跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.188) 您好!臺灣時間:2026/01/16 02:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:湯智帆
研究生(外文):Chih-Fan Tang
論文名稱:超快超音波成像應用於連續非侵入式血壓量測
論文名稱(外文):Noninvasive continuous blood pressure measurements by ultrasound ultrafast imaging
指導教授:李百祺
指導教授(外文):Pai-Chi Li
口試委員:沈哲州廖愛禾林信甫
口試委員(外文):Che-Chou ShenAi-Ho LiaoHsin-Fu Lin
口試日期:2017-09-29
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生醫電子與資訊學研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:中文
論文頁數:70
中文關鍵詞:血壓動脈脈波速度Moen Korteweg方程式Bramwell Hill方程式血液動力學拉普拉斯定律高速成像技術彈性影像
相關次數:
  • 被引用被引用:0
  • 點閱點閱:340
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
心血管疾病是國人十大死因之一,其中,高血壓症是常見的心血管疾病成因,因此,監控血壓是非常重要的議題。此外,血壓也是常見的診斷指標,可以用來評估身體健康的狀況。目前量測血壓的方法有氣袖式血壓計、血壓探針等等。其中以氣袖式血壓計最為常見,其優點是非侵入式,方便簡單,不過缺點是只能量測到舒張壓以及收縮壓,無法計算連續且完整的血壓波型。血壓探針則是使用壓力感應裝置插入動脈中進行血壓量測,其優點是精密度高,而且可以量測連續血壓,缺點則是會造成疼痛,需要臨床醫師才能進行量測。為了非侵入式量測血壓,我們提出了使用動脈脈波速度量測相對壓力的方法。一旦相對壓力計算出來,絕對壓力也能隨之估計。為了驗證本理論,本研究使用塑膠血管仿體搭配血流幫浦系統並且使用超快超音波成像計算動脈脈波速度,計算出來的相對壓力在仿體與人體上分別和壓力傳感器與血壓計比較,得到了低於15%和20%的誤差。此外,本研究所計算出的絕對壓力則有高於50%的誤差,這樣的高誤差可以由剪力模數誤差來源分析解釋。當剪力模數有1kPa的誤差時,計算出的絕對壓力會有21mmHg的誤差。另外,本研究也有使用剪力波彈性影像量測不同靜態壓力下(25、40、80以及115mmHg)的剪力模數,結果顯示剪力模數隨著壓力呈現正向關係。要如何降低絕對壓力量測的誤差即為本研究之未來工作。
Cardiovascular disease (CVD) is one of the fatal diseases in Taiwan, and it may be caused by hypertension. Therefore, blood pressure monitoring is an important task to prevent CVD. The most common way to measure blood pressure is cuff-based sphygmomanometer, the merits of the method are convenient and non-invasive. However, it can only measure systolic and diastolic pressure. On the other hand, a pressure wire catheter is an invasive approach for continuous pressure measurements. However, it is invasive so it can only be performed by clinical physicians. To evaluate blood pressure non-invasively, we first proposed the use of pulse wave velocity (PWV) to evaluate the relative blood pressure. With the relative blood pressure, the absolute pressure can then be measured. To demonstrate this approach, carotid-mimicking vessel phantoms with a pulsatile pump and ultrafast ultrasound imaging was employed to estimate the PWV. Results of relative blood pressures in phantoms and humans measured by the proposed method show less than 15% and 20% respectively errors as compared with the relative pressures measured by a pressure sensor and a sphygmomanometer. Besides, results of absolute blood pressure measurements show up to 50% errors. The high errors can be explained by an error propagation analysis from the shear modulus estimation to the absolute pressure measurements. Specifically, a 1 kPa error in shear modulus results in 21 mmHg error of absolute pressure. In addition, results of shear modulus at different pressures (25, 40, 80 and 115 mmHg) measured by shear wave elasticity imaging show the positively correlated relationship between the blood pressure and the shear modulus. How to reduce errors in absolute blood pressure measurements is an important task for future work.
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS v
LIST OF FIGURES viii
LIST OF TABLES xi
Chapter 1 緒論 1
1.1 高血壓症 1
1.2 血壓量測方法 3
1.3 動脈脈波速度 5
1.4 常見之動脈脈波速度量測技術 7
1.5 高速平面波成像技術 11
1.6 剪力波彈性影像技術 13
1.7 血管生物力學簡介 14
1.8 研究動機與目標 16
1.9 論文架構 16
Chapter 2 非侵入式連續血壓量測方法 18
2.1 超快超音波影像系統 19
2.2 管壁追蹤與管徑估測 21
2.3 動脈脈波速度量測方法 24
2.4 相對壓力估算方法 26
2.5 絕對壓力估計方法 27
2.6 剪力波彈性影像方法 29
2.6.1 外加作用力 29
2.6.2 位移量測 30
2.6.3 彈性影像重建 31
Chapter 3 實驗設計 36
3.1 血管仿體製作 36
3.2 血流模擬幫浦系統設計 37
3.3 超音波影像系統 39
3.4 相對壓力計算體外仿體實驗 41
3.5 相對壓力計算體內實驗 42
3.6 絕對壓力計算體外動態仿體實驗 42
Chapter 4 實驗結果 44
4.1 相對壓力體外仿體實驗 44
4.2 相對壓力人體實驗 49
4.3 絕對壓力計算體外仿體實驗 52
Chapter 5 分析與討論 56
5.1 仿體壓力傳感器量測點位置不同造成之相位差補償 錯誤! 尚未定義書籤。
5.2 人體血壓放大效應 56
5.3 全域與局部之動脈脈波速度比較 57
5.4 血管仿體絕對壓力計算 59
5.5 計算血壓之各方法比較 62
Chapter 6 結論與未來工作 64
6.1 結論 64
6.2 未來工作 65
參考資料 67
1.Burt, V.L., et al., Prevalence of Hypertension in the US Adult Population. Results From the Third National Health and Nutrition Examination Survey, 1988-1991, 1995. 25(3): p. 305-313.
2.Haffner, S.M., et al., Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med, 1998. 339(4): p. 229-34.
3.Alexander, R.W., Hypertension and the Pathogenesis of Atherosclerosis. Hypertension, 1995. 25: p. 155-161.
4.Staessen, J., A. Amery, and R. Fagard, Isolated systolic hypertension in the elderly. Journal of Hypertension, 1990. 8(5): p. 393-405.
5.Blumenthal, J.A., et al., Effects of the DASH diet alone and in combination with exercise and weight loss on blood pressure and cardiovascular biomarkers in men and women with high blood pressure: the ENCORE study. Arch Intern Med, 2010. 170(2): p. 126-35.
6.Semlitsch, T., et al., Long-term effects of weight-reducing diets in people with hypertension. Cochrane Database Syst Rev, 2016. 3: p. CD008274.
7.Chobanian, A.V., et al., Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension, 2003. 42: p. 1206-1252.
8.Booth, J., A short history of blood pressure measurement. Proceedings of the Royal Society of Medicine, 1977. 70(11): p. 793-799.
9.Babbs, C.F., Oscillometric measurement of systolic and diastolic blood pressures validated in a physiologic mathematical model. BioMedical Engineering OnLine, 2012. 11(1): p. 56.
10.Kurtz, T.W., et al., Recommendations for Blood Pressure Measurement in Humans and Experimental Animals. Hypertension, 2005. 45: p. 299-310.
11.Narimatsu, K. and K. Ohmori. An algorithm for tonometric absolute blood pressure measurement. in Proceedings Computers in Cardiology. 1992.
12.Beulen, B.W.A.M.M., et al., Toward Noninvasive Blood Pressure Assessment in Arteries by Using Ultrasound. Ultrasound in Medicine & Biology, 2011. 37(5): p. 788-797.
13.Vasan, R.S., Pathogenesis of Elevated Peripheral Pulse Pressure. Hypertension, 2007. 51: p. 33-36.
14.Diaz, A., et al., Reference values of pulse wave velocity in healthy people from an urban and rural argentinean population. Int J Hypertens, 2014. 2014: p. 653239.
15.Li, F., et al., High frame rate and high line density ultrasound imaging for local pulse wave velocity estimation using motion matching: A feasibility study on vessel phantoms. Ultrasonics, 2016. 67: p. 41-54.
16.Benthin, M., et al., Calculation of pulse-wave velocity using cross correlation—Effects of reflexes in the arterial tree. Ultrasound in Medicine & Biology, 1991. 17(5): p. 461-469.
17.Hermeling, E., et al., Measurement of Local Pulse Wave Velocity: Effects of Signal Processing on Precision. Ultrasound in Medicine & Biology, 2007. 33(5): p. 774-781.
18.Rabben, S.I., et al., An ultrasound-based method for determining pulse wave velocity in superficial arteries. Journal of Biomechanics, 2004. 37(10): p. 1615-1622.
19.Tanter, M. and M. Fink, Ultrafast imaging in biomedical ultrasound. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2014. 61(1): p. 102-119.
20.Yu, Q., J. Zhou, and Y.C. Fung, Neutral axis location in bending and Young''s modulus of different layers of arterial wall. American Journal of Physiology - Heart and Circulatory Physiology, 1993. 265: p. H52-H60.
21.Deng, S.X., et al., New experiments on shear modulus of elasticity of arteries. American Journal of Physiology - Heart and Circulatory Physiology, 1994. 266: p. H1-H10.
22.Poon, C.C.Y. and Y.T. Zhang. Cuff-less and Noninvasive Measurements of Arterial Blood Pressure by Pulse Transit Time. in 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference. 2005.
23.Shriram, R., et al. Continuous cuffless blood pressure monitoring based on PTT. in 2010 International Conference on Bioinformatics and Biomedical Technology. 2010.
24.Sato, T., et al., Accuracy of a continuous blood pressure monitor based on arterial tonometry. Hypertension, 1993. 21(6 Pt 1): p. 866.
25.Hasegawa, H., K. Hongo, and H. Kanai, Measurement of regional pulse wave velocity using very high frame rate ultrasound. Journal of Medical Ultrasonics, 2013. 40(2): p. 91-98.
26.Couade, M., et al., Quantitative Assessment of Arterial Wall Biomechanical Properties Using Shear Wave Imaging. Ultrasound in Medicine & Biology, 2010. 36(10): p. 1662-1676.
27.Bernal, M., et al., Material property estimation for tubes and arteries using ultrasound radiation force and analysis of propagating modes. The Journal of the Acoustical Society of America, 2011. 129(3): p. 1344-1354.
28.Zhou, Y., et al., Measurement of high intensity focused ultrasound fields by a fiber optic probe hydrophone. The Journal of the Acoustical Society of America, 2006. 120(2): p. 676-685.
29.Bercoff, J., et al., The role of viscosity in the impulse diffraction field of elastic waves induced by the acoustic radiation force. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2004. 51(11): p. 1523-1536.
30.Zhao, H., et al., Bias Observed in Time-of-Flight Shear Wave Speed Measurements Using Radiation Force of a Focused Ultrasound Beam. Ultrasound in Medicine & Biology, 2011. 37(11): p. 1884-1892.
31.Agabiti-Rosei, E., et al., Central Blood Pressure Measurements and Antihypertensive Therapy. Hypertension, 2007. 50(1): p. 154.
32.Hashimoto, J. and S. Ito, Pulse Pressure Amplification, Arterial Stiffness, and Peripheral Wave Reflection Determine Pulsatile Flow Waveform of the Femoral Artery. Hypertension, 2010. 56(5): p. 926.
33.Simova, I., et al., Comparison between Regional and Local Pulse-Wave Velocity Data. Echocardiography, 2016. 33(1): p. 77-81.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top