|
[1]D. Maystre, in Electromagnetic Surface Modes, edited by A. D. Boardman (Wiley, New York, 1982), Chap. 17. [2]Willets, Katherine A., and Richard P. Van Duyne. "Localized surface plasmon resonance spectroscopy and sensing." Annu. Rev. Phys. Chem. 58 (2007): 267-297. [3]Wang, Pan, et al. "Metaparticles: Dressing Nano‐Objects with a Hyperbolic Coating." LASER PHOTONICS REV. 12.11 (2018): 1800179. [4]D. K. Gramotnev, S. I. Bozhevolnyi, Nat. Photonics 2010, 4, 83. [5]Ferrari, Lorenzo, et al. "Hyperbolic metamaterials and their applications." PROG QUANT ELECTRON. 40 (2015): 1-40. [6]Lin, Hung-I., et al. "Nanoscale Core–Shell Hyperbolic Structures for Ultralow Threshold Laser Action: An Efficient Platform for the Enhancement of Optical Manipulation." ACS Appl. Mater. Interfaces 11.1 (2018): 1163-1173. [7]Wiersma, Diederik S. "The physics and applications of random lasers." Nat. Phys. 4.5 (2008): 359. [8]Luan, Feng, et al. "Lasing in nanocomposite random media." Nano Today 10.2 (2015): 168-192. [9]Chang, Shu-Wei, et al. "A white random laser." Sci. Rep. 8.1 (2018): 2720. [10]Hu, Han‐Wen, et al. "Wrinkled 2D materials: A versatile platform for low‐threshold stretchable random lasers." Adv. Mater. 29.43 (2017): 1703549. [11]Sun, Tzu-Min, et al. "Stretchable random lasers with tunable coherent loops." ACS nano 9.12 (2015): 12436-12441. [12]Zhai, Tianrui, et al. "A plasmonic random laser tunable through stretching silver nanowires embedded in a flexible substrate." Nanoscale 7.6 (2015): 2235-2240. [13]Dice, G. D., S. Mujumdar, and A. Y. Elezzabi. "Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser." Appl. Phys. Lett. 86.13 (2005): 131105. [14]Popov, O., A. Zilbershtein, and D. Davidov. "Random lasing from dye-gold nanoparticles in polymer films: enhanced gain at the surface-plasmon-resonance wavelength." Appl. Phys. Lett. 89.19 (2006): 191116. [15]Zhai, Tianrui, et al. "Random laser based on waveguided plasmonic gain channels." Nano Lett. 11.10 (2011): 4295-4298. [16]Meng, Xiangeng, et al. "Plasmonically controlled lasing resonance with Metallic− Dielectric Core− Shell nanoparticles." Nano Lett. 11.3 (2011): 1374-1378. [17]Jia-Ming Liu, "Photonic Devices," Cambridge University Press 2005. [18]Wiersma, Diederik S. "The physics and applications of random lasers." Nat. Phys. 4.5 (2008): 359. [19]Luan, Feng, et al. "Lasing in nanocomposite random media." Nano Today 10.2 (2015): 168-192. [20]Cao, Hui, et al. "Random laser action in semiconductor powder." Phys. Rev. Lett. 82.11 (1999): 2278 [21]Yu, S. F., et al. "Random laser action in ZnO nanorod arrays embedded in ZnO epilayers." Appl. Phys. Lett. 84.17 (2004): 3241-3243. [22]Reimann, S. M.; Manninen, M. Reviews of Modern Physics, 2002, 74(4), 1283. [23]Bawendi, M. C.; Steigerwald, M. L.; Brus, L. E. Annual Review of Physical Chemistry, 1990, 41, 477. [24]Yoffe, A. D. Adv. Phys., 2001, 50(1), 1. [25]Bailey, R. E.; Nie, S. Edited by Rao, C. N. R.; Mueller, A.; Cheetham, A. K. Chemistry of Nanomaterials, 2004, 2, 405. [26]Dorfs, D.; Eychmueller, A. Zeitschrift fuer Physikalische Chemie, 2006, 220(12), 1539. [27]Smith, A. M.; Nie, S. Nature Biotechnol, 2009, 27(8), 732. [28]Willets, Katherine A., and Richard P. Van Duyne. "Localized surface plasmon resonance spectroscopy and sensing." Annu. Rev. Phys. Chem. 58 (2007): 267-297. [29]Hutter, Eliza, and Janos H. Fendler. "Exploitation of localized surface plasmon resonance." Adv. Mater. 16.19 (2004): 1685-1706. [30]Maier, Stefan Alexander. Plasmonics: fundamentals and applications. Springer Science & Business Media, 2007. [31]Jackson, John David. "Classical electrodynamics." (1999): 841-842. [32]Carminati, Rémi, et al. "Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle." OPT COMMUN. 261.2 (2006): 368-375. [33]Rogobete, Lavinia, et al. "Spontaneous emission in nanoscopic dielectric particles." Opt. Lett. 28.19 (2003): 1736-1738. [34]Girard, Christian, Olivier JF Martin, and Alain Dereux. "Molecular lifetime changes induced by nanometer scale optical fields." Phys. Rev. Lett. 75.17 (1995): 3098. [35]Galfsky, T., et al. "Active hyperbolic metamaterials: enhanced spontaneous emission and light extraction." Optica 2.1 (2015): 62-65. [36]Sreekanth, Kandammathe Valiyaveedu, et al. "Large spontaneous emission rate enhancement in grating coupled hyperbolic metamaterials." Sci. Rep. 4 (2014): 6340. [37]Yang, Shu, Krishnacharya Khare, and Pei‐Chun Lin. "Harnessing surface wrinkle patterns in soft matter." Adv. Funct. Mater. 20.16 (2010): 2550-2564. [38]Poddubny, Alexander, et al. "Hyperbolic metamaterials." Nat. Photonics 7.12 (2013): 948. [39]Wang, Pan, et al. "Metaparticles: Dressing Nano‐Objects with a Hyperbolic Coating." LASER PHOTONICS REV. 12.11 (2018): 1800179. [40]G.Chiu, D. Tsa, 物理雙月刊 2006, 28, 472 [41]Hu, Han‐Wen, et al. "Wrinkled 2D materials: A versatile platform for low‐threshold stretchable random lasers." Adv. Mater. 29.43 (2017): 1703549. [42]Schuck, P. J., et al. "Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas." Phys. Rev. Lett. 94.1 (2005): 017402. [43]Wang, Jyh-Yang, Yean-Woei Kiang, and C. C. Yang. "Emission enhancement behaviors in the coupling between surface plasmon polariton on a one-dimensional metallic grating and a light emitter." Appl. Phys. Lett. 91.23 (2007): 233104. [44]Anger, Pascal, Palash Bharadwaj, and Lukas Novotny. "Enhancement and quenching of single-molecule fluorescence." Phys. Rev. Lett. 96.11 (2006): 113002. [45]Cao, Hui, et al. "Random laser action in semiconductor powder." Phys. Rev. Lett. 82.11 (1999): 2278. [46]Yang, Shu, Krishnacharya Khare, and Pei‐Chun Lin. "Harnessing surface wrinkle patterns in soft matter." Adv. Funct. Mater. 20.16 (2010): 2550-2564. [47]Luan, Feng, et al. "Lasing in nanocomposite random media." Nano Today 10.2 (2015): 168-192. [48]Lu, Dylan, et al. "Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials." Nat. Nanotechnol. 9.1 (2014): 48.
|