跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/26 22:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃迺筑
研究生(外文):Huang, Nai-Zhu
論文名稱:二維符號動態系統上的自然測度
論文名稱(外文):The Natural Measure of Symbolic Dynamical Systems in the Two-Dimensional Lattice Model
指導教授:林松山
指導教授(外文):Lin, Song-Sun
口試委員:班榮超張志鴻林松山
口試委員(外文):Ban, Jung-ChaoChang, Chih-HungLin, Song-Sun
口試日期:2019-06-27
學位類別:碩士
校院名稱:國立交通大學
系所名稱:應用數學系所
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:36
中文關鍵詞:動態系統二維測度
外文關鍵詞:dynamical systemstwo-dimensionalmeasure
相關次數:
  • 被引用被引用:0
  • 點閱點閱:527
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
本論文探討二維符號動態系統上的自然測度。在二維有限子平移中,如果其有序矩陣(ordering matrix) 有不可約性(irreducible) 且非週期性(aperiodic),我們提供一個方法去計算二維符號動態系統上的自然測度,並且將一維符號動態系統上的結果推廣至二維。最後我們應用這套方法計算出二維完全對稱系統上的自然測度的精確值。
This thesis investigates the natural measure of a symbolic dynamical system in two-dimensional lattice model. For a two-dimensional shift of finite type has irreducible ordering matrix H_2, we provided a method for the natural measure of two-dimensional lattice model. And derive all the one-dimensional model into two-dimension. Eventually apply this method to have the exact value of natural measure of totally symmetric system in the two-dimension.
摘要. . . . . . . . . . . . . . . . . . . . . . . . . . i
Abstract . . . . . . . . . . . . . . . . . . . . . . . ii
Table of Contents . . . . . . . . . . . . . . . . . . iii
1 Introduction . . . . . . . . . . . . . . . . . . . . 1
2 The natural measure . . . . . . . . . . . . . . . . . 3
3 Pattern generation . . . . . . . . . . . . . . . . . .5
4 Codimensional systems . . . . . . . . . . . . . . . . 16
4.1 The measure of one single symbol . . . . . . . . . 16
4.2 The measure of vertical patterns . . . . . . . . . 21
4.3 The measure of arbitrary pattern . . . . . . . . . 26
5 Totally symmetric systems . . . . . . . . . . . . . . 31
6 Conclusion and feature work . . . . . .. . . . . . . 34
References . . . . . . . . . . . . . . . . . . . . . . 35
[1] P. W. Bates and A. Chmaj, “A discrete convolution model for phase transitions,” Archive for Rational Mechanics and Analysis, vol. 150, no. 4, pp. 281–368, 1999.
[2] P. W. Bates, K. Lu, and B. Wang, “Attractors for lattice dynamical systems,” International Journal of Bifurcation and Chaos, vol. 11, no. 01, pp. 143–153, 2001.
[3] J. P. Laplante and T. Erneux, “Propagation failure in arrays of coupled bistable chemical reactors,” The Journal of Physical Chemistry, vol. 96, no. 12, pp. 4931–4934, 1992.
[4] J.C. Ban and C.H. Chang, “Coloring fibonaccicayley
tree: An application to neural networks,” arXiv preprint arXiv:1707.02227, 2017.
[5] J.C. Ban, C.H. Chang, and N.Z. Huang, “Entropy bifurcation of neural networks on cayley trees,” arXiv preprint arXiv:1706.09283, 2017.
[6] J.C. Ban, C.H. Chang, and S.S. Lin, “On the structure of multilayer cellular neural networks,” Journal of Differential Equations, vol. 252, no. 8, pp. 4563–4597, 2012.
[7] J. Bell, “Some threshold results for models of myelinated nerves,” Mathematical Biosciences, vol. 54, no. 34, pp. 181–190, 1981.
[8] J. Bell and C. Cosner, “Threshold behavior and propagation for nonlinear differentialdifference systems motivated by modeling myelinated axons,” Quarterly of Applied Mathematics, vol. 42, no. 1, pp. 1–14, 1984.
[9] G. B. Ermentrout, “Stable periodic solutions to discrete and continuum arrays of weakly coupled nonlinear oscillators,” SIAM Journal on Applied Mathematics, vol. 52, no. 6, pp. 1665–1687, 1992.
[10] G. B. Ermentrout and N. Kopell, “Inhibitionproduced
patterning in chains of coupled nonlinear oscillators,” SIAM Journal on Applied Mathematics, vol. 54, no. 2, pp. 478– 507, 1994. 35
[11] N. Kopell, G. Ermentrout, and T. Williams, “On chains of oscillators forced at one end,” SIAM Journal on Applied Mathematics, vol. 51, no. 5, pp. 1397–1417, 1991.
[12] J. P. Keener, “Propagation and its failure in coupled systems of discrete excitable cells,” SIAM Journal on Applied Mathematics, vol. 47, no. 3, pp. 556–572, 1987.
[13] J. P. Keener, “The effects of discrete gap junction coupling on propagation in myocardium,” Journal of theoretical biology, vol. 148, no. 1, pp. 49–82, 1991.
[14] R. L. Winslow, A. L. Kimball, A. Varghese, and D. Noble, “Simulating cardiac sinus and atrial network dynamics on the connection machine,” Physica D: Nonlinear Phenomena, vol. 64, no. 13, pp. 281–298, 1993.
[15] W.G. Hu and S.S. Lin, “The natural measure of a symbolic dynamical system,” arXiv preprint arXiv:1308.2996, 2013.
[16] J.C. Ban and S.S. Lin, “Patterns generation and transition matrices in multidimensional lattice models,” Discrete and Continuous Dynamical Systems, vol. 13, no. 3, p. 637, 2005.
[17] J.C. Ban, S.S. Lin, and Y.H. Lin, “Patterns generation and spatial entropy in twodimensional
lattice models,” Asian Journal of Mathematics, vol. 11, no. 3, pp. 497–534, 2007.
[18] D. Lind, B. Marcus, L. Douglas, and M. Brian, An introduction to symbolic dynamics and coding. Cambridge university press, 1995.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top