跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.44) 您好!臺灣時間:2026/01/01 12:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林怡君
研究生(外文):Yi-Chun Lin
論文名稱:費茲作業反覆運動之多尺度熵研究
論文名稱(外文):Multiscale Entropy of Reciprocal Movement in Fitts’ task
指導教授:林久翔林久翔引用關係
指導教授(外文):Chiu-Hsiang Lin
口試委員:林希偉孫天龍
口試委員(外文):Shi-Woei LinTien-Lung Sun
口試日期:2019-07-08
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:工業管理系
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:82
中文關鍵詞:費茲作業反覆運動多尺度熵
外文關鍵詞:Fitts’ TaskReciprocal MovementMultiscale Entropy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:139
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
多尺度熵(MSE)是一種近年來熱門的分析工具,用來代表多個尺度的時間序列複雜性,但較少利用此工具對不同輸入裝置的目標導向作業進行探討。本研究先回顧過去熵的概念、反覆運動及費茲定律相關研究,將實驗環境建立在費茲定律的框架下,進行顯示器環境設計、任務難度的定義及角度的設定,而實驗將分為兩種,實驗一為基礎的重複費茲反覆運動的目標導向作業,實驗二為包含角度因素的二維雙變量目標導向作業,透過動作捕捉系統(OptiTrack Motion Capture System)可將運動動作轉換成數位資料的特性,收集手部的運動軌跡,作為MSE分析的原始數據,以探討不同因子對於MSE的影響。其結果顯示,操控觸控筆的運動軌跡比操控滑鼠更具有複雜性;當任務需求增加時,其運動軌跡的複雜度會降低;當角度在大尺度時證實120-300度的運動軌跡比0-180度更複雜。期望透過本研究結果能為MSE應用於費茲反覆運動的作業上帶來貢獻。
Multiscale Entropy (MSE) is a popular tool for analysis to represent time series complexity at multiple scales in recent years. However, in MSE analysis there is a lack of relevant research on goal-directed tasks with input devices. In our study we review the relevant research in the concept of entropy, the reciprocal movement and the Fitts’ Law. Thus, the experimental environment is built under the framework of Fitts’ Law to design the display environment and define task difficulty and angle. The experiment is divided into two part. Experiment 1 is a basic repeated goal-directed task with reciprocal movement. Experiment 2 which considers the angle factor is a two-dimensional bivariate goal-directed task with reciprocal movement. By the OptiTrack Motion Capture System which can convert human characteristics into data, the trajectory of hand movement is collected for analysis to discuss the influence of different factors on the MSE. The results of the study were that the movement trajectory of using the stylus is more complex than mouse. When the task demand increases, the complexity of the movement trajectory will decrease. For angle factor, at large scale, it is confirmed that movement trajectory in 120-300 degree is more complex than 0-180 degrees. In the end, it is expected that the results of this study will contribute to the application of MSE.
致謝 I
摘要 II
ABSTRACT III
目錄 IV
圖目錄 VI
表目錄 VII
第一章 緒論 1
1.1背景與動機 1
1.2研究目的 2
第二章 文獻探討 4
2.1熵(ENTROPY)原理及複雜度 4
2.2費茲定理FITTS’ LAW 6
2.3輸入裝置相關研究 7
2.4反覆運動 8
第三章 研究方法 10
3.1受試者 10
3.2實驗設備 11
3.2.1光學式動作捕捉系統(OptiTrack Motion Capture System) 12
3.3實驗設計 13
3.3.1顯示器環境設計 13
3.3.2自變數 14
3.3.3應變數 16
3.3.4實驗任務 17
3.4實驗流程 17
3.5數據分析方法 20
3.5.1資料前處理 20
3.5.2多尺度樣本熵(Multiscale Entropy, MSE) 20
3.5.3統計分析 23
第四章 研究結果 24
4.1實驗一: 移動時間(MOVEMENT TIME) 24
4.1.1線性關係 24
4.1.2平均移動時間的差異 26
4.2實驗一:多尺度熵分析 29
4.2.1輸入裝置 29
4.2.2任務難度 30
4.2.3重複次數 31
4.2.4 SampEn的差異 33
4.3實驗二: 移動時間(MOVEMENT TIME) 37
4.3.1線性關係 37
4.3.2平均移動時間的差異 37
4.4實驗二:多尺度熵分析 40
4.4.1輸入裝置 40
4.4.2任務難度 41
4.4.3角度 42
4.2.4 SampEn的差異 44
第五章 討論 48
第六章 結論 51
6.1研究限制 51
6.2未來方向 52
參考來源 53
附錄 57
Aliverti, A. (2017). Wearable technology: Role in respiratory health and disease. Breathe, 13(2), e27-e36.
Boltzmann, L. (1896). Vorlesungen über Gastheorie, 2 vols. Barth, Leipzig, 1898.
Bootsma, R. J., Fernandez, L., & Mottet, D. (2004). Behind Fitts’ law: kinematic patterns in goal-directed movements. International Journal of Human-Computer Studies, 61(6), 811-821.
Boritz, J., & Cowan, W. B. (1991). Fitts's law studies of directional mouse movement. human performance, 1(6).
Chapuis, O., Blanch, R., & Beaudouin-Lafon, M. (2007). Fitts' law in the wild: A field study of aimed movements.
Clausius, R. (1865). Über verschiedene für die Anwendung bequeme Formen der Hauptgleichungen der mechanischen Wärmetheorie. Annalen der Physik, 201(7), 353-400.
Cockburn, A., Ahlström, D., & Gutwin, C. (2012). Understanding performance in touch selections: Tap, drag and radial pointing drag with finger, stylus and mouse. International Journal of Human-Computer Studies, 70(3), 218-233.
Costa, M., Goldberger, A. L., & Peng, C.-K. (2002). Multiscale entropy analysis of complex physiologic time series. Physical review letters, 89(6), 068102.
Costa, M., Goldberger, A. L., & Peng, C.-K. (2005). Multiscale entropy analysis of biological signals. Physical review E, 71(2), 021906.
Costa, M., Goldberger, A. L., & Peng, C. (2000). Multiscale entropy analysis (MSE). Available at:)([Accessed: 37 March 27, 2014]) http://physionet. org/physiotools/mse/tutorial/tutorial. pdf View in Article, 38.
Costa, M., Peng, C.-K., Goldberger, A. L., & Hausdorff, J. M. (2003). Multiscale entropy analysis of human gait dynamics. Physica A: Statistical Mechanics and its Applications, 330(1-2), 53-60.
Fernandez, L., & Bootsma, R. J. (2004). Effects of biomechanical and task constraints on the organization of movement in precision aiming. Experimental Brain Research, 159(4), 458-466.
Fernandez, L., & Bootsma, R. J. (2008). Non-linear gaining in precision aiming: making Fitts’ task a bit easier. Acta psychologica, 129(2), 217-227.
Fitts, P. M. (1954). The information capacity of the human motor system in controlling the amplitude of movement. Journal of experimental psychology, 47(6), 381.
Fitts, P. M., & Peterson, J. R. (1964). Information capacity of discrete motor responses. Journal of experimental psychology, 67(2), 103.
Forlines, C., Wigdor, D., Shen, C., & Balakrishnan, R. (2007). Direct-touch vs. mouse input for tabletop displays. Paper presented at the Proceedings of the SIGCHI conference on Human factors in computing systems.
Guiard, Y. (1993). On Fitts's and Hooke's laws: Simple harmonic movement in upper-limb cyclical aiming. Acta psychologica, 82(1-3), 139-159.
Hong, S., & Newell, K. (2008). Motor entropy in response to task demands and environmental information. Chaos, 18(3), 033131-033131.
Hornbæk, K. (2006). Current practice in measuring usability: Challenges to usability studies and research. International Journal of Human-Computer Studies, 64(2), 79-102.
ISO, I. 9241-9 Ergonomic requirements for office work with visual display terminals (VDTs)-Part 9: Requirements for non-keyboard input devices (FDIS-Final Draft International Standard), 2000. International Organization for Standardization.
Lai, S.-C., Mayer-Kress, G., Sosnoff, J. J., & Newell, K. M. (2005). Information entropy analysis of discrete aiming movements. Acta psychologica, 119(3), 283-304.
Lake, D., Moorman, J., & Hanqing, C. (2012). Sample entropy estimation using sampen. PhysioNet.
Li, Y., Wang, X., Liu, Z., Liang, X., & Si, S. (2018). The entropy algorithm and its variants in the fault diagnosis of rotating machinery: A review. IEEE Access, 6, 66723-66741.
MacKenzie, I. S., & Buxton, W. (1992). Extending Fitts' law to two-dimensional tasks. Paper presented at the Proceedings of the SIGCHI conference on Human factors in computing systems.
MacKenzie, I. S., Sellen, A., & Buxton, W. A. (1991). A comparison of input devices in element pointing and dragging tasks. Paper presented at the Proceedings of the SIGCHI conference on Human factors in computing systems.
Nielsen, J. (1993). Iterative user-interface design. Computer, 26(11), 32-41.
Nurwulan, N., & Jiang, B. (2016). Possibility of using entropy method to evaluate the distracting effect of mobile phones on pedestrians. Entropy, 18(11), 390.
Pan, W.-Y., Su, M.-C., Wu, H.-T., Lin, M.-C., Tsai, I., & Sun, C.-K. (2015). Multiscale entropy analysis of heart rate variability for assessing the severity of sleep disordered breathing. Entropy, 17(1), 231-243.
Pincus, S. M. (1991). Approximate entropy as a measure of system complexity. Proceedings of the National Academy of Sciences, 88(6), 2297-2301.
Richman, J. S., & Moorman, J. R. (2000). Physiological time-series analysis using approximate entropy and sample entropy. American Journal of Physiology-Heart and Circulatory Physiology, 278(6), H2039-H2049.
Sasangohar, F., MacKenzie, I. S., & Scott, S. D. (2009). Evaluation of mouse and touch input for a tabletop display using Fitts' reciprocal tapping task. Paper presented at the Proceedings of the Human Factors and Ergonomics Society Annual Meeting.
Schaal, S., Sternad, D., Osu, R., & Kawato, M. (2004). Rhythmic arm movement is not discrete. Nature neuroscience, 7(10), 1136.
Seely, A. J., & Macklem, P. T. (2004). Complex systems and the technology of variability analysis. Critical care, 8(6), R367.
Smits-Engelsman, B., Van Galen, G., & Duysens, J. (2002). The breakdown of Fitts’ law in rapid, reciprocal aiming movements. Experimental Brain Research, 145(2), 222-230.
Vetter, S., Bützler, J., Jochems, N., & Schlick, C. M. (2011). Fitts’ law in bivariate pointing on large touch screens: Age-differentiated analysis of motion angle effects on movement times and error rates. Paper presented at the International Conference on Universal Access in Human-Computer Interaction.
Whisenand, T. G., & Emurian, H. H. (1999). Analysis of cursor movements with a mouse. Computers in Human Behavior, 15(1), 85-103.
Woodworth, R. S. (1899). Accuracy of voluntary movement. The Psychological Review: Monograph Supplements, 3(3), i.
Wu, H.-T., Hsu, P.-C., Lin, C.-F., Wang, H.-J., Sun, C.-K., Liu, A.-B., . . . Tang, C.-J. (2011). Multiscale entropy analysis of pulse wave velocity for assessing atherosclerosis in the aged and diabetic. IEEE Transactions on Biomedical Engineering, 58(10), 2978-2981.
Wu, Y., & Song, R. (2017). Effects of task demands on kinematics and EMG signals during tracking tasks using multiscale entropy. Entropy, 19(7), 307.
丁一, 郭伏, 胡名彩, & 孙凤良. (2014). 用户体验国内外研究综述. 工业工程与管理(2014 年 04), 92-97,114.
蒙恬行動筆 ─ 多平台精準極細觸控筆. Retrieved from https://store.penpower.com.tw/products/penpower-pencil
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top