跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2026/01/13 16:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭棠瑋
研究生(外文):Tang-Wei Kuo
論文名稱:運動訓練對高血壓老鼠抗腎臟纖維化的效果
論文名稱(外文):Anti-renal fibrotic effect of exercise training in rats with hypertension
指導教授:李信達李信達引用關係
指導教授(外文):Shin-Da Lee
學位類別:碩士
校院名稱:中國醫藥大學
系所名稱:物理治療學系復健科學碩士班
學門:醫藥衛生學門
學類:復健醫學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:23
中文關鍵詞:高血壓腎臟纖維化
外文關鍵詞:hypertensionkidneyfibrosis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:179
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
研究資料顯示纖維化在高血壓腎臟病的發病機制和病程中扮演著關鍵的因子。運動訓練保護能改善高血壓腎臟病或腎功能衰竭。然而,運動訓練調節腎臟抗纖維化的作用機制尚不清楚。因此,本篇的目的為研究運動訓練對高血壓引起的腎臟纖維化的效果。實驗使用三十隻六個月大的大鼠,其中十隻WKY為作為對照組,另外二十隻自發性高血壓大鼠 (SHR) 隨機挑選十隻進行為期十二周的跑步機運動訓練。在運動訓練完成後將三十隻大鼠犧牲取出腎臟測量Kidney characteristics,並以Masson’s trichrome staining analysis 測量腎臟的纖維化區域大小 以及以 Western Blotting 測量腎臟纖維化的因子。實驗結果顯示在自發性高血壓老鼠血壓、腎臟纖維化區域大小以及TGF-β, CTGF相關的纖維化路徑相較於對照組都有明顯的增加;而在經過跑步機運動訓練後相較於沒有運動訓練,血壓、纖維化區域的大小、TGF-β, CTGF相關的纖維化路徑皆有明顯的下降。藉由本實驗證明運動可以改善或是預防高血壓所導致的腎臟纖維化。因此本實驗發現在高血壓藉由運動訓練預防腎臟疾病提供了一個新的治療效果。
Introduction/Background. Several evidence indicates that fibrosis plays a critical role in the pathogenesis and progression of hypertensive kidney disease. Exercise training is well known to have various benefits for protection and treatment of hypertension-related kidney disease or kidney failure. However, the mechanisms of anti-fibrotic effects of exercise training on kidney remain unclear. Therefore, this study investigated the effect of exercise training on hypertension-induced renal damage and fibrosis. Material and Methods. Twenty male spontaneously hypertensive rats (SHR) were randomly divided into sedentary group (SHR, n=10) and hypertension rats underwent treadmill running exercise for 60 min / day, 5 sessions / week, for 12 weeks (SHR-EX, n=10). Age-matched ten male Wistar-Kyoto rats (WKY, n=10) were used as a normotensive reference group. After exercise training, the excised renal cortex from rats were measured by histopathological analysis and Western Blotting. Results The SHR group exhibited high blood pressure and interstitial fibrosis relative to WKY group. In addition, these alterations were accompanied by increases in renal cortex gene expression of transforming growth factor beta (TGF-β) and connective tissue growth factor (CTGF) involved in the fibrotic response. By contrast, this situation became better after exercise training interventions. Conclusion Our results indicated that exercise training could protecting against renal damage through improve of renal fibrosis-related pathway in hypertension. It suggested that exercise training would ameliorate of renal function in the population of hypertension.
中文摘要 I
Abstract II
致謝 IV
Context V
TABLE AND FIGURE CONTENTS VI
Introduction 1
Material and Methods 3
Animal model 3
Exercise training 3
Tissue Extraction 4
Western Blotting 4
Masson’s trichrome staining 5
Statistial Analysis 5
Result 6
Discussion 8
Table 11
Figures 12
References 21
Agarwal, D., Elks, C. M., Reed, S. D., Mariappan, N., Majid, D. S., & Francis, J. (2012). Chronic exercise preserves renal structure and hemodynamics in spontaneously hypertensive rats. Antioxid Redox Signal, 16(2), 139-152. doi:10.1089/ars.2011.3967
Barri, Y. M. (2008). Hypertension and kidney disease: a deadly connection. Curr Hypertens Rep, 10(1), 39-45.
Biernacka, A., & Frangogiannis, N. G. (2011). Aging and Cardiac Fibrosis. Aging Dis, 2(2), 158-173.
Boor, P., Sebekova, K., Ostendorf, T., & Floege, J. (2007). Treatment targets in renal fibrosis. Nephrol Dial Transplant, 22(12), 3391-3407. doi:10.1093/ndt/gfm393
Camp, T. M., Smiley, L. M., Hayden, M. R., & Tyagi, S. C. (2003). Mechanism of matrix accumulation and glomerulosclerosis in spontaneously hypertensive rats. J Hypertens, 21(9), 1719-1727. doi:10.1097/01.hjh.0000084737.53355.d6
DeCoux, A., Lindsey, M. L., Villarreal, F., Garcia, R. A., & Schulz, R. (2014). Myocardial matrix metalloproteinase-2: inside out and upside down. J Mol Cell Cardiol, 77, 64-72. doi:10.1016/j.yjmcc.2014.09.016
Egido, J. (1996). Vasoactive hormones and renal sclerosis. Kidney Int, 49(2), 578-597.
Frazier, K., Williams, S., Kothapalli, D., Klapper, H., & Grotendorst, G. R. (1996). Stimulation of fibroblast cell growth, matrix production, and granulation tissue formation by connective tissue growth factor. J Invest Dermatol, 107(3), 404-411.
Garcia-Pinto, A. B., de Matos, V. S., Rocha, V., Moraes-Teixeira, J., & Carvalho, J. J. (2011). Low-Intensity physical activity beneficially alters the ultrastructural renal morphology of spontaneously hypertensive rats. Clinics (Sao Paulo), 66(5), 855-863.
Granger, J. P., & Schnackenberg, C. G. (2000). Renal mechanisms of angiotensin II-induced hypertension. Semin Nephrol, 20(5), 417-425.
Honma, S., Shinohara, M., Takahashi, N., Nakamura, K., Hamano, S., Mitazaki, S., . . . Yoshida, M. (2014). Effect of cyclooxygenase (COX)-2 inhibition on mouse renal interstitial fibrosis. Eur J Pharmacol, 740, 578-583. doi:10.1016/j.ejphar.2014.06.027
Huang, C. Y., Yang, A. L., Lin, Y. M., Wu, F. N., Lin, J. A., Chan, Y. S., . . . Lee, S. D. (2012). Anti-apoptotic and pro-survival effects of exercise training on hypertensive hearts. J Appl Physiol (1985), 112(5), 883-891. doi:10.1152/japplphysiol.00605.2011
Hultstrom, M., Leh, S., Skogstrand, T., & Iversen, B. M. (2008). Upregulation of tissue inhibitor of metalloproteases-1 (TIMP-1) and procollagen-N-peptidase in hypertension-induced renal damage. Nephrol Dial Transplant, 23(3), 896-903. doi:10.1093/ndt/gfm710
Ito, D., Ito, O., Cao, P., Mori, N., Suda, C., Muroya, Y., . . . Kohzuki, M. (2013). Effects of exercise training on nitric oxide synthase in the kidney of spontaneously hypertensive rats. Clin Exp Pharmacol Physiol, 40(2), 74-82. doi:10.1111/1440-1681.12040
Johnson, T. S., Haylor, J. L., Thomas, G. L., Fisher, M., & El Nahas, A. M. (2002). Matrix metalloproteinases and their inhibitions in experimental renal scarring. Exp Nephrol, 10(3), 182-195. doi:58345
Kobayashi, T., Kim, H., Liu, X., Sugiura, H., Kohyama, T., Fang, Q., . . . Rennard, S. I. (2014). Matrix metalloproteinase-9 activates TGF-beta and stimulates fibroblast contraction of collagen gels. Am J Physiol Lung Cell Mol Physiol, 306(11), L1006-1015. doi:10.1152/ajplung.00015.2014
Kopp, J. B., Factor, V. M., Mozes, M., Nagy, P., Sanderson, N., Bottinger, E. P., . . . Thorgeirsson, S. S. (1996). Transgenic mice with increased plasma levels of TGF-beta 1 develop progressive renal disease. Lab Invest, 74(6), 991-1003.
Krzesinski, J. M., & Cohen, E. P. (2007). Hypertension and the kidney. Acta Clin Belg, 62(1), 5-14. doi:10.1179/acb.2007.002
Lan, H. Y. (2011). Diverse roles of TGF-beta/Smads in renal fibrosis and inflammation. Int J Biol Sci, 7(7), 1056-1067.
Lu, W., Liu, S., Zhao, Z., Liu, Y., & Li, T. (2014). The effect of connective tissue growth factor on renal fibrosis and podocyte injury in hypertensive rats. Ren Fail, 36(9), 1420-1427. doi:10.3109/0886022X.2014.934692
Mezzano, S. A., Ruiz-Ortega, M., & Egido, J. (2001). Angiotensin II and renal fibrosis. Hypertension, 38(3 Pt 2), 635-638.
Ni, W. J., Ding, H. H., Zhou, H., Qiu, Y. Y., & Tang, L. Q. (2015). Renoprotective effects of berberine through regulation of the MMPs/TIMPs system in streptozocin-induced diabetic nephropathy in rats. Eur J Pharmacol, 764, 448-456. doi:10.1016/j.ejphar.2015.07.040
Peng, C. C., Chen, K. C., Hsieh, C. L., & Peng, R. Y. (2012). Swimming exercise prevents fibrogenesis in chronic kidney disease by inhibiting the myofibroblast transdifferentiation. PLoS One, 7(6), e37388. doi:10.1371/journal.pone.0037388
Raffetto, J. D., & Khalil, R. A. (2008). Matrix metalloproteinases and their inhibitors in vascular remodeling and vascular disease. Biochem Pharmacol, 75(2), 346-359. doi:10.1016/j.bcp.2007.07.004
Veras-Silva, A. S., Mattos, K. C., Gava, N. S., Brum, P. C., Negrao, C. E., & Krieger, E. M. (1997). Low-intensity exercise training decreases cardiac output and hypertension in spontaneously hypertensive rats. Am J Physiol, 273(6 Pt 2), H2627-2631.
Xue, H. Y., Yuan, L., Cao, Y. J., Fan, Y. P., Chen, X. L., & Huang, X. Z. (2016). Resveratrol ameliorates renal injury in spontaneously hypertensive rats by inhibiting renal micro-inflammation. Biosci Rep, 36(3). doi:10.1042/BSR20160035
Yanagita, M. (2012). Inhibitors/antagonists of TGF-beta system in kidney fibrosis. Nephrol Dial Transplant, 27(10), 3686-3691. doi:10.1093/ndt/gfs381
Yokoi, H., Mukoyama, M., Nagae, T., Mori, K., Suganami, T., Sawai, K., . . . Nakao, K. (2004). Reduction in connective tissue growth factor by antisense treatment ameliorates renal tubulointerstitial fibrosis. J Am Soc Nephrol, 15(6), 1430-1440.
Zhang, W., Wang, W., Yu, H., Zhang, Y., Dai, Y., Ning, C., . . . Xia, Y. (2012). Interleukin 6 underlies angiotensin II-induced hypertension and chronic renal damage. Hypertension, 59(1), 136-144. doi:10.1161/HYPERTENSIONAHA.111.173328
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊