跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.88) 您好!臺灣時間:2026/02/15 14:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:周立國
研究生(外文):Li-KuoChou
論文名稱:LADM於非線性熱傳與結構問題的應用
論文名稱(外文):Application of LADM in the Analysis of Nonlinear Heat Transfer and Structural Problem
指導教授:李森墉陳朝光陳朝光引用關係
指導教授(外文):Sen-Yung LeeChao-Kuang Chen
學位類別:博士
校院名稱:國立成功大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:英文
論文頁數:84
中文關鍵詞:非線性溫度分佈熱應力環形散熱片時變邊界條件非線性彈性邊界條件樑的撓曲強非線性彈性基底修飾Adomian方法擾動法
外文關鍵詞:nonlinear temperature distributionthermal stressannular fintime dependent boundary conditionnonlinear elastic boundary conditiondeflection of beamsstrong nonlinear elastic foundationModified Adomian methodperturbation method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:175
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文中,利用Laplace Adomian分解法(LADM)討論非線性熱傳和樑的結構之工程問題,藉由LADM分析有時變邊界條件之環形散熱片問題,並求初期非線性之溫度及熱應力分佈情況,其中環形散熱片根部受到週期性溫度變化,並考慮熱輻射效應,且對流係數為與溫度相關之函數。提出的解決方法簡單且有效系統獲得環形散熱片根部的圓周應力及其根部疲勞分析的解決。
本文利用Adomian方法來求取樑在強非線性彈性基底上時之靜態撓曲的解析解,如果外力之函數是可析函數(Analytic function),則推導所得的樑之非線性撓曲可以馬克勞林級數(Maclaurin series)表示之,同時亦推導出此馬克勞林級數之係數間的遞迴關係式。結果顯示,所提出的方法是精確有效的,有效的成功應用於強非線性問題,結果獲得與擾動法(perturbation)做比較。發現擾動法解的誤差將隨之非線性係數之增加而增加,同時亦將隨著外力的增加而增加。
The LADM in the nonlinear heat transfer and beam structure can be widely used in engineering.
The purpose of this thesis is to propose the Laplace Adomian Decomposition Method (LADM) for studying the nonlinear temperature and thermal stress analysis of annular fins with time dependent boundary condition.
The nonlinear behavior of temperature and thermal stress distribution in an annular fin with rectangular profile subjected to time dependent periodic temperature variations at the root is studied by the LADM. The radiation effect is considered. The convective heat transfer coefficient is considered as a temperature function.
The proposed solution method is helpful in overcoming the computational bottleneck commonly encountered in industry and in academia. The results show that the circumferential stress at the root of the fin will be important in the fatigue analysis.
This study presents an effective solution method to analyze the nonlinear behavior of temperature and thermal stress distribution in an annular fin with rectangular profile subjected to time dependent periodic temperature variations at the root by using LADM.
However, the analytic static deflection solutions of beams resting on nonlinear elastic foundations are developed by the modified Adomian method. If the applied force function is an analytic function, then the deflection function can be derived and expressed in Maclaurin series. A recurrence relation for the coefficients of the Maclaurin series is derived. It is shown that the proposed solution method is accurate and efficient. The solution method can be successfully applied to the problem with strong nonlinearity. The results are also compared with those obtained by the perturbation method. It is found that the error of the perturbation solution will increase not only when the nonlinear parameter is increased but also when the applied load is increased.
摘要……………………………………………………………………...II
Abstract………………………………………………………………….III
誌謝(Acknowledgments)………………………………………………...V
Contents…………………………………………………………………VI
List of Tables…………………………………………………………....IX
List of Figures…………………………………………………………..XI
Nomenclature…………………………………………………………XIV

Chapter
1. Introduction…………………………………………………………...1
1.1 Introduction……………………………………………………….1
1.2 Literature Review…………………………………………………1
1.2.1 Nonlinear Temperature and Thermal Stress Analysis of Litureature Review…………………………………………2
1.2.2 Literature review on analytical deflection solutions of beams with strong nonlinear boundary conditions and elastic foundation ………………………………………………….5
1.3 Purpose of present study………………………………………….7
1.4 Scope……………………………………………………………...8
2. The Adomian Decomposition Method (ADM) ………………………9
2.1 The Laplace Adomian Decomposition Method(LADM)………12
3. Nonlinear Temperature and Thermal Stress Analysis of Annular Fins with Time Dependent Boundary Condition………………………….15
3.1 Physical System description..…………………………………....15
3.2 Heat transfer system……………………………………………..17
3.3 Thermal stress system…………………………………………...19
3.4 Dimensionless equation…………………………………………21
3.5 Development of the temperature field…………………….…….24
3.6 Numerical result and discussion………………………………...26
3.7 Conclusion………………………………………………………29
4. Analytical Deflection solution of Beams with Strong Nonlinear Boundary condition and elastic foundational………………………..37
4.1 Governing Equation and Boundary Conditions…………............37
4.2 Modified Adomian Decomposition Method………………….....39
4.3 Analytic Static Deflection Solutions of Beam Resting on Strong Nonlinear Elastic Foundations…………………………………..48
4.3.1 Analysis……………………………………………………48
4.3.2 Verification and Example………………………………….50
Example 1…………………………………………………50
Example 2…………………………………………………52
4.3.3 Conclusions……………………………………………….57
4.4 Deflection beams with nonlinear translational spring supported at the one end………………………………………………………64
4.5 Deflection beams with nonlinear rotational spring supported at the one end…………………………………………………………..70
4.6 Numerical Analysis……………………………………………...76
4.7 Conclusion………………………………………………………77
5. Summary and Future Prospects……………………………………..78
5.1 General Conclusions…………………………………………….78
5.2 Future Prospects…………………………………………………79
References………………………………………………………………80
[1]Coşkun, S.B. and Atay, M.T., “Fin efficiency analysis of convective straight fins with temperature dependent thermal conductivity using variational iteration method, Applied Thermal Engineering, Vol. 28 No. 17, pp. 2345-2352, 2008.
[2]Özişik, M.N., “Boundary Value Problems of Heat Conduction, International textbook Company, Scranton, PA, 1968.
[3]Wu, S.S., “Analysis on transient thermal stresses in an annular fin, Journal of Thermal Stresses, Vol. 20 No. 6, pp. 591-615, 1997.
[4]Yu, L.T. and Chen, C.K., “Application of the Taylor transformation to the transient temperature response of an annular fin, Heat Transfer Engineering, Vol. 20 No. 1, pp. 78-87, 1999.
[5]Adomian, G.,“ Solving Frontier problems of Physic: The Decomposition Method, Kluwer Academic Publishers, Boston, MA, 1994.
[6]Abbaoui, K. and Cherruault, Y., “Convergence of Adomian's method applied to differential equations, Computers & Mathematics with Applications, Vol. 28 No. 5, pp. 103-109, 1994.
[7]Cherruault, Y., Saccomandi, G. and Some, B., “New results for convergence of Adomian's method applied to integral equations, Mathematical and Computer Modelling,Vol. 16 No. 2, pp. 85-93, 1992.
[8]Wazwaz, A.M., “A new algorithm for calculating adomian polynomials for nonlinear operators, Applied Mathematics and Computation, Vol. 111 No. 1, pp. 33-51, 2000.
[9]Wazwaz, A.M. and El-Sayed, S.M., “A new modification of the Adomian decomposition method for linear and nonlinear operators, Applied Mathematics and Computation, Vol. 122 No. 3, pp. 393-405, 2001.
[10]Hasan, Y.Q. and Zhu, L.M., “Modified Adomian decomposition method for singular initial value problems in the second-order ordinary differential equations, Surveys in Mathematics and its Applications, Vol. 3, pp. 183-193, 2008.
[11]Khuri, S.A., “A Laplace decomposition algorithm applied to a class of nonlinear differential equations, Journal of Applied Mathematics, Vol. 1 No. 4, pp. 141-155, 2001.
[12]Yang, Y.T., Chien, S.K. and Chen, C.K., “A double decomposition method for solving the periodic base temperature in convective longitudinal fins, Energy Conversion and Management, Vol. 49 No. 10, pp. 2910-2916, 2008.
[13]Yang, Y.T., Chang, C.C. and Chen, C.K., “A double decomposition method for solving the annular hyperbolic profile fins with variable thermal conductivity, Heat Transfer Engineering, Vol. 31 No. 14, pp. 1165-1172, 2010.
[14]Antar, M.A., “Steady and transient numerical analysis of the performance of annular fins, International Journal of Energy Research, Vol. 25 No. 13, pp. 1197-1206, 2001.
[15]Kraus, A.D., Aziz A. and Welty J., “Extended Surface Heat Transfer, John Wiley & Sons, Inc., New York, NY, 2002.
[16]Tsai, P.Y. and Chen, C.K., “Free vibration of the nonlinear pendulum using hybrid Laplace Adomian decomposition method, International Journal for Numerical Methods in Biomedical Engineering, Vol. 27 No. 2, pp. 262-272, 2011.
[17]Aksoy, İ.G., “Adomian decomposition method for heat conduction in an annular fin of hyperbolic profile with temperature dependent thermal conductivity, Journal of Thermal Science and Technology, Vol. 33 No. 2, pp. 1-8, 2013.
[18]Chiu, C.H. and Chen, C.K., “Application of the decomposition method to thermal stresses in isotropic circular fins with temperature-dependent thermal conductivity, Acta Mechanica, Vol. 157 No. 1, pp. 147-158, 2002.
[19]Jabbari, M., Sohrabpour, S. and Eslami, M.R., “Mechanical and thermal stresses in a functionally graded hollow cylinder due to radially symmetric loads, International Journal of Pressure Vessels and Piping, Vol. 79 No. 7, pp. 493-497, 2002.
[20]Hetenyi, M.,“Beams on elastic Foundation, The University of Michigan Press, Ann Arbor, Michigan, 1946.
[21]Lee, S.Y., Kuo, Y.H., “Deflection and stability of an elastically restrained non-uniform beam, ASCE J. Engng. Mech. Vol. 117, pp. 674-693, 1991.
[22]Lee, S.Y., Kuo, Y.H.: Exact Solutions for the Analysis of General Elastically Restrained Nonuniform Beams. J. Appl. Mech. Vol. 59, S205-S212, 1992.
[23]Distefano, N., Yodeschini, R.: A quasilinearization approach to the solution of elastic beams on nonlinear foundations. Int. J. Solids Struct. Vol. 11, pp. 89-97, 1975.
[24]Sharma, S.P., DasGupta, S.: The bending problem of axially constrained beams on nonlinear elastic foundations. Int. J. Solids Struct. Vol. 11, pp. 853-859, 1975.
[25]Beaufait, F.W., Hoadley, P.W.: Analysis of elastic beams on nonlinear foundations. COMPUT STRUCT. Vol. 12, pp. 669-676, 1980.
[26]Yankelevsky, D.Z., Eisenberger, M., Adin, M. A.: Analysis of beams on nonlinear Winkler foundation. COMPUT STRUCT. Vol. 31, No. 2, pp. 287-292, 1989.
[27]Sayegh, A.F., Tso, F.K.: Finite element analysis of curved beams on a nonlinear foundation. COMPUT STRUCT. Vol. 45, pp. 253-262, 1992.
[28]Kuo, Y.H., Lee, S.Y.: Deflection of Nonuniform Beams Resting on a nonlinear Elastic Foundation. COMPUT STRUCT. Vol. 51, pp. 513-519, 1994.
[29]Tsiatas, G.C.: Nonlinear analysis of non-uniform beams on nonlinear elastic foundation. Acta Mech. Vol. 209, pp. 141–152, 2010.
[30]Borgnakke, C. and Sonntag, R.E., Fundamentals of Thermodynamics: SI version (7th edition), John Wiley & Sons, Inc., New York, NY, 2009.
[31]Nayfeh, A.H., Perturbation Methods. Wiley, New York, 1993.
[32]Lee, S.Y.; Lin, S.M.; Lee, C.S., Lu, S.Y.; and Liu, Y.T., “ Exact Large Deflection of Beam with Nonlinear Boundary Conditions.CMES, Vol.30, No.1, pp.27-36, 2008.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top