跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.34) 您好!臺灣時間:2025/10/31 06:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳信瑋
研究生(外文):CHEN, XIN-WEI
論文名稱:自動化軸承檢驗系統
論文名稱(外文):Automation Bearing Inspect System
指導教授:蘇嘉祥蘇嘉祥引用關係
指導教授(外文):SU, CHIA-HSIANG
口試委員:蘇程裕潘正堂
口試委員(外文):SU, CHERNG-YUHPAN, CHENG-TANG
口試日期:2019-07-08
學位類別:碩士
校院名稱:南臺科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:61
中文關鍵詞:軸承機電整合影像處理精密量測分類系統
外文關鍵詞:BearingMechatronicsImage processPrecision measurementSorting system
相關次數:
  • 被引用被引用:0
  • 點閱點閱:228
  • 評分評分:
  • 下載下載:32
  • 收藏至我的研究室書目清單書目收藏:2
軸承是一種精密元件,其是由環、滾珠與保持器三個部分所組成,常應用於傳動系統。軸承環通常是 經由電腦化數值控制(Computer Numerical Control, CNC)加工而成,常因加工熱變形等因素,而導致組裝後之產品在使用上產生異音與壽命短的問題。但軸承環為一曲面造型,若以般量具測不僅耗時又無法取得正確的內溝環尺寸,所以目前軸承的檢驗是以抽樣方式為主,對於尺寸不或外觀缺陷的軸承常有未被檢測出問題,導致組裝後公差過大與缺陷品產出的現象。因此本研究將針對軸承環尺寸及外觀缺損,提出一套結合高速量測、影像處理及機械手臂之高精度全自動檢驗系統。
在全自動軸承環檢驗系統中,主要以感光耦合元件(Charge Coupled Device, CCD)攝影機進行軸承 環尺寸與外觀缺陷檢測,並由影像的定位系統擷取移動中的軸承環座標值,再以通訊的方式將座標值即時傳送至機械手臂。使得機械手臂能於定點處精準的夾取待量測軸承環。配合非接觸式的單點雷射 量測模組,將夾取之軸承環進行360度的軸承環內溝量測,即可快速、精準 與穩定的取得內溝的尺寸 值,整體量測時間只需3秒,誤差值約在0.02mm內,經與三次元量床(Coordinate Measuring Machine, CMM)進行量測比對,結果顯示兩者的趨勢完全一致。模組化的量測系統進一步與人機介面結合後,目前更可進行遠端監控與檢驗功能操作,讓軸承的檢驗真正達成準確、穩定、快速與智能性的全自動檢驗。
The bearing is a precision component. It consists of three parts: bearing ring, ball and retainer, which are often used in transmission systems. The bearing ring is usually machined by CNC, which often causes problems in the use of the product after assembly due to thermal deformation of the process. However, the bearing ring is a curved shape. If it is measured by a general measuring tool, it is not only time-consuming but also impossible to obtain the correct inner groove ring size. At present, the bearing inspection is mainly based on sampling. For bearings with incorrect dimensions or defects, there are often undetected problems. Therefore, this study will propose a high-precision automatic inspection system combining high-speed measurement, image processing and robot for bearing ring size and appearance defects. In the automatic bearing ring inspection system, the outer ring size and appearance defects are mainly detected by CCD, and the moving bearing ring coordinate value is captured by the image positioning system, and the coordinate value is transmitted to the robot in real time by communication. This allows the robot to precisely grasp the bearing ring to be measured at the fixed point. With the non-contact single-point laser displacement meter, the clamped bearing ring can be measured by 360 multi-point internal groove, and the size of the inner groove can be obtained quickly, accurately and stably. The overall measurement time is only 3 seconds, and the deviation is about 0.02mm. After comparison with the CMM, the results show that the trends are completely the same. After the modular measurement system is further combined with the human-machine interface, it is now possible to perform remote monitoring and detection functions, so that the measurement of the bearing can achieve accurate, rapid and intelligent automatic detection.
摘要 i
Abstract ii
誌謝 iii
目次 iii
圖目錄 vi
第一章 緒論 1
1.1前言 1
1.2研究目的與動機 3
1.3研究構想 4
1.4本文架構 5
第二章 軸承探討與文獻回顧 6
2.1軸承介紹 6
2.1.1軸承種類 8
2.2文獻回顧 10
第三章 自動化檢驗系統設計與整合 14
3.1自動化軸承檢驗系統開發 14
3.1.1控制系統 15
3.3 CCD攝影機檢測應用 16
3.3.1光源應用 17
3.3.3 CCD攝影機軟硬體校正 20
3.4機械手臂應用 24
3.4.1夾具設計 24
3.4.2同心度校正 25
3.5單點雷射量測模組簡介 26
3.5.1單點雷射量測模組應用 26
3.5.2單點雷射量測模組軟體調校 26
3.6 PLC與相關模組之整合 28
3.7人機介面應用 30
3.7.1人機介面規劃 30
第四章 實驗結果與討論 32
4.1軸承檢驗整體流程 32
4.2 CCD攝影機檢測結果分析 34
4.3軸承位移機械手臂定點追蹤 37
4.4自動化量測結果分析 39
4.5遠端監控 44
4.6實驗結果討論 46
第五章 結論與未來展望 47
5.1結論 47
5.2未來展望 48
參考文獻 49
1. Y. Wang, G. Wang and R. Anderl, “Generic Procedure Model to Introduce Industrie 4.0 in Small and Medium-sized Enterprises,” Proceedings of the World Congress on Engineering and Computer Science, Vol. 2, 2016.
2. X. Qi, S. Sun, M. Lin and X. Qiao, “Artificial Fur Knitting Machine Auto-Control System,” Proceedings of 6th World Congress on Intelligent Control and Automation, Vol. 2, pp. 8006-8010, 2006.
3. S. J. Bong, L. W. Chul and L. W. Jeong, “Developing Auto Recipe Nanagement System for LCD Panel Auto Defect Detecting Inspection Machine,” SICE Annual Conference, pp. 2204-2207, 2008.
4. Z. Q. Zhang, S. G. Hu, S. B. Chen, R. D. Li, Z. D. Zheng, Z. F. Deng, Y. Li and S. Y. Xie, “Study and Development of Reconfigurable and Multi-Station Auto Shaft Pressing and Assembling Machine for Small Gears,” Key Engineering Materials, Vol. 522, pp. 378-382, 2012.
5. Y. L. Yan, Y. Fang, X. P. Li, X. Q. Zhu and S. Miao, “Material Sorting Control System Design Based on Mitsubishi FX2N-48 MT PLC,” Advanced Materials Research, Vol. 898, pp. 563-567, 2014.
6. B. You, J. Hu, J. Xu and Y. Miao, “High-speed and High-precision Online Detection System of the Tile Smoothness,” Proceedings of International Conference on Measurement, Information and Control, Vol. 2, pp. 756-760, 2012.
7. P. X. Li, Z. J. Sun, H. L. Zhu and Z. Sun, “The Design of Control System for Auto-Packing Pantyhose Machine,” Advanced Materials Research, Vol. 328, pp. 2288-2291, 2011.
8. Y. F. Gao, G. P. Li, C. D. Jiang and Y. J. Li, “Design of the Wire Rope Cleaning and Detection Line Control System Based on Touch Screen and PLC,” Applied Mechanics and Materials, Vol. 455, pp. 495-501, 2014.
9. M. Yaqub and K. A. Loparo, “An automated approach for bearing damage detection,” Journal of Vibration and Control, Vol. 22, No. 14, pp. 3253-3266, 2016.
10. M. N. Jagdale and G. Diwakar, “A Critical Review of Condition Monitoring Parameters for Fault Diagnosis of Rolling Element Bearing,” IOP Conference Series: Materials Science and Engineering, Vol. 455, No. 1, 2018.
11. L. F. de Almeida, J. WP Bizarria, F. CP. Bizarria and M. H. Mathia, “Condition-based Monitoring System for Rolling Element Bearing Using a Generic Multi-layer Perceptron,” Journal of Vibration and Control, Vol. 21, No. 16, pp. 3456-3464, 2018.
12. K. V. Surti, and C. A. Naik, “Bearing Condition Monitoring of Induction Motor Based on Discrete Wavelet Transform & K-nearest Neighbor,” International Conference for Convergence in Technology (I2CT), pp. 1-5, 2018.
13. 趙洪建,一種軸承外觀尺寸檢,專利編號 M564155號,中華民國,2018。
14. 盧滿懷、湯綺婷、范帥,軸承外圈檢測方式及設備范帥,專利編號 CN201610260204,中華人民共和國家知識財產局,2016。
15. 梁炎辉,一種軸承尺寸動檢測裝置,專利編號 CN201820368814,中華人民共和國家知識財產局,2018。
16. 劉建軍、馬盈丰、張文歡、 李偉為,量測機構及檢裝置,專利編號 CN201721894787,中華人民共和國家知識財產局,2018。
17. J. Husár and D. Dupláková, “Material Flow Planning for Bearing Production in Digital Factory,” Key Engineering Materials, Vol. 669, pp. 541-550, 2016.
18. C. Wang and J. J. Gao, “The Detection of Surface Quality on-line based on Machine Vision in the Production of Bearings,” Applied Mechanics and Materials, Vol. 319, pp. 523-527, 2013.
19. W. Ge, H. Zhao and X. Li, “Gyroscope Pivot Bearing Dimension and Surface Defect Detection,” Sensors, Vol. 11 No. 3, pp. 3227-3248, 2011.
20. A. Ashtekar, F. Sadeghi and L. E. Stacke, “Surface Defects Effects on Bearing Dynamics,” Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, Vol. 224. No. 1, pp. 25-35, 2010.
21. X. Zhou, H. Xu, X. Xiong and L-E. Wan, “Effect of Ball Off Size on Fatigue Life of Deep Groove Ball Bearing,” International Symposium on Assembly and Manufacturing (ISAM), pp. 64-68, 2013.
22. Z. K. Peng, M. R. Jackson, L. Z. Guo, R. M. Parkin and G. Meng, “Effects of Bearing Clearance on the Chatter Stability of Milling Process,” Nonlinear Analysis: Real World Applications, Vol. 11 No. 5, pp. 3577-3589, 2010.
23. S. Chatterton, P. V. Dang, P. Pennacchi and A. Vania, “Behaviour of Tilting-pad Journal Bearings in Case of Large Manufacturing Errors,” Advances in Italian Mechanism Science, pp. 221-227, 2017.
24. A. Georgiadis, X. Gong and N. Meier, “Vibration Analysis Based on the Spectrum Kurtosis for Adjustment and Monitoring of Ball Bearing Radial Clearance,” MATEC Web of Conferences, Vol. 211, 2018.
25. S. Deng, W. W. Cai, Q. Y. XU and B. Liang, “Defect Detection of Bearing Surfaces Based on Machine Vision Technique,” International Conference on Computer Application and System Modeling, 2010.
26. Q. H. Wu, X. Zlou, Z. Zeng and T. He, “Defects Inspecting System for Tapered Roller Bearings Based on Machine Vision,” International Conference on Electrical and Control Engineering, 2010.
27. M. Ye, Y. K. Shan and J. A. Zhan “Bearing Thickness Auto-measuring and Classifying System,” World Congress on Computer Science and Information Engineering, Vol. 3, pp. 505-509, 2009.
28. P. F. Zhang and X. L. Wang, “Measurement and Allocation System for Railway Bearing,” International Conference on Mechanic Automation and Control Engineering, pp. 5898-5901, 2011.
29. S. Dong, X. Q. Ma, W. Ma, J. S. Li and Y. J. Xue, “A New Method for Measuring Outer Diameter of Thin-Walled Bearing,” Chinese Automation Congress (CAC), pp. 3973-3976, 2018.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top