivilis , “Metakaolin as a main cement constituent : Exploitation of poor Greek kaolins ” , Cement and Concrete Composites , Vol.27 , No. 2 , pp.197-203 , 2005.
[76] G. Batis , P. Pantazopoulou, S. Tsivilis, E. Badogiannis, “The effect of metakaolin on the corrosion behavior of cement mortars” , Cement and Concrete Composites , Vol.27 , No. 1 , pp.125-130 , 2005.
[77] E. Badogiannisa , V.G. Papadakisb , E. Chaniotakisc , S. Tsivilisa, “Exploitation of poor Greek kaolins: Strength development of metakaolin concrete and evaluation by means of k-value” , Cement and Concrete Research , Vol.34 , No.6 , pp.1035-1041 , 2004.