|
第一章 [1] https://zh.wikipedia.org/wiki/同轴电缆 [2] http://www.mondaq.com/australia/x/290662/Copyright/The+data+explosion+from+analogue+to+digital [3] 林天送, “積體電路的發明”, 科學發展,447,72-74 (2010) [4] https://en.wikipedia.org/wiki/Integrated_circuit#/media/File:EPROM_Microchip_SuperMacro.jpg [5] W. N. Ye and Yule Xiong, “Review of silicon photonics: history and recent advances”,J. Mod. Opt. 60, 1299-1320 (2013). [6] Rong, H.; Jones, R.; Liu, A.; Cohen, O.; Hak, D.; Fang, A.; Paniccia, M. Nature (London, U.K.) 2005, 433, 725–728. [7] Fang, A.W.; Park, H.; Cohen, O.; Jones, R.; Paniccia, M.J.; Bowers, J.E. Opt. Express 2006, 14, 9203–9210. [8] Liu, A.; Jones, R.; Liao, L.; Samara-Rubio, D.; Rubin, D. Cohen, O.; Nicolaescu, R.; Paniccia, M. Nature (London, U.K.) 2004, 427, 615–618. [9] Liu, J.F.; Michel, J.; Giziewicz, W.; Pan, D.; Wada, K.; Cannon, D.D.; Jongthammanurak, S.; Danielson, D.T.; Kimerling, L.C. Appl. Phys. Lett. 2005, 87, 103501. [10] Andrew P. Knights and J. K. Doylend, “Silicon Photonics- Recent Advances in Device Development” [11] S. J. Ben-Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightw. Technol., vol. 14, no. 6, pp. 955–966, Jun. 1996. [12] A.E. Willner et. al., “All-Optical Signal Processing”, J. Lightwave Techn. 32, 660 (2014). [13] A. Yariv and P. Yeh, Optical Waves in Crystals. vol. 5, New York, NY, USA: Wiley, 1984. [14] G. Agrawal, Nonlinear Fiber Optics. New York, NY, USA: Academic, 2001. [15] C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, “All-optical signal processing using χ2 nonlinearities in guided-wave devices,” J. Lightw. Technol., vol. 24, no. 7, pp. 2579–2592, Jul. 2006. Opt. Lett., vol. 25, pp. 25–27, 2000. [16] S. Radic, “Parametric Signal Processing,” IEEE J. Sel. Topics Quantum Electron., vol. 18, no. 2, pp. 670–680, Mar./Apr. 2012. [17] J. Leuthold, L. Moller, J. Jaques, S. Cabot, L. Zhang, P. Bernasconi, M. Cappuzzo, L. Gomez, E. Laskowski, E. Chen, A. Wong-Foy, and A. Griffin, “160 Gbit/s SOA all-optical wavelength converter and assessment of its regenerative properties,” IEEE Electron. Lett., vol. 40, no. 9, pp. 554–555, Apr. 2004. [18] J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nature Photon., vol. 4, no. 8, pp. 535–544, Aug. 2010. [19] M. A. Foster, A. C. Turner, R. Salem, M. Lipson and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Exp., vol. 15, no. 20, pp. 12949–12958, 2007 [20] M. Galili, J. Xu, H. C. Mulvad, L. K. Oxenløwe, A. T. Clausen, P. Jeppesen, B. Luther-Davies, S. Madden, A. Rode, D.-Y. Choi, M. Pelusi, F. Luan, and B. J. Eggleton, “Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/s demultiplexing,” Opt. Exp., vol. 17, pp. 2182–2187, 2009. [21] K. Uchiyama, T. Morioka, M. Saruwatari, M. Asobe, and T. Ohara, “Error free all-optical demultiplexing using a chalcogenide glass fiber based nonlinear optical loop mirror,” IEEE Electron. Lett., vol. 32, no. 17, pp. 1601–1602, Aug. 1996. [22] C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, “All-optical signal processing using χ2 nonlinearities in guided-wave devices,” J. Lightw. Technol., vol. 24, no. 7, pp. 2579–2592, Jul. 2006. Opt. Lett., vol. 25, pp. 25–27, 2000 [23] J. C. Knight and D. V. Skryabin, “Nonlinear waveguide optics and photonic crystal fibers,” Opt. Exp., vol. 15, pp. 15365–15376, 2007. [24] S. Radic, “Parametric Signal Processing,” IEEE J. Sel. Topics Quantum Electron., vol. 18, no. 2, pp. 670–680, Mar./Apr. 2012. [25] A. Yariv and P. Yeh, Optical Waves in Crystals. vol. 5, New York, NY, USA: Wiley, 1984. [26] G. Agrawal, Nonlinear Fiber Optics. New York, NY, USA: Academic, 2001. [27] C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, “All-optical signal processing using χ2 nonlinearities in guided-wave devices,” J. Lightw. Technol., vol. 24, no. 7, pp. 2579–2592, Jul. 2006. Opt. Lett., vol. 25, pp. 25–27, 2000. [28] J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica micro-structured optical fibers with anomalous dispersion at 800nm,” Opt. Lett., vol. 25, pp. 25–27, 2000. [29] A. Bogoni, L. Poti, R. Proietti, G. Meloni, F. Ponzini, and P. Ghelfi, “Regenerative and reconfigurable all-optical logic gates for ultra-fast applications,” IEEE Electron. Lett., vol. 41, no. 7, pp. 435–436, Mar. 2005. [30] J.-Y. Kim, J.-M. Kang, T.-Y. Kim, and S.-K. Han, “All-optical multiple logic gates with XOR, NOR, OR, and NAND functions using parallel SOA-MZI structures: Theory and experiment,” J. Lightw. Technol., vol. 24, no. 12, pp. 3392–3399, 2006. [31] A. Bogoni, X. Wu, I. Fazal, and A. E. Willner, “160 Gb/s time domain channel extraction/insertion and all optical logic operations exploiting a single PPLN waveguide,” J. Lightw. Technol., vol. 27, pp. 4221–4227, 2009. [32] A. Bogoni, X. Wu, Z. Bakhtiari, S. Nuccio, and A. E. Willner, “640 Gbit/s photonic logic gates,” Opt. Lett., vol. 35, no. 23, pp. 3955–3957, 2010. [33] T. A. Ibrahim, R. Grover, L. C. Kuo, S. Kanakaraju, L. C. Calhoun, and P. T. Ho, “All-optical AND/NAND logic gates using semiconductor microresonators,” IEEE Photon. Technol. Lett., vol. 15, no. 10, pp. 1422– 1424, Oct. 2003. [34] J. Wang, S. R. Nuccio, J.-Y. Yang, X. Wu, A. Bogoni, and A. E. Willner, “High-speed addition/subtraction/complement/doubling of quaternary numbers using optical nonlinearities and DQPSK signals,” Opt. Lett., vol. 37, pp. 1139–1141, 2012. [35] J. Wang, J.-Y. Yang, X. Wu, O. F. Yilmaz, S. R. Nuccio, and A. E. Willner, “40-Gbaud/s (120-Gbit/s) octal and 10-Gbaud/s (40- Gbit/s) hexadecimal simultaneous addition and subtraction using 8PSK/16PSK and highly nonlinear fiber,” in Proc. Opt. Fiber Commun. Conf., Mar. 2011, pp. 1–3. [36] A. Bogoni, X. Wu, Z. Bakhtiari, S. Nuccio, and A. E. Willner, “640 Gbit/s photonic logic gates,” Opt. Lett., vol. 35, no. 23, pp. 3955–3957, 2010. [37] J. Wang, J.-Y. Yang, X. Wu, O. F. Yilmaz, S. R. Nuccio, and A. E. Willner, “40-Gbaud/s (120-Gbit/s) octal and 10-Gbaud/s (40- Gbit/s) hexadecimal simultaneous addition and subtraction using 8PSK/16PSK and highly nonlinear fiber,” in Proc. Opt. Fiber Commun. Conf., Mar. 2011, pp. 1–3. [38] F. Liu, et al., “Experimental sutdy of nonlinear switching characteristics of conventional 2 × 2 fused tapered couplers,” Chinese Opt. Lett. 3, 190 (2005). [39] P.L. Chu et al., “Analytical solution to soliton switching in nonlinear twin-core fibers,” Opt. Lett. 18, 328 (1993). [40] P.L. Chu et al., “Soliton switching and propagation in nonlinear fiber couplers: analytical results,” J. Opt. Soc. Am. B. 10, 1379 (1993). [41] Schmidt-Hattenberger, C., Udo Trutschel, and F. Lederer. “Nonlinear switching in multiple-core couplers.” Optics letters 16.5 (1991): 294-296 [42] Leuthold, J., C. Koos, and W. Freude. “Nonlinear silicon photonics.” Nature Photonics 4.8 (2010). [43] Del’Haye, P., et al. “Optical frequency comb generation from a monolithic microresonator.” Nature 450.7173 (2007): 1214-1217. [44] Kippenberg, T. J., S. M. Spillane, and K. J. Vahala. “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity.” Physical Review Letters 93.8 (2004): 083904. [45] Heebner, John E., et al. “Enhanced linear and nonlinear optical phase response of AlGaAs microring resonators.” Optics letters 29.7 (2004): 769-771. [46] Yeom, Dong-Il, et al. “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires.” Optics letters 33.7 (2008): 660-662. [47] Wang, Christine Y., et al. “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators.” Nature communication 4 (2013): 1345. [48] Grudinin, Ivan S., Lukas Baumgartel, and Nan Yu. “Frequency comb from a microresonator with engineered spectrum.” Optics express 20.6 (2012): 6604-6609. [49] Grudinin, Ivan S., Nan Yu, and Lute Maleki. “Generation of optical frequency combs with a CaF2 resonator.” Optics letters 34.7 (2009): 878-880. 第二章 [1] P. Diament, Wave Transmission and Fiber Optics (Macmillan, 1990), Chap. 3. [2] Y. R. Shen, Principles of Nonlinear Optics (Wiley, 1984), Chap. 1. [3] P. N. Butcher and D. N. Cotter, The Elements of Nonlinear Optics (Cambridge University Press, 1990), Chap. 2. [4] R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic Press, 2008), Chap. 1. [5] D. Marcuse, Theory of Dielectric Optical Waveguides (Academic Press, 1991), Chap. 2. [6] A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983), Chaps. 12–15. [7] J. A. Buck, Fundamentals of Optical Fibers, 2nd ed. (Wiley, 2004), Chap. 3. [8] D. Marcuse, J. Opt. Soc. Am. 68, 103 (1978). [9] H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984), Chap. 10. [10] P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, 1953), Chap. 9. [11] F. M. Mitschke and L. F. Mollenauer, Opt. Lett. 11, 659 (1986). [12] J. P. Gordon, Opt. Lett. 11, 662 (1986). [13] Y. Kodama and A. Hasegawa, IEEE J. Quantum Electron. 23, 510 (1987). [14] E. A. Golovchenko, E. M. Dianov, A. N. Pilipetskii, A. M. Prokhorov, and V. N. Serkin, Sov. Phys. JETP. Lett. 45, 91 (1987). [15] R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus, J. Opt. Soc. Am. B 6, 1159 (1989). [16] K. J. Blow and D. Wood, IEEE J. Quantum Electron. 25, 2665 (1989). [17] P. V. Mamyshev and S. V. Chernikov, Opt. Lett. 15, 1076 (1990). [18] S. V. Chernikov and P. V. Mamyshev, J. Opt. Soc. Am. B 8, 1633 (1991). [19] P. V. Mamyshev and S. V. Chernikov, Sov. Lightwave Commun. 2, 97 (1992). [20] R. H. Stolen and W. J. Tomlinson, J. Opt. Soc. Am. B 9, 565 (1992). [21] S. Blair and K. Wagner, Opt. Quantum Electron. 30, 697 (1998). [22] T. Brabec and F. Krausz, Phys. Rev. Lett. 78, 3282 (1997). [23] N. Karasawa, S. Nakamura, N. Nakagawa, M. Shibata, R. Morita, H. Shigekawa, and M. Yamashita, IEEE J. Quantum Electron. 37, 398 (2001). [24] A. Gaeta, Phys. Rev. Lett. 84, 3582 (2000); Opt. Lett. 27, 924 (2002). [25] G. Chang, T. B. Norris, and H. G. Winful, Opt. Lett. 28, 546 (2003). [26] J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006). [27] R. W. Hellwarth, Prog. Quantum Electron. 5, 1 (1977). [28] N. Tang and R. L. Sutherland, J. Opt. Soc. Am. B 14, 3412 (1997). [29] A. Martínez-Rios, Andrey N. Starodumov, Yu. O. Barmenkov, V. N. Filippov, and I. Torres-Gomez, J. Opt. Soc. Am. B 18, 794 (2001). [30] Agrawal, Govind P. Nonlinear fiber optics. Academic press, 2007 [31] F. DeMartini, C. H. Townes, T. K. Gustafson, and P. L. Kelley, Phys. Rev. 164, 312 (1967). [32] N. Tzoar and M. Jain, Phys. Rev. A 23, 1266 (1981). [33] D. Anderson and M. Lisak, Phys. Rev. A 27, 1393 (1983). [34] G. Yang and Y. R. Shen, Opt. Lett. 9, 510 (1984). [35] E. Bourkoff, W. Zhao, R. I. Joseph, and D. N. Christodoulides, Opt. Lett. 12, 272 (1987). [36] A. K. Atieh, P. Myslinski, J. Chrostowski, and P. Galko, J. Lightwave Technol. 17, 216 (1999). [37] R. H. Stolen and J. E. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers,” IEEE J. Quantum Electron., vol. 18, no. 7, pp. 1062–1072, Jul. 1982. [38] K. Okamoto, Fundamentals of Optical Waveguides, 2nd ed. New York, NY, USA: Academic, 2006, ch. 7. [39] M. Bachmann, M. K. Smit, L. B. Soldano, P. A. Besse, E. Gini, and H. Melchior, “Polarization-insensitive low-voltage optical waveguide switch using InGaAsPnnP four-port Mach-Zehnder interferometer,” in Proc. Con$ Opt. Fiber Commun. (OFC), San JoSe, CA, 1993, pp. 32-33. [40] J. E. Zucker, K. L. Jones, T. H. Chiu, and K. Brown-Goebeler, “Strained quantum wells for polarization-independent electroopic waveguide switches,” J. Lightwave Technol., vol. 10, no. 12, pp. 1926-1930, 1992. [41] R. J. Den, E. C. M. Pennings, A. Scherer, A. S. Gozdz, C. Caneau, N. C. Andreadakis, V. Shah, L. Curtis, R. J. Hawkins, J. B. D. Soole, and J. I. Song, “Ultracompact monolithic integration of balanced, polarization diversity photodetectors for coherent lightwave receivers,” IEEE Photon. Technol. Lett., vol. 4, no. 11, pp. 1238-1240, 1992. [42] M. J. N. van Stralen, R. van Roijen, E. C. M. Pennings, J. M. M. van der Heijden, T. van Dongen, and B. H. Verbeek, “Design and fabrication of integrated InGaAsP ring lasers with MMI-outcouplers,” in Proc. European Con$ Integrated Optics (ECIO), Neuchltel, Switzerland, Apr. 1993, pp. 2.24-2.25. [43] R. van Roijen, E. C. M. Pennings, M. J. N. van Stralen, T. van Dongen, B. H. Verbeek, and J. M. M. van der Heijden, “Compact InP-based ring lasers employing multimode interference couplers and combiners,” Appl. Phys. Lett., vol. 64, no. 14, pp. 1753-1755, 1994. [44] R. M. Knox and P. P. Toulios, “Integrated circuits for the millimiter through optical frequency range,” in Proc. Symp. Submillimiter Waves, J. Fox, Ed., New York, Mar./Apr. 1970, pp. 497-516. [45] P. N. Robson and P. C. Kendall, Eds., Rib Waveguide Theory by the Spectral Index Method, Optoelectronic Series, Research Studies Press Ltd. New York: Wiley, 1990. [46] C. M. Weinert and N. Agrawal, “Three-dimensional simulation of multimode interference devices,” in Proc. Integr. Phot. Res. (IPRC), San Francisco, Feb. 1994, pp. 287-289 [47] N. S. Kapany and J. J. Burke, Optical Waveguides. New York: Academic, 1972. 第三章 [1] V. E. Zakharov and A. B. Shabat, Sov. Phys. JETP 34, 62 (1972). [2] V. I. Karpman and E. M. Krushkal, Sov. Phys. JETP 28, 277 (1969). [3] N. Yajima and A. Outi, Prog. Theor. Phys. 45, 1997 (1971). [4] R. H. Hardin and F. D. Tappert, SIAM Rev. Chronicle 15, 423 (1973). [5] R. A. Fisher and W. K. Bischel, Appl. Phys. Lett. 23, 661 (1973); J. Appl. Phys. 46, 4921 (1975). [6] M. J. Ablowitz and J. F. Ladik, Stud. Appl. Math. 55, 213 (1976). [7] I. S. Greig and J. L. Morris, J. Comput. Phys. 20, 60 (1976). [8] B. Fornberg and G. B. Whitham, Philos. Trans. Roy. Soc. 289, 373 (1978). [9] M. Delfour, M. Fortin, and G. Payre, J. Comput. Phys. 44, 277 (1981). [10] T. R. Taha and M. J. Ablowitz, J. Comput. Phys. 55, 203 (1984). [11] D. Pathria and J. L. Morris, J. Comput. Phys. 87, 108 (1990). [12] L. R. Watkins and Y. R. Zhou, J. Lightwave Technol. 12, 1536 (1994). [13] M. S. Ismail, Int. J. Comput. Math. 62, 101 (1996). [14] K. V. Peddanarappagari and M. Brandt-Pearce, J. Lightwave Technol. 15, 2232 (1997); J. Lightwave Technol. 16, 2046 (1998). [15] E. H. Twizell, A. G. Bratsos, and J. C. Newby, Math. Comput. Simul. 43, 67 (1997). [16] W. P. Zeng, J. Comput. Math. 17, 133 (1999). [17] I. Daq, Comput. Methods Appl. Mech. Eng. 174, 247 (1999). [18] A. G. Shagalov, Int. J. Mod. Phys. C 10, 967 (1999). [19] Q. S. Chang, E. H. Jia, and W. Sun, J. Comput. Phys. 148, 397 (1999). [20] W. Z. Dai and R. Nassar, J. Comput. Math. 18, 123 (2000). [21] S. R. K. Iyengar, G. Jayaraman, and V. Balasubramanian, Comput. Math. Appl. 40, 1375 (2000). [22] Q. Sheng, A. Q. M. Khaliq, and E. A. Al-Said, J. Comput. Phys. 166, 400 (2001). [23] J. B. Chen, M. Z. Qin, and Y. F. Tang, Comput. Math. Appl. 43, 1095 (2002). [24] J. I. Ramos, Appl. Math. Comput. 133, 1 (2002). [25] X. M. Liu and B. Lee, IEEE Photon. Technol. Lett. 15, 1549 (2003). [26] W. T. Ang and K. C. Ang, Numer. Methods Partial Diff. Eqs. 20, 843 (2004). [27] M. Premaratne, IEEE Photon. Technol. Lett. 16, 1304 (2004). [28] G. M. Muslu and H. A. Erbay, Math. Comput. Simul. 67, 581 (2005). [29] O. V. Sinkin, R. Holzlöhner, J. Zweck, and C. R. Menyuk, J. Lightwave Technol. 21, 61 (2003). [30] T. Kremp and W. Freude, J. Lightwave Technol. 23, 1491 (2005). [31] J. W. Cooley and J. W. Tukey, Math. Comput. 19, 297 (1965). [32] G. H. Weiss and A. A. Maradudin, J. Math. Phys. 3, 771 (1962). [33] M. Lax, J. H. Batteh, and G. P. Agrawal, J. Appl. Phys. 52, 109 (1981). [34] W. Sellmeier, Zur Erklärung der abnormen Farbenfolge im Spectrum einiger Substanzen, Annalen der Physik und Chemie 219, 272-282 (1871). [35] C.-L. Wu et. al., "Four-wave-mixing in the loss low submicrometer Ta2O5 channel waveguide," Opt. Lett. 40, 4528 (2015).
|