跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.107) 您好!臺灣時間:2025/12/18 07:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李家銘
研究生(外文):Chia-Ming Li
論文名稱:智慧型熔拉光纖干涉儀之高靈敏感測器
論文名稱(外文):Highly Sensitive Fiber Optic Sensors based on Smart Tapered Fiber Interferometers
指導教授:李澄鈴
指導教授(外文):Cheng-Ling Lee
口試委員:韓斌李澄鈴洪境祥徐瑞明林鴻輝
口試委員(外文):Pin HanCheng-Ling LeeJing-Shyang HorngJui-Ming HsuHung-Hui Lin
口試日期:2013-07-25
學位類別:碩士
校院名稱:國立聯合大學
系所名稱:光電工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:58
中文關鍵詞:熔拉光纖光纖Michelson干涉儀光纖Mach-Zehnder 干涉儀
外文關鍵詞:Tapered fiberFiber Mach-Zehnder interferometer,Fiber Michelson interferometer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:252
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
本研究以熔拉光纖 (Tapered Fiber: TF)為主要的干涉儀結構,發展兩種靈敏之智慧型熔拉光纖干涉儀感測器,架構分別是 Michelson 與Mach-Zehnder 光纖干涉儀分別應用於風向、風速以及旋轉角度之量測。
風速風向 Michelson 光纖干涉儀是一種創新、簡單、具方向性且為靈敏性高的氣流感測器,利用扁平光殼光纖,經由熔拉處理所製成的熔拉光纖干涉儀,此干涉儀因風速之作用,則將造成光纖干涉儀彎曲,干涉頻譜因而變化而間接測得風速,若是用結構非對稱之扁平光殼光纖,更可以從實驗中量測到的干涉條紋的波長位移、可見度(visibility)變化、以及平均損耗的變化皆與方向有關,間接測得作用在元件的風速大小或風向(角度)。
另一個元件是連續兩次熔拉所形成之 Mach-Zehnder 光纖干涉儀,它可以發展成一種靈敏、簡便且價格低廉的角度旋轉感測器,實驗結果顯示,此干涉儀會受旋轉(扭轉)角度不同,造成干涉條紋的波長位移與能量損耗相對於角度之變化,當光纖熔拉的細度越細,干涉頻譜之波長位移與能量損耗相對於旋轉角度變化亦較大,代表具有較靈敏的特性。
We have developed two kinds of highly sensitive tapered fiber interferometers (TFI) sensing devices that have smart configurations and high sensitivity for parametric sensing applications. The first fiber sensor demonstrates a novel, directional and sensitive fiber anemometer based on tapered fiber Michelson interferometer configuration. The proposed anemometers based on an anisotropic flat-clad tapered fiber Michelson interferometer enables sensing the direction and magnitude of flowing air (wind) simultaneously.
Wavelength shifts and fringes visibility of the measured interference fringes are correlated with the magnitude as well as the direction of the wind. Experimental results show that the proposed directional anemometer can simultaneously and effectively indicate the direction, and sensitively measure the magnitude of wind.
Another tapered fiber sensor is based on a fiber Mach-Zehnder interferometer (FMZI) by cascading two fiber tapers. The FMZI can be as a twist fiber sensor to achieve a highly sensitive and in-line sensing.
Spectral sensitivity of the proposed sensor strongly depends on taper waist and thinner waist possesses higher sensitivity. Experimental results show that wavelength shifts and spectral loss of the interference fringes depends on the twist angles.
- 4 -

目錄
致謝…………………………………….…………………..…………….1
摘要…………………………………….…………………..…………….2
Abstract…………………………………………………………………...3
目錄…………………………………………………..………………......4
圖目錄………………………………………………………..……....…..6
表目錄…………………………………………………………………....8
第一章 緒論
1.1 研究背景……………………………………..…..................9
1.2 研究動機與目的……………………………………….......10
第二章 熔拉光纖干涉儀
2.1 熔拉光纖特性與結構…..……………………..….………..14
2.2 熔拉光纖的應用………………………...…..…..................16
第三章 單擺式熔拉光纖干涉儀於風速感測應用
3.1 單擺式熔拉光纖干涉儀元件製作……………..….............20
3.2 風速感測原理.......................................................................22
3.3 單模熔拉光纖干涉儀於風速感測的基本架
構…….…...………………………………………................27
3.4 單擺式 SMTFI 於風速感測實驗結果.…......…....…....…...29
3.5 扁平光殼光纖熔拉光纖干涉儀於風速風向感測的基本架構..……………………………………………....................33
3.6 單擺式 FCTFI 於風速風向感測的實驗結果……….........35
第四章 Mach-Zehnder 熔拉光纖干涉儀於旋轉角度感測應用
4.1Mach-Zehnder 熔拉光纖干涉儀元件製作…………..........40
4.2MZTFI 於旋轉角度感測的實驗架構……………………...40
4.3MZTF 用於旋轉角度感測的實驗結果與分析…………...41
第五章 結論………………………………………..…..…...…………..49
參考文獻………………………………………………..……................52
- 52 -

參考文獻
[1] C. D. Butter, and G. B. Hocker, “Fiber optics strain gauge,” Applied
Optics, vol. 17, pp. 2867-2869, 1978.
[2] J. S. J. Chen, “On the design of a wide range mini-flow paddlewheel
flow sensor,” Sensors and Actuators A: Physical, vol. 87, no. 1-2,
pp. 1-10, 2000.
[3] A. Poghossian, T. Yoshinobu, and M. J. Schöning, “Flow-velocity
microsensors based on semiconductor field effect structures,”
Sensors, vol. 3, no. 7, pp. 202-212, 2003.
[4] Y. H. Wang, C. Y. Lee, and C. M. Chiang, “A MEMS-based air flow
sensor with a free-standing microcantilever structure,” Sensors, vol.
7, no. 10, pp. 2389-2401, 2007.
[5] V. Lien, and F. Vollmer, “Microfluidic flow rate detection based on
integrated optical fiber cantilever,” Lab Chip, vol. 7, no. 10, pp.
1352-1356, 2007.
[6] Y. Zhao, K. Chen, and J. Yang, “Novel target type flowmeter based
on a differential fiber Bragg grating sensor,” Measurement, vol. 38,
no. 3, pp.230-235, 2005.
[7] Fraza˜o, P. Caldas, F. M. Arau´jo, L. A. Ferreira, and J. L. Santos,
“Optical flowmeter using a modal interferometer based on a single
nonadiabatic fiber taper,” Optics Letters, vol. 32, no. 14, pp.
1974-1976, 2007.
[8] S. Takashima, H. Asanuma, and H. Niitsuma, “A water flowmeter
using dual fiber Bragg grating sensors and cross-correlation
technique,” Sensors and Actuators A: Physical, vol. 116, no. 1, pp.
66–74, 2004.
[9] Z. B. Ren, P. Robert, and P. A. Paratte, “Temperature dependence of
bend- and twist-induced birefringence in a low-birefringence fiber,”
Optics Letters, vol. 13, no. 1, pp. 62-64, 1988. - 53 -

[10] R. Ulrich and A. Simon, “Polarization optics of twisted single-mode
fibers,” Applied Optics, vol. 18, no. 13, pp. 2241-2251, 1979.
[11] Y. P. Wang and Y. J. Rao, “Long period fibre grating torsion sensor
measuring twist rate and determining twist direction simultaneously,”
Electronics Letters, vol. 40, no. 3, pp. 164-166, 2004.
[12] P. Zu, C. C. Chan, Y. Jin, T. Gong, Y. Zhang, L. H. Chen, and X.
Dong, “A temperature-insensitive twist sensor by using
low-birefringence photonic-crystal-fiber-based sagnac
interferometer,” IEEE Photonics Technology Letters, vol. 23, no. 13,
pp. 920-922, 2008.
[13] X. Chen, K. Zhou, L. Zhang, and I. Bennion, “In-fiber twist sensor
based on a fiber Bragg grating with 81°tilted structure,” IEEE
Photonics Technology Letters, vol. 18, no. 24, pp. 2596-2598, 2006.
[14] Y. Zou, X. Dong, G. Lin, and R. Adhami, “Wide range FBG
displacement sensor based on twin-core fiber filter,” Journal of
Lightwave Technology, vol. 30 , no. 3, pp. 337-343, 2012
[15] C. M. Li, C.-W. Chan, J.-M. Hsu, and C. L. Lee, “Fiber-Optic Twist
Sensor based on a Tapered Fiber Mach-Zehnder
Interferometer,” Conference on Lasers and Electro-Optics Pacific
Rim Cleo-PR , Japan, TuPL-7, 2013.
[16] P. Lambelet, A. Sayah, M. Pfeffer, C. Philipona, and F.
Marquis-Weible, “Chemically etched fiber tips for near-field optical
microscopy: a process for smoother tips,” Applied Optics, vol. 37,
no. 31, pp. 7289-7292, 1998.
[17] S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J.
Vahala, “Ideality in a fiber-taper-coupled microresonator system for
application to cavity quantum electrodynamics,” Physical Review
Letters, vol. 91, no. 4, 04902 (4pp), 2003.
[18] L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. - 54 -

Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for
low-loss optical wave guiding,” Nature(London), vol. 426, pp.
816-819, 2003.
[19] H. Kuwahara, M. Sasaki, and N. Tokoyo, “Efficient coupling from
semiconductor lasers into single-mode fibers with tapered
hemispherical ends,” Applied Optics, vol. 19, no. 15, 1980.
[20] L. Zhang, L. Liu, Z. Cai, C. Ye, and G. Wen, “Fabricating
subwavelength fiber taper using a CO 2 laser,” Proc. of SPIE, vol.
5623, pp. 987-994, 2006.
[21] J. M. Ward, D. G. O’Shea, B. J. Shortt, M. J. Morrissey, K. Deasy,
and S. G. N. Chormaic, “Heat-and-pull rig for fiber taper fabrication,”
Review of scientific instruments , vol. 7, no. 8, pp. 083105, 2006.
[22] T. E. Dimmick, and G. Kakarantzas, T. A. Birks, P. St. J. Russel,
“Carbon dioxide laser fabrication of fused-fiber couplers and tapers,”
Applied Optics, vol. 38, no. 33, pp. 6845-6848, 1999.
[23] R. A. Thompson, and Milwaukee, “Taper tool for tapering fiber
conduit or pipe in the field,” United States Patent Office, no.
2746497 (6pp), 1956.
[24] Y. Uematsu, T. Ozeki, and Y. Unno, “Efficient power coupling
between an MH LED and a taper-ended multimode fiber,” IEEE
Journal of Quantum Electronics, vol. QE-15, no.2, pp. 86-91,
1979.
[25] B. S. Kawasaki, K. O. Hill, and R. G. Lamont, “Biconical-taper
single-mode fiber coupler,” Optics Letters, vol. 6, no. 7, pp. 327-328,
1981.
[26] R. C. Alferne, “Efficient coupling of a semiconductor laser to an
optical fiber by means of an adiabatic tapered waveguide on silicon,” - 55 -

Optical Fiber Communication Conference, pp. 108, 1990.
[27] H. L. An, “Theoretical investigation on the effective coupling from
laser diode to tapered lensed single-mode optical fiber,” Optics
Communications, vol. 181, no. 1-3, pp. 89-95, 1981.
[28] M. Rusu, S. Kivistö, C. B. E. Gawith, and O. G. Okhotnikov,
“Red-green-blue (RGB) light generator using tapered fiber pumped
with a frequency-doubled Yb-fiber laser,” Optics Express, vol. 13,
no. 21, pp. 8547-8554, 2005.
[29] L. C. Bobb, P. M. Shankar, and H. D. Krumboltz, “Bending effects
in biconically tapered single-mode fibers,” Journal of Lightwave
Technology, vol. 8, no. 7, pp. 1084-1090, 1990.
[30] Z. Tian, S. S. H. Yam, and H. P. Loock, “Refractive index sensor
based on an abrupt taper Michelson interferometer in a single-mode
fiber,” Optics Letters, vol. 33, no. 10, pp. 1105-1107, 2008.
[31] W. J. Bock, J. Chen, P. Mikulic, and T. Eftimov, “A novel fiber-optic
tapered long-period grating sensor for pressure monitoring,” IEEE
Transactions on Instrumentation and Measurement, vol. 56, no. 4,
pp. 1176-1180, 2007.
[32] L. M. N. Amaral, O. Frazão, J. L. Santos, and A. B. Lobo Ribeiro,
“Fiber-optic inclinometer based on taper Michelson interferometer,”
IEEE Sensors Journal, vol. 11, no. 9, pp. 1811-1814, 2011.
[33] C. M. Li, Y. L. Hsiao, C. F. Lee and C. L. Lee, “In-fiber optical
airflow sensor based on a tapered fiber interferometric
cantilever,” OptoElectronics and Communications Conference
OECC, Korea P2-21, 2012.
[34] C. L. Lee, C. F. Lee, C. M. Li, T. C. Chiang, and Y. L. Hsiao,
“Directional anemometer based on an anisotropic flat-clad tapered fiber Michelson interferometer,” Applied Physics Letters, vol. 101,
no. 023502 (4pp), 2012.
[35] Z. Tian, and S. S.-H. Yam, “In-line abrupt taper optical fiber
Mach–Zehnder interferometric strain sensor,” IEEE Photonics
Technology Letters, vol. 21, no. 3, pp. 161-163, 2009.
[36] H. H. Gao, Z. Chen ,J. Kumar, S. K. Tripathy, and D. L. Kaplan,
“Tapered fiber tips for optic biosensors,” Optical Engineering, vol.
34, no. 12, pp. 34665-34671, 1995.
[37] P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber
Mach–Zehnder interferometer for simultaneous measurement of
refractive index and temperature,” Applied Physics Letters, vol. 94,
no. 131110 (3pp), 2009.
[38] V. Lien, and F. Vollmer, “Microfluidic flow rate detection based on
integrated optical fiber cantilever,” Lab Chip, vol. 7, no. 10, pp.
1352-1356, 2007.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top