|
1.Becquerel, A. E., Recherches sur les effets de la radiation chimique de la lumiere solaire au moyen des courants electriques. Comptes Rendus de L´Academie des Sciences 1839, 9, 145-149. 2.Grätzel, M., Dye-sensitized solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2003, 4, 145-153. 3.NREL, Best Research-Cell Efficiency Chart. 2019. 4.Reference Solar Spectral Irradiance: Air Mass 1.5, American Society for Testing and Materials (ASTM) Terrestrial Reference Spectra for BR Photovoltaic Performance Evaluation. 5.M. Pagliaro, G. Palmisano, and R. Ciriminna, Flexible Solar Cells, John Wiley & Sons, New York, 2008. 6.Pindado, S.; Cubas, J.; De Manuel, C., Explicit Expressions for Solar Panel Equivalent Circuit Parameters Based on Analytical Formulation and the Lambert W-Function. 2014, Vol. 7, 4098-4115. 7.Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T., Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society 2009, 131, 6050-6051. 8.Correa Baena, J. P.; Steier, L.; Tress, W.; Saliba, M.; Neutzner, S.; Matsui, T.; Giordano, F.; Jacobsson, T. J.; Srimath Kandada, A. R.; Zakeeruddin, S. M.; Petrozza, A.; Abate, A.; Nazeeruddin, M. K.; Grätzel, M.; Hagfeldt, A., Highly efficient planar perovskite solar cells through band alignment engineering. Energy & Environmental Science 2015, 8, 2928-2934. 9.Saliba, M.; Matsui, T.; Seo, J.-Y.; Domanski, K.; Correa-Baena, J.-P.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Tress, W.; Abate, A.; Hagfeldt, A.; Grätzel, M., Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy & Environmental Science 2016, 9, 1989-1997. 10.Kay, A.; Grätzel, M., Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder. Solar Energy Materials and Solar Cells 1996, 44, 99-117. 11.Bach, U.; Lupo, D.; Comte, P.; Moser, J. E.; Weissortel, F.; Salbeck, J.; Spreitzer, H.; Gratzel, M., Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 1998, 395, 583-585. 12.Ito, S.; Takahashi, K., Fabrication of Monolithic Dye-Sensitized Solar Cell Using Ionic Liquid Electrolyte. International Journal of Photoenergy 2012, 915352. 13.Ku, Z.; Rong, Y.; Xu, M.; Liu, T.; Han, H., Full printable processed mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells with carbon counter electrode. Scientific reports 2013, 3, 3132. 14.Kroon, J. M.; Bakker, N. J.; Smit, H. J. P.; Liska, P.; Thampi, K. R.; Wang, P.; Zakeeruddin, S. M.; Grätzel, M.; Hinsch, A.; Hore, S.; Würfel, U.; Sastrawan, R.; Durrant, J. R.; Palomares, E.; Pettersson, H.; Gruszecki, T.; Walter, J.; Skupien, K.; Tulloch, G. E., Nanocrystalline dye-sensitized solar cells having maximum performance. Progress in Photovoltaics: Research and Applications 2007, 15, 1-18. 15.Kashiwa, Y.; Yoshida, Y.; Hayase, S., All-metal-electrode-type dye sensitized solar cells (transparent conductive oxide-less dye sensitized solar cell) consisting of thick and porous Ti electrode with straight pores. Applied Physics Letters 2008, 92, 033308. 16.Yoo, B.; Kim, K.-J.; Kim, Y. H.; Kim, K.; Ko, M. J.; Kim, W. M.; Park, N.-G., Titanium nitride thin film as a novel charge collector in TCO-less dye-sensitized solar cell. Journal of Materials Chemistry 2011, 21, 3077. 17.Shen, P.-S.; Li, M.-H.; Yang, Y.-S.; Sung-Yen Juang, S.; Lin, C.-W.; Yin, T.-Y.; Chen, P., A novel porous Ti/TiN/Ti thin film as a working electrode for back-contact, monolithic and non-TCO dye-sensitized solar cells. Sustainable Energy & Fuels 2017, 1, 851-858. 18.Mei, A.; Li, X.; Liu, L.; Ku, Z.; Liu, T.; Rong, Y.; Xu, M.; Hu, M.; Chen, J.; Yang, Y.; Gratzel, M.; Han, H., A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science 2014, 345, 295-8. 19.Liu, Z.; Zhang, M.; Xu, X.; Bu, L.; Zhang, W.; Li, W.; Zhao, Z.; Wang, M.; Cheng, Y. B.; He, H., p-Type mesoscopic NiO as an active interfacial layer for carbon counter electrode based perovskite solar cells. Dalton transactions 2015, 44, 3967-73. 20.Zhou, X.; Bao, C.; Li, F.; Gao, H.; Yu, T.; Yang, J.; Zhu, W.; Zou, Z., Hole-transport-material-free perovskite solar cells based on nanoporous gold back electrode. RSC Advances 2015, 5, 58543-58548. 21.Ku, Z.; Xia, X.; Shen, H.; Tiep, N. H.; Fan, H. J., A mesoporous nickel counter electrode for printable and reusable perovskite solar cells. Nanoscale 2015, 7, 13363-13368. 22.Li, H.; Cao, K.; Cui, J.; Liu, S.; Qiao, X.; Shen, Y.; Wang, M., 14.7% efficient mesoscopic perovskite solar cells using single walled carbon nanotubes/carbon composite counter electrodes. Nanoscale 2016, 8, 6379-85. 23.Tsai, C.-M.; Wu, G.-W.; Narra, S.; Chang, H.-M.; Mohanta, N.; Wu, H.-P.; Wang, C.-L.; Diau, E. W.-G., Control of preferred orientation with slow crystallization for carbon-based mesoscopic perovskite solar cells attaining efficiency 15%. J. Mater. Chem. A 2017, 5, 739-747. 24.Grancini, G.; Roldán-Carmona, C.; Zimmermann, I.; Mosconi, E.; Lee, X.; Martineau, D.; Narbey, S.; Oswald, F.; De Angelis, F.; Graetzel, M.; Nazeeruddin, M. K., One-Year stable perovskite solar cells by 2D/3D interface engineering. 2017, 8, 15684. 25.Jumabekov, A. N.; Della Gaspera, E.; Xu, Z. Q.; Chesman, A. S. R.; van Embden, J.; Bonke, S. A.; Bao, Q.; Vak, D.; Bach, U., Back-contacted hybrid organic–inorganic perovskite solar cells. Journal of Materials Chemistry C 2016, 4, 3125-3130. 26.Hou, Q.; Bacal, D.; Jumabekov, A. N.; Li, W.; Wang, Z.; Lin, X.; Ng, S. H.; Tan, B.; Bao, Q.; Chesman, A. S. R.; Cheng, Y.-B.; Bach, U., Back-contact perovskite solar cells with honeycomb-like charge collecting electrodes. Nano Energy 2018, 50, 710-716. 27.Lin, X.; S. R. Chesman, A.; Ruiz Raga, S.; Scully, A.; Liangcong, J.; Tan, B.; Lu, J.; Cheng, Y.-B.; Bach, U., Effect of Grain Cluster Size on Back-Contact Perovskite Solar Cells. 2018, 28, 1805098. 28.DeLuca, G.; Jumabekov, A. N.; Hu, Y.; Simonov, A. N.; Lu, J.; Tan, B.; Adhyaksa, G. W. P.; Garnett, E. C.; Reichmanis, E.; Chesman, A. S. R.; Bach, U., Transparent Quasi-Interdigitated Electrodes for Semitransparent Perovskite Back-Contact Solar Cells. ACS Applied Energy Materials 2018, 1, 4473-4478. 29.Rong, Y.; Ku, Z.; Mei, A.; Liu, T.; Xu, M.; Ko, S.; Li, X.; Han, H., Hole-Conductor-Free Mesoscopic TiO2/CH3NH3PbI3 Heterojunction Solar Cells Based on Anatase Nanosheets and Carbon Counter Electrodes. The Journal of Physical Chemistry Letters 2014, 5, 2160-2164. 30.Mei, A.; Li, X.; Liu, L.; Ku, Z.; Liu, T.; Rong, Y.; Xu, M.; Hu, M.; Chen, J.; Yang, Y.; Grätzel, M.; Han, H., A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability. Science 2014, 345, 295. 31.Zhang, L.; Liu, T.; Liu, L.; Hu, M.; Yang, Y.; Mei, A.; Han, H., The effect of carbon counter electrodes on fully printable mesoscopic perovskite solar cells. Journal of Materials Chemistry A 2015, 3, 9165-9170. 32.Liu, Z.; Zhang, M.; Xu, X.; Bu, L.; Zhang, W.; Li, W.; Zhao, Z.; Wang, M.; Cheng, Y.-B.; He, H., p-Type mesoscopic NiO as an active interfacial layer for carbon counter electrode based perovskite solar cells. Dalton transactions 2015, 44, 3967-3973. 33.Wei, Z.; Chen, H.; Yan, K.; Zheng, X.; Yang, S., Hysteresis-free multi-walled carbon nanotube-based perovskite solar cells with a high fill factor. Journal of Materials Chemistry A 2015, 3, 24226-24231. 34.Xu, X.; Liu, Z.; Zuo, Z.; Zhang, M.; Zhao, Z.; Shen, Y.; Zhou, H.; Chen, Q.; Yang, Y.; Wang, M., Hole Selective NiO Contact for Efficient Perovskite Solar Cells with Carbon Electrode. Nano Letters 2015, 15, 2402-2408. 35.Cao, K.; Zuo, Z.; Cui, J.; Shen, Y.; Moehl, T.; Zakeeruddin, S. M.; Grätzel, M.; Wang, M., Efficient screen printed perovskite solar cells based on mesoscopic TiO2/Al2O3/NiO/carbon architecture. Nano Energy 2015, 17, 171-179. 36.Liu, Z.; Zhang, M.; Xu, X.; Cai, F.; Yuan, H.; Bu, L.; Li, W.; Zhu, A.; Zhao, Z.; Wang, M.; Cheng, Y.-B.; He, H., NiO nanosheets as efficient top hole transporters for carbon counter electrode based perovskite solar cells. Journal of Materials Chemistry A 2015, 3, 24121-24127. 37.Li, H.; Cao, K.; Cui, J.; Liu, S.; Qiao, X.; Shen, Y.; Wang, M., 14.7% efficient mesoscopic perovskite solar cells using single walled carbon nanotubes/carbon composite counter electrodes. Nanoscale 2016, 8, 6379-6385. 38.Tsai, C.-M.; Wu, G.-W.; Narra, S.; Chang, H.-M.; Mohanta, N.; Wu, H.-P.; Wang, C.-L.; Diau, E. W.-G., Control of preferred orientation with slow crystallization for carbon-based mesoscopic perovskite solar cells attaining efficiency 15%. Journal of Materials Chemistry A 2017, 5, 739-747. 39.Grancini, G.; Roldán-Carmona, C.; Zimmermann, I.; Mosconi, E.; Lee, X.; Martineau, D.; Narbey, S.; Oswald, F.; De Angelis, F.; Graetzel, M.; Nazeeruddin, M. K., One-Year stable perovskite solar cells by 2D/3D interface engineering. Nature Communications 2017, 8, 15684. 40.Liu, S.; Huang, W.; Liao, P.; Pootrakulchote, N.; Li, H.; Lu, J.; Li, J.; Huang, F.; Shai, X.; Zhao, X.; Shen, Y.; Cheng, Y.-B.; Wang, M., 17% efficient printable mesoscopic PIN metal oxide framework perovskite solar cells using cesium-containing triple cation perovskite. Journal of Materials Chemistry A 2017, 5, 22952-22958. 41.Chandramohan, A.; Sibirev, N. V.; Dubrovskii, V. G.; Petty, M. C.; Gallant, A. J.; Zeze, D. A., Model for large-area monolayer coverage of polystyrene nanospheres by spin coating. Scientific reports 2017, 7, 40888.
|