|
[1]J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Adv. Eng. Mater. 6 (2004) 299–303. [2]C. Li, J. Li, M. Zhao, Q. Jiang. Effect of alloying elements on microstructure and properties of multiprincipal elements high-entropy alloys, J. Alloys Compd. 475 (2009) 752–757. [3]J. Pan, T. Dai, T. Lu, X. Ni, J. Dai, M. Li. Microstructure and mechanical properties of Nb25Mo25Ta25W25 and Ti8Nb23Mo23Ta23W23 high entropy alloys prepared by mechanical alloying and spark plasma sintering, Mater. Sci. Eng., A 738 (2018) 362–366. [4]Z. Lei, X. Liu, Y. Wu, H. Wang, S. Jiang, S. Wang, X. Hui, Y. Wu, B. Gault, P. Kontis. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes, Nature 563 (2018) 546. [5]D. Li, C. Li, T. Feng, Y. Zhang, G. Sha, J.J. Lewandowski, P.K. Liaw, Y. Zhang. High-entropy Al0.3CoCrFeNi alloy fibers with high tensile strength and ductility at ambient and cryogenic temperatures, Acta Mater. 123 (2017) 285–294. [6]H. Cheng, X. Liu, Q. Tang, W. Wang, X. Yan, P. Dai. Microstructure and mechanical properties of FeCoCrNiMnAlx high-entropy alloys prepared by mechanical alloying and hot-pressed sintering, J. Alloys Compd. 775 (2019) 742–751. [7]N. Stepanov, D. Shaysultanov, R. Chernichenko, N.Y. Yurchenko, S. Zherebtsov, M. Tikhonovsky, G. Salishchev. Effect of thermomechanical processing on microstructure and mechanical properties of the carbon-containing CoCrFeNiMn high entropy alloy, J. Alloys Compd. 693 (2017) 394–405. [8]B. Gwalani, A.V. Ayyagari, D. Choudhuri, T. Scharf, S. Mukherjee, M. Gibson, R. Banerjee. Microstructure and wear resistance of an intermetallic-based Al0.25Ti0.75CoCrFeNi high entropy alloy, Mater. Chem. Phys. 210 (2018) 197–206. [9]M.-H. Chuang, M.-H. Tsai, W.-R. Wang, S.-J. Lin, J.-W. Yeh. Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys, Acta Mater. 59 (2011) 6308–6317. [10]O. Senkov, S. Senkova, D. Dimiduk, C. Woodward, D. Miracle. Oxidation behavior of a refractory NbCrMo0.5Ta0.5TiZr alloy, J. Mater. Sci. 47 (2012) 6522–6534. [11]M.G. Poletti, G. Fiore, F. Gili, D. Mangherini, L. Battezzati. Development of a new high entropy alloy for wear resistance: FeCoCrNiW0.3 and FeCoCrNiW0.3+ 5 at.% of C, Mater. Des. 115 (2017) 247–254. [12]B. Cantor, I. Chang, P. Knight, A. Vincent. Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. : A 375 (2004) 213–218. [13]C.-C. Tung, J.-W. Yeh, T.-t. Shun, S.-K. Chen, Y.-S. Huang, H.-C. Chen. On the elemental effect of AlCoCrCuFeNi high-entropy alloy system, Mater. Lett. 61 (2007) 1–5. [14]K. Zhang, Z. Fu, J. Zhang, W. Wang, H. Wang, Y. Wang, Q. Zhang, J. Shi. Microstructure and mechanical properties of CoCrFeNiTiAlx high-entropy alloys, Mater. Sci. Eng., A 508 (2009) 214–219. [15]W.-R. Wang, W.-L. Wang, S.-C. Wang, Y.-C. Tsai, C.-H. Lai, J.-W. Yeh. Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys, Intermetallics 26 (2012) 44–51. [16]J. He, W. Liu, H. Wang, Y. Wu, X. Liu, T. Nieh, Z. Lu. Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system, Acta Mater. 62 (2014) 105–113. [17]Z. Fu, W. Chen, H. Wen, D. Zhang, Z. Chen, B. Zheng, Y. Zhou, E.J. Lavernia. Microstructure and strengthening mechanisms in an FCC structured single-phase nanocrystalline Co25Ni25Fe25Al7. 5Cu17. 5 high-entropy alloy, Acta Mater. 107 (2016) 59–71. [18]S. Sun, Y. Tian, X. An, H. Lin, J. Wang, Z. Zhang. Ultrahigh cryogenic strength and exceptional ductility in ultrafine-grained CoCrFeMnNi high-entropy alloy with fully recrystallized structure, Mater. Today Nano (2018). [19]B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie. A fracture-resistant high-entropy alloy for cryogenic applications, Science 345 (2014) 1153–1158. [20]F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, E.P. George. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy, Acta Mater. 61 (2013) 5743–5755. [21]S. Zherebtsov, N. Stepanov, Y. Ivanisenko, D. Shaysultanov, N. Yurchenko, M. Klimova, G. Salishchev. Evolution of microstructure and mechanical properties of a CoCrFeMnNi high-entropy alloy during high-pressure torsion at room and cryogenic temperatures, Metals 8 (2018) 123. [22]G. Salishchev, M. Tikhonovsky, D. Shaysultanov, N. Stepanov, A. Kuznetsov, I. Kolodiy, A. Tortika, O. Senkov. Effect of Mn and V on structure and mechanical properties of high-entropy alloys based on CoCrFeNi system, J. Alloys Compd. 591 (2014) 11–21. [23]A. Gali, E.P. George. Tensile properties of high- and medium-entropy alloys, Intermetallics 39 (2013) 74–78. [24]N. Stepanov, D. Shaysultanov, G. Salishchev, M. Tikhonovsky, E. Oleynik, A. Tortika, O. Senkov. Effect of V content on microstructure and mechanical properties of the CoCrFeMnNiVx high entropy alloys, J. Alloys Compd. 628 (2015) 170–185. [25]Е. Tabachnikova, А. Podolskiy, M. Laktionova, N. Bereznaia, M. Tikhonovsky, A. Tortika. Mechanical properties of the CoCrFeNiMnVx high entropy alloys in temperature range 4.2–300 K, J. Alloys Compd. (2017) 501–509. [26]D. Shaysultanov, N. Stepanov, G. Salishchev, M. Tikhonovsky. Effect of heat treatment on the structure and hardness of high-entropy alloys CoCrFeNiMnV x (x= 0.25, 0.5, 0.75, 1), Phys. Met. Metallogr. 118 (2017) 579–590. [27]G. Qin, R. Chen, H. Zheng, H. Fang, L. Wang, Y. Su, J. Guo, H. Fu. Strengthening FCC-CoCrFeMnNi high entropy alloys by Mo addition, J. Mater. Sci. Technol. 35 (2019) 578–583. [28]J. Chen, Z. Yao, X. Wang, Y. Lu, X. Wang, Y. Liu, X. Fan. Effect of C content on microstructure and tensile properties of as-cast CoCrFeMnNi high entropy alloy, Mater. Chem. Phys. 210 (2018) 136–145. [29]H. Shahmir, M. Nili-Ahmadabadi, A. Shafiee, M. Andrzejczuk, M. Lewandowska, T.G. Langdon. Effect of Ti on phase stability and strengthening mechanisms of a nanocrystalline CoCrFeMnNi high-entropy alloy, Mater. Sci. Eng., A 725 (2018) 196–206. [30]H. Cheng, W. Chen, X. Liu, Q. Tang, Y. Xie, P. Dai. Effect of Ti and C additions on the microstructure and mechanical properties of the FeCoCrNiMn high-entropy alloy, Mater. Sci. Eng. : A 719 (2018) 192–198. [31]Y. Dong, K. Zhou, Y. Lu, X. Gao, T. Wang, T. Li. Effect of vanadium addition on the microstructure and properties of AlCoCrFeNi high entropy alloy, Mater. Des. 57 (2014) 67–72. [32]Е. Tabachnikova, А. Podolskiy, M. Laktionova, N. Bereznaia, M. Tikhonovsky, A. Tortika. Mechanical properties of the CoCrFeNiMnVx high entropy alloys in temperature range 4.2–300 K, J. Alloys Compd. 698 (2017) 501–509. [33]W. Li, P. Liu, P.K. Liaw. Microstructures and properties of high-entropy alloy films and coatings: a review, Materials Research Letters 6 (2018) 199–229. [34]L. Liu, J. Zhu, C. Hou, J. Li, Q. Jiang. Dense and smooth amorphous films of multicomponent FeCoNiCuVZrAl high-entropy alloy deposited by direct current magnetron sputtering, Mater. Des. 46 (2013) 675–679. [35]W. Huo, X. Liu, S. Tan, F. Fang, Z. Xie, J. Shang, J. Jiang. Ultrahigh hardness and high electrical resistivity in nano-twinned, nanocrystalline high-entropy alloy films, Appl. Surf. Sci. 439 (2018) 222–225. [36]B. Braeckman, F. Boydens, H. Hidalgo, P. Dutheil, M. Jullien, A.-L. Thomann, D. Depla. High entropy alloy thin films deposited by magnetron sputtering of powder targets, Thin Solid Films 580 (2015) 71–76. [37]T.-K. Chen, M.-S. Wong, T.-T. Shun, J.-W. Yeh. Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering, Surf. Coat. Technol. 200 (2005) 1361–1365. [38]W. Liao, S. Lan, L. Gao, H. Zhang, S. Xu, J. Song, X. Wang, Y. Lu. Nanocrystalline high-entropy alloy (CoCrFeNiAl0.3) thin-film coating by magnetron sputtering, Thin Solid Films 638 (2017) 383–388. [39]X. Li, Z. Zheng, D. Dou, J. Li. Microstructure and properties of coating of FeAlCuCrCoMn high entropy alloy deposited by direct current magnetron sputtering, Mater. Res. 19 (2016) 802–806. [40]Z. An, H. Jia, Y. Wu, P.D. Rack, A.D. Patchen, Y. Liu, Y. Ren, N. Li, P.K. Liaw. Solid-solution CrCoCuFeNi high-entropy alloy thin films synthesized by sputter deposition, Mater. Res. Lett. 3 (2015) 203–209. [41]Y. Zou, H. Ma, R. Spolenak. Ultrastrong ductile and stable high-entropy alloys at small scales, Nat. Commun. 6 (2015) 7748. [42]X. Feng, W. Fu, J. Zhang, J. Zhao, J. Li, K. Wu, G. Liu, J. Sun. Effects of nanotwins on the mechanical properties of AlxCoCrFeNi high entropy alloy thin films, Scr. Mater. 139 (2017) 71–76. [43]B. Braeckman, F. Misják, G. Radnóczi, M. Caplovicová, P. Djemia, F. Tétard, L. Belliard, D. Depla. The nanostructure and mechanical properties of nanocomposite Nbx-CoCrCuFeNi thin films, Scr. Mater. 139 (2017) 155–158. [44]B. Braeckman, D. Depla. Structure formation and properties of sputter deposited Nbx-CoCrCuFeNi high entropy alloy thin films, J. Alloys Compd. 646 (2015) 810–815. [45]Z. Wu, X. Wang, Q. Cao, G. Zhao, J. Li, D. Zhang, J.-J. Zhu, J. Jiang. Microstructure characterization of AlxCo1Cr1Cu1Fe1Ni1 (x= 0 and 2.5) high-entropy alloy films, J. Alloys Compd. 609 (2014) 137–142. [46]H. Zhang, Y. Pan, Y. He, H. Jiao. Microstructure and properties of 6FeNiCoSiCrAlTi high-entropy alloy coating prepared by laser cladding, Appl. Surf. Sci. 257 (2011) 2259–2263. [47]D.R. Gaskell, D.E. Laughlin. Introduction to the Thermodynamics of Materials, CRC press, 2017. [48]R.A. Swalin, J. Arents. Thermodynamics of solids, Journal of The Electrochemical Society 109 (1962) 308C–308C. [49]J.-W. Yeh. Alloy design strategies and future trends in high-entropy alloys, Jom 65 (2013) 1759–1771. [50]S. Guo, Q. Hu, C. Ng, C. Liu. More than entropy in high-entropy alloys: Forming solid solutions or amorphous phase, Intermetallics 41 (2013) 96–103. [51]Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liaw. Solid-solution phase formation rules for multi¬¬¬-component alloys, Adv. Eng. Mater. 10 (2008) 534–538. [52]X. Yang, Y. Zhang. Prediction of high-entropy stabilized solid-solution in multi-component alloys, Mater. Chem. Phys. 132 (2012) 233–238. [53]S. Guo, C. Ng, J. Lu, C. Liu. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys, J. Appl. Phys. 109 (2011) 103505. [54]Y. Jien-Wei. Recent progress in high entropy alloys, Ann. Chim. Sci. Mat 31 (2006) 633–648. [55]M.C. Gao, J.-W. Yeh, P.K. Liaw, Y. Zhang. High-entropy alloys, Cham: Springer International Publishing (2016). [56]C.-J. Tong, M.-R. Chen, J.-W. Yeh, S.-J. Lin, S.-K. Chen, T.-T. Shun, S.-Y. Chang. Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements, Metall. Mater. Trans. A 36 (2005) 1263–1271. [57]Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu. Microstructures and properties of high-entropy alloys, Prog. Mater. Sci. 61 (2014) 1–93. [58]C.-W. Tsai, M.-H. Tsai, J.-W. Yeh, C.-C. Yang. Effect of temperature on mechanical properties of Al0.5CoCrCuFeNi wrought alloy, J. Alloys Compd. 490 (2010) 160–165. [59]M. Yao, K.G. Pradeep, C.C. Tasan, D. Raabe. A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility, Scr. Mater. 72 (2014) 5–8. [60]T. Sakthivel, K. Laha, M. Nandagopal, K. Chandravathi, P. Parameswaran, S.P. Selvi, M. Mathew, S.K. Mannan. Effect of temperature and strain rate on serrated flow behaviour of Hastelloy X, Mater. Sci. Eng. : A 534 (2012) 580–587. [61]J. Antonaglia, X. Xie, Z. Tang, C.-W. Tsai, J. Qiao, Y. Zhang, M. Laktionova, E. Tabachnikova, J. Yeh, O. Senkov. Temperature effects on deformation and serration behavior of high-entropy alloys (HEAs), Jom 66 (2014) 2002–2008. [62]Z. Tang, T. Yuan, C.-W. Tsai, J.-W. Yeh, C.D. Lundin, P.K. Liaw. Fatigue behavior of a wrought Al0.5CoCrCuFeNi two-phase high-entropy alloy, Acta Mater. 99 (2015) 247–258. [63]Z. Wang, S. Guo, Q. Wang, Z. Liu, J. Wang, Y. Yang, C. Liu. Nanoindentation characterized initial creep behavior of a high-entropy-based alloy CoFeNi, Intermetallics 53 (2014) 183–186. [64]M. Seifi, D. Li, Z. Yong, P.K. Liaw, J.J. Lewandowski. Fracture toughness and fatigue crack growth behavior of as-cast high-entropy alloys, Jom 67 (2015) 2288–2295. [65]A.V. Kuznetsov, D.G. Shaysultanov, N. Stepanov, G.A. Salishchev, O.N. Senkov. Tensile properties of an AlCrCuNiFeCo high-entropy alloy in as-cast and wrought conditions, Mater. Sci. Eng. : A 533 (2012) 107–118. [66]Z. Liu, S. Guo, X. Liu, J. Ye, Y. Yang, X.-L. Wang, L. Yang, K. An, C.T. Liu. Micromechanical characterization of casting-induced inhomogeneity in an Al0.8CoCrCuFeNi high-entropy alloy, Scr. Mater. 64 (2011) 868–871. [67]M. Laktionova, E. Tabachnikova, Z. Tang, J. Antonaglia, K. Dahmen, P. Liaw. Low temperature mechanical behavior of the Al0.5CoCrCuFeNi high-entropy alloy, Mater. Sci. Technol. (2012). [68]M. Laktionova, E. Tabchnikova, Z. Tang, P. Liaw. Mechanical properties of the high-entropy alloy Ag0.5CoCrCuFeNi at temperatures of 4.2–300 K, Low Temp. Phys. 39 (2013) 630–632. [69]T. Chen, T. Shun, J. Yeh, M. Wong. Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering, Surf. Coat. Technol. 188 (2004) 193–200. [70]R.-S. Yu, C.-J. Huang, R.-H. Huang, C.-H. Sun, F.-S. Shieu. Structure and optoelectronic properties of multi-element oxide thin film, Appl. Surf. Sci. 257 (2011) 6073–6078. [71]W.-J. Shen, M.-H. Tsai, Y.-S. Chang, J.-W. Yeh. Effects of substrate bias on the structure and mechanical properties of (Al1.5CrNb0.5Si0.5Ti)Nx coatings, Thin Solid Films 520 (2012) 6183–6188. [72]C. Lin, J. Duh, J. Yeh. Multi-component nitride coatings derived from Ti–Al–Cr–Si–V target in RF magnetron sputter, Surf. Coat. Technol. 201 (2007) 6304–6308. [73]X. Feng, G. Tang, L. Gu, X. Ma, M. Sun, L. Wang. Preparation and characterization of TaNbTiW multi-element alloy films, Appl. Surf. Sci. 261 (2012) 447–453. [74]X.H. Yan, J.S. Li, W.R. Zhang, Y. Zhang. A brief review of high-entropy films, Mater. Chem. Phys. 210 (2018) 12–19. [75]K.-H. Cheng, C.-H. Weng, C.-H. Lai, S.-J. Lin. Study on adhesion and wear resistance of multi-element (AlCrTaTiZr)N coatings, Thin Solid Films 517 (2009) 4989–4993. [76]P.-K. Huang, J.-W. Yeh. Effects of substrate temperature and post-annealing on microstructure and properties of (AlCrNbSiTiV) N coatings, Thin Solid Films 518 (2009) 180–184. [77]V. Braic, A. Vladescu, M. Balaceanu, C. Luculescu, M. Braic. Nanostructured multi-element (TiZrNbHfTa)N and (TiZrNbHfTa)C hard coatings, Surf. Coat. Technol. 211 (2012) 117–121. [78]H.-T. Hsueh, W.-J. Shen, M.-H. Tsai, J.-W. Yeh. Effect of nitrogen content and substrate bias on mechanical and corrosion properties of high-entropy films (AlCrSiTiZr)100−xNx, Surf. Coat. Technol. 206 (2012) 4106–4112. [79]H. Zhang, Y.-Z. He, Y. Pan, S. Guo. Thermally stable laser cladded CoCrCuFeNi high-entropy alloy coating with low stacking fault energy, J. Alloys Compd. 600 (2014) 210–214. [80]Z. Wu, H. Bei, F. Otto, G.M. Pharr, E.P. George. Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys, Intermetallics 46 (2014) 131–140. [81]A. Kauffmann, M. Stüber, H. Leiste, S. Ulrich, S. Schlabach, D.V. Szabó, S. Seils, B. Gorr, H. Chen, H.-J. Seifert. Combinatorial exploration of the high entropy alloy system Co-Cr-Fe-Mn-Ni, Surf. Coat. Technol. 325 (2017) 174–180. [82]A. Zaddach, C. Niu, C. Koch, D. Irving. Mechanical properties and stacking fault energies of NiFeCrCoMn high-entropy alloy, Jom 65 (2013) 1780–1789. [83]M.C. Gao, C. Niu, C. Jiang, D.L. Irving. Applications of special quasi-random structures to high-entropy alloys. High-Entropy Alloys. Springer, 2016. pp. 333–368. [84]P. Bhattacharjee, G. Sathiaraj, M. Zaid, J. Gatti, C. Lee, C.-W. Tsai, J.-W. Yeh. Microstructure and texture evolution during annealing of equiatomic CoCrFeMnNi high-entropy alloy, J. Alloys Compd. 587 (2014) 544–552. [85]J.A. Thornton, D. Hoffman. Stress-related effects in thin films, Thin Solid Films 171 (1989) 5–31. [86]O. Bouaziz, S. Allain, C. Scott. Effect of grain and twin boundaries on the hardening mechanisms of twinning-induced plasticity steels, Scr. Mater. 58 (2008) 484–487. [87]I. Gutierrez-Urrutia, D. Raabe. Grain size effect on strain hardening in twinning-induced plasticity steels, Scr. Mater. 66 (2012) 992–996. [88]Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan. Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off, Nature 534 (2016) 227. [89]S. Sun, Y. Tian, H. Lin, H. Yang, X. Dong, Y. Wang, Z. Zhang. Transition of twinning behavior in CoCrFeMnNi high entropy alloy with grain refinement, Mater. Sci. Eng., A 712 (2018) 603–607. [90]L. Lu, X. Chen, X. Huang, K. Lu. Revealing the maximum strength in nanotwinned copper, Science 323 (2009) 607–610. [91]D.A. Porter, K.E. Easterling, M. Sherif. Phase Transformations in Metals and Alloys, (Revised Reprint), CRC press, 2009. [92]R. Qu, Z. Liu, G. Wang, Z. Zhang. Progressive shear band propagation in metallic glasses under compression, Acta Mater. 91 (2015) 19–33. [93]A. Greer, Y. Cheng, E. Ma. Shear bands in metallic glasses, Mater. Sci. Eng., R 74 (2013) 71–132. [94]J.-Y. Kim, D. Jang, J.R. Greer. Tensile and compressive behavior of tungsten, molybdenum, tantalum and niobium at the nanoscale, Acta Mater. 58 (2010) 2355–2363. [95]Y. Deng, C.C. Tasan, K.G. Pradeep, H. Springer, A. Kostka, D. Raabe. Design of a twinning-induced plasticity high entropy alloy, Acta Mater. 94 (2015) 124–133. [96]X. Feng, J. Zhang, K. Wu, X. Liang, G. Liu, J. Sun. Ultrastrong Al0.1CoCrFeNi high-entropy alloys at small scales: effects of stacking faults vs. nanotwins, Nanoscale 10 (2018) 13329–13334.
|