|
1. RAMKUMAR, G.; MANIKANDAN, M. Face recognition-survey. Sciencepublication. org, 2013, 260-268. 2. SADEGHI, Ahmad-Reza; SCHNEIDER, Thomas; WEHRENBERG, Immo. Efficient Privacy-Preserving Face Recognition. In: ICISC. 2009. p. 229-244. 3. LAGENDIJK, Reginald L.; ERKIN, Zekeriya; BARNI, Mauro. Encrypted signal processing for privacy protection: Conveying the utility of homomorphic encryption and multiparty computation. IEEE Signal Processing Magazine, 2013, 30.1: 82-105. 4. ERKIN, Zekeriya, et al. Privacy-preserving face recognition. In: International Symposium on Privacy Enhancing Technologies Symposium. Springer, Berlin, Heidelberg, 2009. p. 235-253. 5. SUN, Yi, et al. Deep learning face representation by joint identification-verification. In: Advances in neural information processing systems. 2014. p. 1988-1996. 6. SUN, Yi; WANG, Xiaogang; TANG, Xiaoou. Deep convolutional network cascade for facial point detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2013. p. 3476-3483. 7. NAIR, Vinod; HINTON, Geoffrey E. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10). 2010. p. 807-814. 8. MOGHADDAM, Baback; JEBARA, Tony; PENTLAND, Alex. Bayesian face recognition. Pattern Recognition, 2000, 33.11: 1771-1782. 9. CHEN, Dong, et al. Bayesian face revisited: A joint formulation. Computer Vision–ECCV 2012, 2012, 566-579. 10. DEMPSTER, Arthur P.; LAIRD, Nan M.; RUBIN, Donald B. Maximum likelihood from incomplete data via the EM algorithm. Journal of the royal statistical society. Series B (methodological), 1977, 1-38. 11. ASLETT, Louis JM; ESPERANÇA, Pedro M.; HOLMES, Chris C. A review of homomorphic encryption and software tools for encrypted statistical machine learning. arXiv preprint arXiv:1508.06574, 2015. 12. PAILLIER, Pascal, et al. Public-key cryptosystems based on composite degree residuosity classes. In: Eurocrypt. 1999. p. 223-238. 13. FAN, Junfeng; VERCAUTEREN, Frederik. Somewhat Practical Fully Homomorphic Encryption. IACR Cryptology ePrint Archive, 2012, 2012: 144. 14. REGEV, Oded. On lattices, learning with errors, random linear codes, and cryptography. Journal of the ACM (JACM), 2009, 56.6: 34. 15. LYUBASHEVSKY, Vadim; PEIKERT, Chris; REGEV, Oded. On ideal lattices and learning with errors over rings. In: Annual International Conference on the Theory and Applications of Cryptographic Techniques. Springer, Berlin, Heidelberg, 2010. p. 1-23. 16. VEUGEN, Thijs. Comparing encrypted data. Multimedia Signal Processing Group, Delft University of Technology, The Netherlands, and TNO Information and Communication Technology, Delft, The Netherlands, Tech. Rep, 2011. 17. BOST, Raphael, et al. Machine Learning Classification over Encrypted Data. In: NDSS. 2015. 18. HUANG, Gary B., et al. Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Technical Report 07-49, University of Massachusetts, Amherst, 2007. 19. YI, Dong, et al. Learning face representation from scratch. arXiv preprint arXiv:1411.7923, 2014. 20. CHEN, Dong, et al. Blessing of dimensionality: High-dimensional feature and its efficient compression for face verification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2013. p. 3025-3032. 21. DUNTEMAN, George H. Principal components analysis. Sage, 1989. 22. https://github.com/rbost/ciphermed 23. https://github.com/CryptoExperts/FV-NFLlib
|