跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.54) 您好!臺灣時間:2026/01/12 10:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李曜亘
研究生(外文):Yao-Hsuan Li
論文名稱:可拉伸超穎奈米粒子隨機雷射
論文名稱(外文):Stretchable Random Laser Based on Hyperbolic Meta-Nanoparticles
指導教授:陳永芳陳永芳引用關係
口試委員:謝馬利歐林泰源沈志霖
口試日期:2019-07-24
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用物理研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:61
中文關鍵詞:超穎奈米粒子侷域性表面電漿共振隨機雷射高發光強度低雷射閥值可拉伸
DOI:10.6342/NTU201902063
相關次數:
  • 被引用被引用:0
  • 點閱點閱:182
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
人們可藉由金屬奈米粒子所提供的侷域性表面電漿子以增強發光體的發光。不同於一般的金屬奈米粒子,超穎奈米粒子藉由其特殊的金屬/介電質多層結構創造出更強且更持久的侷域性表面電漿共振,而且透過超穎奈米粒子的零維特性,以及隨機雷射的任意分布的奈米結構,可以創造出一個可拉伸、高效能的雷射裝置。在此實驗中,我們展示了一個可拉伸的超穎奈米粒子隨機雷射,並且藉由和一般的金屬奈米粒子的比較,確認超穎奈米子可以形成高發光強度、低閥值的可拉伸式雷射。此外我們透過三維時域有限差分法去模擬、分析超穎奈米粒子的光學特性。這個結果對於可拉伸的高效能雷射是個重大的進展。
Plasmonic nanoparticles have emerged with the ability to enhance the emission intensity of emitters via localized surface plasmon resonance (LSPR). Unlike traditional plasmonic nanoparticles, nanoparticles with hyperbolic metal/dielectric multishell coating called hyperbolic meta-nanoparticles show more powerful and more lasting LSPR. Based on the integration of the zero dimensional meta-nanoparticles and light emitting semiconductor quantum dots (QDs), deposited on a ripple substrate, in this study, we demonstrate a stretchable and high efficiency cavity free laser device. The unique feature of strongly localized surface plasmon provides a drastically enhanced emission arising from semiconductor QDs and serve as excellent scattering centers for the formation of coherent closed loops. Compared the device with conventionally metallic nanoparticles, we confirm that meta-nanoparticles can support a stable lasing performance with higher intensity and lower threshold. To further analysis the LSPR response of hyperbolic meta-nanoparticles, three dimensional finite-difference time-domain (FDTD) simulation has been performed. Our result shows a major advance for the further development of stretchable high-performance optoelectronic devices.
口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES vii
LIST OF TABLES xi
Chapter 1 Introduction 1
Chapter 2 Theoretical Background 3
2.1 Photoluminescense 3
2.2 Laser 4
2.3 Random Laser 6
2.3.1 Mechanism 6
2.3.2 Emission Properties 7
2.4 Quantum Dots 9
2.5 Localized Surface Plasmon Resonance (LSPR) 11
2.5.1 Introduction 11
2.5.2 Resonant Condition 11
2.5.3 Application on Random Laser 15
2.6 Typical Hyperbolic Metamaterial (HMM) 15
2.6.1 Definition and Properties 15
2.6.2 Implementations 20
2.6.3 Multilayer Hyperbolic Metamaterial 21
2.6.4 Spontaneous Emission Engineering 22
Chapter 3 Experimental Details 24
3.1 Instruments 24
3.1.1 The List of Instruments 24
3.1.2 Nanophotonic Finite-Difference Time-Domain Simulator 24
3.1.3 Emission Spectrum Measurement Setup 25
3.1.4 UV/Vis/NIR Absorption Spectroscopy 26
3.2 Materials 27
3.2.1 The List of Materials 27
3.2.2 Polydimethylsiloxane 27
3.2.3 CdSe/ZnS Core-shell Type Quantum Dots 28
3.2.4 Au Nanoparticles 29
3.2.5 Hyperbolic Meta-Nanoparticles 29
3.3 Fabrication of Materials and Samples 30
3.3.1 PDMS Elastic Substrate 30
3.3.2 Au Nanoparticles 31
3.3.3 Hyperbolic Meta-Nanoparticles 31
3.3.4 Wrinkled Structure on Stretchable Substrate 32
3.3.5 Stretchable Random Laser Device 34
3.4 Definition of Straining Ratio 37
3.5 Definition of Emission Detected Angle 37
Chapter 4 Results and Discussion 39
4.1 Characteristics of Hyperbolic Meta-nanoparticles 39
4.2 Characteristics of Random Laser Action 41
4.3 Characteristics of Stretchability 43
4.4 Characteristics of Optical Manipulation based on Plasmonic Nanoparticles 45
4.5 Superiorities of Hyperbolic Meta-Nanoparticles 50
Chapter 5 Conclusion 56
REFERENCE 58
[1]D. Maystre, in Electromagnetic Surface Modes, edited by A. D. Boardman (Wiley, New York, 1982), Chap. 17.
[2]Willets, Katherine A., and Richard P. Van Duyne. "Localized surface plasmon resonance spectroscopy and sensing." Annu. Rev. Phys. Chem. 58 (2007): 267-297.
[3]Wang, Pan, et al. "Metaparticles: Dressing Nano‐Objects with a Hyperbolic Coating." LASER PHOTONICS REV. 12.11 (2018): 1800179.
[4]D. K. Gramotnev, S. I. Bozhevolnyi, Nat. Photonics 2010, 4, 83.
[5]Ferrari, Lorenzo, et al. "Hyperbolic metamaterials and their applications." PROG QUANT ELECTRON. 40 (2015): 1-40.
[6]Lin, Hung-I., et al. "Nanoscale Core–Shell Hyperbolic Structures for Ultralow Threshold Laser Action: An Efficient Platform for the Enhancement of Optical Manipulation." ACS Appl. Mater. Interfaces 11.1 (2018): 1163-1173.
[7]Wiersma, Diederik S. "The physics and applications of random lasers." Nat. Phys. 4.5 (2008): 359.
[8]Luan, Feng, et al. "Lasing in nanocomposite random media." Nano Today 10.2 (2015): 168-192.
[9]Chang, Shu-Wei, et al. "A white random laser." Sci. Rep. 8.1 (2018): 2720.
[10]Hu, Han‐Wen, et al. "Wrinkled 2D materials: A versatile platform for low‐threshold stretchable random lasers." Adv. Mater. 29.43 (2017): 1703549.
[11]Sun, Tzu-Min, et al. "Stretchable random lasers with tunable coherent loops." ACS nano 9.12 (2015): 12436-12441.
[12]Zhai, Tianrui, et al. "A plasmonic random laser tunable through stretching silver nanowires embedded in a flexible substrate." Nanoscale 7.6 (2015): 2235-2240.
[13]Dice, G. D., S. Mujumdar, and A. Y. Elezzabi. "Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser." Appl. Phys. Lett. 86.13 (2005): 131105.
[14]Popov, O., A. Zilbershtein, and D. Davidov. "Random lasing from dye-gold nanoparticles in polymer films: enhanced gain at the surface-plasmon-resonance wavelength." Appl. Phys. Lett. 89.19 (2006): 191116.
[15]Zhai, Tianrui, et al. "Random laser based on waveguided plasmonic gain channels." Nano Lett. 11.10 (2011): 4295-4298.
[16]Meng, Xiangeng, et al. "Plasmonically controlled lasing resonance with Metallic− Dielectric Core− Shell nanoparticles." Nano Lett. 11.3 (2011): 1374-1378.
[17]Jia-Ming Liu, "Photonic Devices," Cambridge University Press 2005.
[18]Wiersma, Diederik S. "The physics and applications of random lasers." Nat. Phys. 4.5 (2008): 359.
[19]Luan, Feng, et al. "Lasing in nanocomposite random media." Nano Today 10.2 (2015): 168-192.
[20]Cao, Hui, et al. "Random laser action in semiconductor powder." Phys. Rev. Lett. 82.11 (1999): 2278
[21]Yu, S. F., et al. "Random laser action in ZnO nanorod arrays embedded in ZnO epilayers." Appl. Phys. Lett. 84.17 (2004): 3241-3243.
[22]Reimann, S. M.; Manninen, M. Reviews of Modern Physics, 2002, 74(4), 1283.
[23]Bawendi, M. C.; Steigerwald, M. L.; Brus, L. E. Annual Review of Physical Chemistry, 1990, 41, 477.
[24]Yoffe, A. D. Adv. Phys., 2001, 50(1), 1.
[25]Bailey, R. E.; Nie, S. Edited by Rao, C. N. R.; Mueller, A.; Cheetham, A. K. Chemistry of Nanomaterials, 2004, 2, 405.
[26]Dorfs, D.; Eychmueller, A. Zeitschrift fuer Physikalische Chemie, 2006, 220(12), 1539.
[27]Smith, A. M.; Nie, S. Nature Biotechnol, 2009, 27(8), 732.
[28]Willets, Katherine A., and Richard P. Van Duyne. "Localized surface plasmon resonance spectroscopy and sensing." Annu. Rev. Phys. Chem. 58 (2007): 267-297.
[29]Hutter, Eliza, and Janos H. Fendler. "Exploitation of localized surface plasmon resonance." Adv. Mater. 16.19 (2004): 1685-1706.
[30]Maier, Stefan Alexander. Plasmonics: fundamentals and applications. Springer Science & Business Media, 2007.
[31]Jackson, John David. "Classical electrodynamics." (1999): 841-842.
[32]Carminati, Rémi, et al. "Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle." OPT COMMUN. 261.2 (2006): 368-375.
[33]Rogobete, Lavinia, et al. "Spontaneous emission in nanoscopic dielectric particles." Opt. Lett. 28.19 (2003): 1736-1738.
[34]Girard, Christian, Olivier JF Martin, and Alain Dereux. "Molecular lifetime changes induced by nanometer scale optical fields." Phys. Rev. Lett. 75.17 (1995): 3098.
[35]Galfsky, T., et al. "Active hyperbolic metamaterials: enhanced spontaneous emission and light extraction." Optica 2.1 (2015): 62-65.
[36]Sreekanth, Kandammathe Valiyaveedu, et al. "Large spontaneous emission rate enhancement in grating coupled hyperbolic metamaterials." Sci. Rep. 4 (2014): 6340.
[37]Yang, Shu, Krishnacharya Khare, and Pei‐Chun Lin. "Harnessing surface wrinkle patterns in soft matter." Adv. Funct. Mater. 20.16 (2010): 2550-2564.
[38]Poddubny, Alexander, et al. "Hyperbolic metamaterials." Nat. Photonics 7.12 (2013): 948.
[39]Wang, Pan, et al. "Metaparticles: Dressing Nano‐Objects with a Hyperbolic Coating." LASER PHOTONICS REV. 12.11 (2018): 1800179.
[40]G.Chiu, D. Tsa, 物理雙月刊 2006, 28, 472
[41]Hu, Han‐Wen, et al. "Wrinkled 2D materials: A versatile platform for low‐threshold stretchable random lasers." Adv. Mater. 29.43 (2017): 1703549.
[42]Schuck, P. J., et al. "Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas." Phys. Rev. Lett. 94.1 (2005): 017402.
[43]Wang, Jyh-Yang, Yean-Woei Kiang, and C. C. Yang. "Emission enhancement behaviors in the coupling between surface plasmon polariton on a one-dimensional metallic grating and a light emitter." Appl. Phys. Lett. 91.23 (2007): 233104.
[44]Anger, Pascal, Palash Bharadwaj, and Lukas Novotny. "Enhancement and quenching of single-molecule fluorescence." Phys. Rev. Lett. 96.11 (2006): 113002.
[45]Cao, Hui, et al. "Random laser action in semiconductor powder." Phys. Rev. Lett. 82.11 (1999): 2278.
[46]Yang, Shu, Krishnacharya Khare, and Pei‐Chun Lin. "Harnessing surface wrinkle patterns in soft matter." Adv. Funct. Mater. 20.16 (2010): 2550-2564.
[47]Luan, Feng, et al. "Lasing in nanocomposite random media." Nano Today 10.2 (2015): 168-192.
[48]Lu, Dylan, et al. "Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials." Nat. Nanotechnol. 9.1 (2014): 48.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top