跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.0) 您好!臺灣時間:2025/11/26 15:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張繼文
研究生(外文):CHANG, CHI-WEN
論文名稱:鹼激發爐石/偏高嶺土砂漿力學與物理特性之研究
論文名稱(外文):Mechanical and Physical Properties of Alkali-Activated Granulated Blast Furnace Slag/Metakaolin Blends
指導教授:張建智
指導教授(外文):Chang, Jiang-Jhy
口試委員:莊淇銘李賢華徐輝明張大鵬葉為忠張建智
口試日期:2016-07-15
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:河海工程學系
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:50
中文關鍵詞:鹼激發爐石粉/偏高嶺土物理性質力學性質砂漿
外文關鍵詞:alkali activated slag/metakaolinphysical propertiesmechanical propertiesmortar
相關次數:
  • 被引用被引用:5
  • 點閱點閱:440
  • 評分評分:
  • 下載下載:84
  • 收藏至我的研究室書目清單書目收藏:0
鹼激發爐石與偏高嶺土之硬化機制完全不同於波特蘭水泥,鹼激發膠結材料目前仍處於發展中階段,不同的材料成分與不同的鹼液配製都可能產生不同的結果,尤其鹼激發複合材料(爐石/偏高嶺土)之膠結機制、反應產物、力學性質、耐久性與微觀結構等,仍需要更多的基礎研究並建立長期的實驗資料。本研究目的旨在探討鹼激發爐石粉/偏高嶺土砂漿力學與物理特性之研究。
由研究結果顯示在水灰比0.35時,得知各組之流度值均低於控制組,主要原因係受鹼模數比及鹼活化劑中Na2O含量之影響,造成其值越大,流度值越高;無論於何種水灰比下,其初凝時間均較控制組短,其原因除與水灰比較高外,亦使用爐石粉/偏高嶺土=30/70之比值有關。當無論是在何種水灰比下,爐石粉/偏高嶺土的比例均隨著其值的增加而抗壓強度愈大,其中以水灰比=0.35,爐石粉/偏高嶺土=70/30,鹼模數比=1.0, 鹼活化劑中Na2O含量= 6%時其抗壓強度最高。此外,在本研究範疇內(鹼模數比=0.8、1.0及1.23),抗壓強度及劈裂強度均隨著鹼模數比的增加有些微下降之趨勢;但對於鹼活化劑中Na2O含量在本研究範疇內(Na2O=4%、6%及8%)幾乎對抗壓強度及劈裂強度無顯著之影響。無論是在何種水灰比下,爐石粉/偏高嶺土的比例均隨著其值的增加而劈裂強度愈大。水膠比 0.35與0.50時,吸水速率以35BM6最小(5.7%),此表示其聯通孔隙較少
亦可從抗壓強度結果相對應。

The hardening mechanism of alkali-activated slag/metakaolin is totally different from the hydration of Portland cement. The alkali-activated binder is under development now, and different alkali-activators and materials will result in different results. Especially the effects of using the blend of pozzolans (such as slag/metakaolin) such as the hardening mechanism, reactants, mechanical properties, durability and microstructure require long-term experimental data and research. The goal of this study is to investigate the mechanical and physical properties of alkali-activated slag/metakaolin mortar.
The results show that when the liquid/binder ratio is 0.35, all mixes in this research owned a lower fluidity value than the control group. The major factors influencing the fluidity value are the alkali modulus and the content of Na2O in the alkali-activator. When the alkali modulus and/or the Na2O content are larger, the fluidity value is larger. In addition, the initial setting times of all groups are shorter than the control group. Except a higher liquid/binder ratio, the ratio of amount of slag over amount of metakaolin of 30/70 contributes to these results. No matter which liquid/binder ratio is adopted, the compressive strength increases as the mass ratio of slag/metakaolin increases. Especially for the mix with liquid/binder=0.35, slag/metakaolin=70/30, alkali modulus=1.0, Na2O content=6%, the compressive strength is the highest one. Furthermore, within the category of this study (alkali modulus of 0.8, 1.0 and 1.23) the compressive strength and splitting tensile strength decrease slightly as the alkali modulus increases. The changes of Na2O content (in this study Na2O=4%, 6% and 8%) do not show significant influence on the compressive strength and splitting tensile strength. As the mass ratio of slag/metakaolin increases, the splitting tensile strength increases no matter which liquid/binder ratio is used. When the liquid/binder ratios are 0.35 and 0.50, the water absorption rate of 35M6 group is the smallest (5.7%) which indicating the volume of connected pores is smaller. This conclusion can be also confirmed by the results of compressive strength.


中文摘要 I
英文摘要 II
目錄 III
圖目錄 V
表目錄 VI
第一章 緒 論 1
1.1研究動機 1
1.2研究目的 4
1.3研究方法與流程 4

第 二 章 文 獻 回 顧 6
2.1前言 6
2.2 研究重要性 6
2.3 爐石 7
2.3.1 爐石之物理與化學性質 7
2.3.2 爐石之顆粒性質與反應形式 8
2.3.3 鹼活化劑 9
2.3.4 鹼活化膠結材料介紹與硬固機制 10
2.4 田口方法 11
2.4.1田口方法的目的 11
2.4.2田口方法的基本思想 12
2.4.3田口方法的特點 12
2.4.4 田口方法的功效 13
2.4.5田口方法的實施步驟 14
2.5 國外有關本研究之情況 14
2.6 國內有關本研究之情況 16

第三章 試驗計畫 18
3.1前言 18
3.2試驗材料與變數設計 18
3.3試體製作……………………………………………………………………… 19
3.4試驗方法 19
3.5重要儀器配合情況 21

第四章 結果與分析 23
4.1田口實驗設計法 23
4.2試驗之配比 23
4.3 流度試驗 25
4.4 凝結時間試驗 29
4.5 抗壓強度試驗 32
4.6 劈裂強度試驗 35
4.7 吸水率試驗 38
4.7 吸水速率試驗 40

第五章 結論與建議 43
5-1結論 43
5-2建議 44
參考文獻 45
謝誌 50

[1] Criado, M., A. Ferna'ndez-Jime'nez, and A. Palomo, Alkali activation of fly ash: Effect of the SiO2/Na2O ratio Part I: FTIR study,Microporous and Mesoporous Materials 106 (2007) 180–191, 2007.106: p. 180-191.
[2] Gartner, E., Industrially interesting approaches to low-CO2 cements,CEMENT and CONCRETE RESEARCH, 2004.34: p. 1489-1498.
[3] Deventer, J.V., J. Provis, P. Duxson, and D. Brice, Chemical research and climate change as drivers in the commercial adoption of alkali activated materials,Waste Biomass Valor, 2010: p. 1145-1155.
[4] Chi, M., Effects of dosage of alkali-activated solution and curing conditions on the properties and durability of alkali-activated slag concrete,Construction and Building Materials, 2012.35: p. 240-245.
[5] Akçaözog˘lu, S. and C. Ulu, Recycling of waste PET granules as aggregate in alkali-activated blast furnace slag/metakaolin blends,Construction and Building Materials, 2014. 58: p. 31-37.
[6] Roy, D.M., Alkali-activated cements Opportunities and challenges,Cement and Concrete Research, 1999.29: p. 249-254.
[7] Palomo, A., M.W. Grutzeck, and M.T. Blanco, Alkali-activated fly ashes: A cement for the future,Cement and Concrete Research 1999.29: p. 1323-1329.
[8] Yazıcı, H., H. Yig˘iter, A.S. Karabulut, and B. Baradan, Utilization of fly ash and ground granulated blast furnace slag as an alternative silica source in reactive powder concrete,Fuel 87, 2008.87: p. 2401-2407.
[9] Lin, K.-L., The influence of municipal solid waste incinerator fly ash slag blended in cement pastes,Cement and Concrete Research 2005.35: p. 979-986.
[10] Li, C., H. Sun, and L. Li, A review: The comparison between alkali-activated slag (Si+Ca) and metakaolin (Si+Al) cements,Cement and Concrete Research 2010.40: p. 1341-1349.
[11] Hah, M.B., G.L. Saout, F. Winnefeld, and B. Lothenbach, Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags,Cement and Concrete Research, 2011.41(3): p. 301-310.
[12] Collins, F. and J.G. Sanjayan, Strength and shrinkage properties of alkali-activated slag concrete containing porous coarse aggregate,Cement and Concrete Research, 1999.29: p. 607 - 610.
[13] Chi, M. and R. Huang, Effects of Dosage and Modulus Ratio of Alkali-Activated Solution on the Properties of Slag Mortars,Advanced Science Letters, 2012.16(1): p. 7-12.
[14] Chi, M.-c., J.-j. Chang, and R. Huang, Strength and Drying Shrinkage of Alkali-Activated Slag Paste andMortar,Advances in Civil Engineering, 2012.1: p. 1-7.
[15] Chi, M.-c., R. Huang, and T.-L. Weng. Durability and Micro-structural Properties of Alkali-activated Slag Concrete. in 第三屆兩岸四地高性能混凝土國際研討會. 2012. 中國武漢.
[16] Chi, M.-c., J.-j. Chang, R. Huang, and Z.-l. Weng, Effect of Alkali-activators on the Strength Development and Drying Shrinkage of Alkali-activated Binder,Advanced Materials Research, 2012.482-484: p. 1012-1016.
[17] Davidovits, J., Mineral polymers and methods of making them, U. patent, Editor. 1982: USA1982.
[18] Granizo, M. and M. Blanco, Alkaline activation of metakoalin an isothermal conduction calorimetry study,Journal of Thermal Analysis, 1998.52: p. 957-965.
[19] Granizo, M., M. Blanco-Varela, and S. Martínez-Ramírez, Alkali activation of metakaolins: parameters affecting mechanical, structural and microstructural properties,Journal of Material Science 2007.42: p. 2934-2943.
[20] Granizo, M., M. Blanco-Varela, and P. A., Influence of the starting kaolin on alkali-activated materials based on metakaolin-Study of the reaction parameters by isothermal conduction calorimetry,Journal of Material Science, 2000.35: p. 6309-6315.
[21] De Silva, P.S. and F.P. Glasser, Pozzolanic activation of metakaolin,Advance in Cement Research, 1992.4(16): p. 167-178.
[22] De Silva, P.S. and F.P. Glasser, The hydration behaviour of metakaolin-Ca(OH)2 - sulphate binder, in The 9th International Congress on the Chemistry of Cement. 1992. p. 671 -6771992.
[23] Chi, M. and R. Huang, Effect of circulating fluidized bed combustion ash on the properties of roller compacted concrete,Cement & Concrete Composites, 2014.45: p. 148-156.
[24] Criado, M., A.F. Jiménez, I. Sobrados, A. Palomo, and J. Sanz, Effect of relative humidity on the reaction products of alkali activated fly ash,Journal of the European Ceramic Society 2012.32: p. 2799-2807.
[25] Hu, S., X. Guan, and Q. Ding, Research on optimizing components of microfine high-performance composite cementitious materials,Cement and Concrete Research, 2002.32: p. 1871-1875.
[26] Li, D., Z. Xu, Z. Luo, Z. Pan, and C. Lin, The activation and hydration of glassy cementitious materials,Cement and Concrete Research 2002.32: p. 1145-1152.
[27] Ferna´ndez-Jime´nez, A. and A. Palomo, Composition and microstructure of alkali activated fly ash binder: Effect of the activator,Cement and Concrete Research, 2005.35: p. 1984-1992.
[28] Chi, M. and R. Huang, Binding mechanism and properties of alkali-activated fly ash/slag mortars,Construction and Building Materials, 2013.40: p. 291-298.
[29] Chi, M. and Y. Liu, Effects of Fly Ash/Slag Ratio and Liquid/Binder Ratio on Strength of Alkali-activated Fly Ash/Slag Mortars,Applied Mechanics and Materials 2013. 377 p. 50-54.
[30] Ferna´ndez-Jime´nez, A. and A. Palomo. Alkali-activated fly ashes: properties and characteristics. in 11th International Congress on the Chemistry of Cement. 2003. Durban, South Africa.
[31] Terminology, J.D. Chemistry of geopolymeric systems. in Proceedings of 99 geopolymer conference. 1999.
[32] Hos, J., P. McCormick, and L. Byrne, Investigation of a synthetic aluminosilicate inorganic polymer,Journal of Material Science 2002.37: p. 2311-2316.
[33] Bernal, S., R. Gutierrez, and J. Provis, Engineering and durability properties of concretes based on alkali-activated granulated blast furnace slag/metakaolin blends,Construction and Building Materials, 2012.33: p. 99-108.
[34] Chi, M., Y. Liu, and R. Huang, Mechanical and Microstructural Characterization of Alkali-Activated Materials Based on Fly Ash and Slag,International Journal of Engineering and Technology, 2015. 7(1): p. 59-64.
[35] Arellano Aguilar, R., O. Burciaga Díaz, and J. Escalante García, Lightweight concretes of activated metakaolin-fly ash binders, with blast furnace slag aggregates,Constructure and Building Materials, 2010.24: p. 1166-1175.
[36] Rajamma, R., J.A. Labrincha, and V.M. Ferreira, Alkali activation of biomass fly ash–metakaolin blends,Fuel, 2012.98: p. 265-271.
[37] Smith, S., K. Teinsak, J. Chai, and P. Chindaprasirt, Compressive strength and degree of reaction of biomass- and fly ash-based geopolymer,Constructure and Building Materials, 2010.24: p. 236-240.
[38] 吳仁忠, 循環式流化床燃燒灰與粉煤底灰應用於回填料特性之研究, in 材料工程研究所. 2008, 國立台灣海洋大學2008.
[39] Mehta, P.K. and P.J.M. Monteiro, Concrete: Microstructure, Properties, and Materials. Fourth Edition ed. 2013: Prentice-Hall Inc.
[40] Gjørv, O.E., Durability of Concrete Structures,Arabian Journal for Science and Engineering, 2011.36( 2): p. 151-172.
[41] Provis, J.L., R.J. Myers, C.E. White, V. Rose, and J.S.J.v. Deventer, X-ray microtomography shows pore structure and tortuosity in alkali-activated binders,Cement and Concrete Research, 2012.42: p. 855-864.
[42] Fernando, P.-T., C.-G. Joao, and S. Jalali, Alkali-activated binders: A review Part 1. Historical background, terminology, reaction mechanisms and hydration products,Construction and Building Materials, 2008.22: p. 1305-1314.
[43] Aydın, S. and B. Baradan, The effect of fiber properties on high performance alkaliactivated slag/silica fume mortars,Composite B, 2013.45: p. 63-69.
[44] Hu, M., X. Zhu, and F. Long, Alkali-activated fly ash-based geopolymers with zeolite or bentonite as additives,Cement and Concrete Composites, 2009.31(10): p. 762-768.
[45] C. K. Yip and J.S.J.v. Deventer, Microanalysis of calcium silicate hydrate gel formed within a geopolymeric binder,Journal of Materials Science, 2003.38(18): p. 3851-3860.
[46] A. Buchwald, H. Hilbig, and C. Kaps, Alkali-activated metakaolin-slag blends—performance and structure in dependence of their composition,Journal of Materials Science, 2007.42(9): p. 3024-3032
[47] Buchwald, A., R. Tatarin, and D. Stephan, Reaction progress of alkaline-activated metakaolin-ground granulated blast furnace slag blends,Journal of Materials Science, 2009.44(20): p. 5609-5617.
[48] Cheng, T.W. and J.P. Chiu, Fire-resistant geopolymer produced by granulated blast furnace slag,Minerals Engineering, 2003.16(3): p. 205-210.
[49] Yip, C.K., J.L. Provis, G.C. Lukey, and J.S. van Deventer, Carbonate mineral addition to metakaolin-based geopolymers,Cement and Concrete Composites, 2008.30: p. 979-985.
[50] Oswaldo, B.-D.a., E.-G.J. Ivan, A.-A. Rat, and G. Alexander, Statistical analysis of strength development as a function of various parameters on activated metakaolin/slag cements,Journal of the American Ceramic Society 2010.93(2): p. 541-547.
[51] Yunsheng, Z., S. Wei, C. Qianli, and C. Lin, Synthesis and heavy metal immobilization behaviors of slag based geopolymers,Journal of Hazard Materials, 2007.143(1-2): p. 206-213.
[52] Wang, J., X.-l. Wu, J.-x. Wang, C.-z. Liu, Y.-m. Lai, and Z.-k. Hong, Hydrothermal synthesis and characterization of alkali-activated slag-fly ash-metakaolin cementitious materials,Microporous and Mesoporous Materials, 2012.155: p. 186-191.
[53] Zhang, Z., X. Yao, and H. Zhu, Potential application of geopolymers as protection coatings for marine concrete. I. Basic properties,Applied Clay Science 2010.49: p. 1-6.
[54] Krivenko, P. and S. Guziy, Fire resistant alkaline Portland cements. In: , in Alkali activated materials- research, production and utilization 3rd conference. 2007: Prague, Czech Republic. p. 333-3472007.
[55] Jumppanen, U.M., U. Diederichs, and K. Hinrichsmeyer, Materials properties of F-concrete at high temperature, in VTT Research Report 452. 1986, Technical Research Centre of Finland (VTT): Finland1986.
[56] Khale, D. and R. Chaudhary, Mechanism of geopolymerization and factors influencing its development: a review,Journal of Material Science, 2007.42: p. 729-746.
[57] Shi, C., P.V. Krivenko, and D. Roy, Alkali-Activated Cement and Concrete. 2006: Taylor and Francis.
[58] Häkkinen, T., The influence of slag content on the microstructure, permeability and mechanical properties of concrete Part 1 Microstructural studies and basic mechanical properties,Cement and Concrete Research 1993.23(2): p. 407-421.
[59] Douglas, E. and J. Brandstetr, A preliminary study on the alkali activation of ground granulated blast-furnace slag,Cement and Concrete Research 1990.20( 5,): p. 746-756.
[60] Bakharev, T., J.G. Sanjayan, and Y.-B. Cheng, Alkali activation of Australian slag cements,Cement and Concrete Research 1999.29: p. 113 - 120.
[61] 劉建鴻, 鹼活化爐石粉混凝土性質之探討, in 河海工程學系. 2002, 國立台灣海洋大學: 台灣基隆. p. 852002.
[62] 曾偉林, 鹼活化爐石粉基質材料製程與基本特性之探討, in 河海工程學系. 2001, 國立臺灣海洋大學: 台灣基隆. p. 1112001.
[63] 蘇榮章, 鹼活化爐石粉砂漿火害研究, in 營建工程系. 2003, 國立雲林科技大學2003.
[64] 陳志賢, 含矽質廢棄物之無機聚合物, in 土木工程研究所. 2009, 國立成功大學2009.
[65] Chi, M., Y. Liu, and R. Huang, Mechanical and Microstructural Characterization of Alkali-Activated Materials Based on Fly Ash and Slag,IACSIT International Journal of Engineering and Technology, 2015.7(1): p. 59 - 64.
[66] 曾耀進,(2010),IC導線架剪切製程之沖頭壽命研究,國立高雄大學電機工程學系-工業技術整合產業研發碩士專班論文。
[67] 黃心怡,(2010),銅鐵異種金屬直流電阻點銲之參數最佳化探討,國立台北科技大學工業工程與管理研究所碩士班論文。
[68] 邱奕展,(2012),添加二氧化氯對養殖水水質改善與水質淨化之試驗研究,中興大學環境工程學系所碩士班論文。
[69] 曾宜雯,(2012),多區域垂直配向顯示器的參數優化設計,國立中央大學光電科學研究所碩士班論文。
[70] C.He, B. Osback , E. Makovicky , “Pozzolanic reactions of six principal clay minerals: activation, reactivity assessments and technological effects” , Cement and Concrete Research , Vol.25 , No.8 , pp.1691-1702 , 1995.
[71] M.H. Zhang , V.M. Malhotra , “Characteristics of a thermally activated alumino-silicate pozzolanic material and its use in concrete” , Cement and Concrete Research , Vol. 25 , No. 8 , pp. 1713-1725 , 1995.
[72] D.M. Roy , P. Arjunan , M.R. Silsbee , “Effect of silica fume , metakaolin , and low-calcium fly ash on chemical resistance of concrete” , Cement and Concrete Research , Vol. 31 , No. 12 , pp. 1809-1813, 2001.
[73] W. Aquino , D.A. Lange , J. Olek , “The influence of metakaolin and silica fume on the chemistry of alkali–silica reaction products” Cement and Concrete Composites , Vol. 23 , No. 6 , pp. 485-493 , 2001.
[74] J.B.S. Wild , “Investigation of the temperature change and heat evolution of mortar incorporating PFA and metakaolin” , Cement and Concrete Composites , Vol.24 , No. 4 , pp.201-209 , 2002.
[75] E. Badogiannis , G. Kakali , G. Dimopoulou , E. Chaniotakis , S. Tsivilis , “Metakaolin as a main cement constituent : Exploitation of poor Greek kaolins ” , Cement and Concrete Composites , Vol.27 , No. 2 , pp.197-203 , 2005.
[76] G. Batis , P. Pantazopoulou, S. Tsivilis, E. Badogiannis, “The effect of metakaolin on the corrosion behavior of cement mortars” , Cement and Concrete Composites , Vol.27 , No. 1 , pp.125-130 , 2005.
[77] E. Badogiannisa , V.G. Papadakisb , E. Chaniotakisc , S. Tsivilisa, “Exploitation of poor Greek kaolins: Strength development of metakaolin concrete and evaluation by means of k-value” , Cement and Concrete Research , Vol.34 , No.6 , pp.1035-1041 , 2004.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊