跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.168) 您好!臺灣時間:2025/09/05 22:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃于馨
研究生(外文):Yu-Hsin Huang
論文名稱:具酸鹼應答性高分子混合型奈米微胞之抗癌藥物傳輸系統開發
論文名稱(外文):Development of pH-sensitive polymeric mixed micelles for anticancer drug delivery system
指導教授:張誌祥
指導教授(外文):Chih-Shiang Chang
學位類別:碩士
校院名稱:中國醫藥大學
系所名稱:製藥碩士學位學程
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:91
中文關鍵詞:高分子奈米微胞酸鹼敏感性藥物傳輸系統
外文關鍵詞:Polymeric micellespH-sensitiveDrug delivery system
相關次數:
  • 被引用被引用:0
  • 點閱點閱:162
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
高分子混合型奈米微胞由兩種以上高分子所組成,具有疏水性核心和親水性外殼,內部攜載疏水性藥物,可應用於改善疏水性藥物治療效率。
此研究開發一高分子混合型奈米微胞系統,攜載抗癌藥物之高分子混合型奈米微胞來達到毒殺癌細胞的效果。該高分子混合型奈米微胞由高分子poly-γ-benzyl-l-glutamate (PBLG)與雙親性高分子d-α-tocopherol polyethylene glycol 1000 succinate (TPGS)所組成;PBLG構成高分子混合型奈米微胞疏水性內核,TPGS則貫穿高分子混合型奈米微胞殼層結構,TPGS的親水端PEG能構成外殼層,而另一邊疏水端則延伸進內部,與PBLG形成疏水性內核。
本研究利用動態光散射儀測量之高分子混合型奈米微胞粒徑大小約為150 nm並且具有單一分散性,藉穿透式電子顯微鏡可觀察其具有微胞之核-殼型態;本研究利用粒徑大小變化來探討高分子混合型奈米微胞的穩定性與酸鹼應答性同時優化製備條件;結果顯示在中性環境pH 7.4下,24小時後粒徑沒有改變,具有安定性;在酸性環境pH 4.0下,粒徑改變,顯示該高分子混合型奈米微胞具有酸鹼應答性。而藥物釋放曲線可發現在中性環境下,高分子混合型奈米微胞僅有少量藥物被釋出;酸性環境下則於短時間內大量釋出藥物;藉由共軛焦顯微鏡在酸性胞器(如:溶酶體pH 4.0)中也可發現抗癌藥物大量從高分子混合型奈米微胞釋出的情形。
本研究已成功製備出具有酸鹼應答性之高分子混合型奈米微胞,該微胞在中性生理環境下(pH 7.4)能夠維持高穩定性,未來在抗癌治療上極具開發之潛能。
Polymeric mixed micelles were composed of two or more polymers. Polymeric mixed micelles have the structure of the hydrophobic core and the hydrophilic shell, the hydrophobic core exhibited a loading capacity of hydrophobic drugs. The loading capacity of polymeric mixed micelles could improve the therapy efficiency of hydrophobic drugs.
In this study, we developed a polymeric mixed micellar system loading anticancer drug to have toxicity against the cancer cell. The polymeric mixed micelles included poly-γ-benzyl-l-glutamate (PBLG) and amphiphilic d-α-tocopherol polyethylene glycol 1000 succinate (TPGS). PBLG in the system enabled to form the hydrophobic core; TPGS in the system could insert through the core and the shell. The hydrophilic polyethylene glycol (PEG) part of TPGS formed the shell, whereas the hydrophobic part of TPGS inserted into the core to form the hydrophobic core with PBLG.
In the study, we used dynamic laser scattering (DLS) to measure the particle sizes of the polymeric mixed micelles. The results of particle sizes showed approximately 150 nm in monodispersity. The core-shell structure of polymeric mixed micelles was observed by transmission electron microscopy (TEM). The stability and pH-sensitivity of the polymeric mixed micelles were determined and optimized using particle size measurement. The results of stability tests showed the polymeric mixed micelles exhibited stable particle sizes at pH 7.4 after 24 hours incubation at 37°C; at pH 4.0 condition, the particle size changed owing to the pH responsiveness. Drug releasing profile showed that at neutral environment, only little drug would be released from polymeric mixed micelles, while at acidic condition, polymeric mixed micelles would release a lot of drug within short period. We also observed a huge amount of anticancer drug releasing in acidic organelles (such as lyosomes) by confocal laser scanning microscopy (CLSM).
In this study, pH sensitive polymeric mixed micelles were successfully prepared, which could maintain the high stability in neutral environment. The polymeric mixed micellar system was potential for further anticancer application.
致謝辭 Ⅰ
縮寫表 Ⅱ
中文摘要 Ⅲ
英文摘要 Ⅳ
目次 Ⅴ
圖目次 Ⅶ
表目次 Ⅹ
第一章 緒論
1.1 實驗背景 1
1.2 實驗目的 2
第二章 文獻探討
2.1 癌症
2.1.1 癌症造成原因及治療方式 4
2.1.2 化學藥物療法 5
2.2 高分子奈米微胞應用於癌症治療 21
2.2.2 奈米藥物載體的簡介 22
2.3 酸鹼應答性高分子奈米微胞
2.3.1 腫瘤環境之酸鹼值 28
2.3.2 酸鹼應答性高分子奈米微胞的設計機制 29
2.4 載體材料之介紹
2.4.1 D-α-tocopherol polyethylene glycol
1000 succinate (TPGS) 34
2.4.2 Poly-γ-benzyl-l-glutamate (PBLG) 45
第三章 實驗部分
3.1 實驗藥品 52
3.2 實驗儀器 53
3.3 實驗方法
3.3.1 高分子混合型奈米微胞載體的製備與特性 54
3.3.2 高分子混合型奈米微胞藥物包覆與釋放 56
3.3.3 高分子混合型奈米微胞進入細胞與釋放 58
3.3.4 統計分析 63
3.4 結果與討論
3.4.1 高分子混合型奈米微胞載體的製備與特性 64
3.4.2 高分子混合型奈米微胞藥物包覆與釋放 72
3.4.3 高分子混合型奈米微胞進入細胞與釋放 74
第四章 結論 78
參考書目 80
1. W. Schimmel, E. Verhaak, et al. A randomised trial to compare cognitive outcome after gamma knife radiosurgery versus whole brain radiation therapy in patients with multiple brain metastases: research protocol CAR-study B. BMC Cancer 18(1), 218 (2018).
2. R. Gazanfar, A. Steven, et al. The molecular biology of brain metastasis. Journal of Oncology, 1-16 (2018).
3. I. Brigger, C. Dubernet, et al. Nanoparticles in cancer therapy and diagnosis. Advanced Drug Delivery Reviews 54, 631–651 (2002).
4. K. Kataoka, A. Harada, et al. Block copolymer micelles for drug delivery: design, characterization and biological significance. Advanced Drug Delivery Reviews 47(1), 113-131 (2001).
5. H. Maeda, H. Nalamura, et al. The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Advanced Drug Delivery Reviews 65, 71-79 (2013).
6. W. Huang, W. Wang, et al. Glycyrrhetinic acid-modified poly(ethylene glycol)–b-poly(c-benzyl-L-glutamate) micelles for liver targeting therapy. Acta Biomaterialia 6, 3927-3935 (2010).
7. D. Schmaljohann, Thermo- and pH-responsive polymers in drug delivery. Advanced Drug Delivery Reviews 58, 1655-1670 (2006).
8. E. Lim, T. Kim, et al. Nanomaterials for theranostics:recent advances and future challenges. Chemical Reviews 115, 327-394 (2015).
9. 陳志堯。最新圖解藥理學1998。臺北市:合記。P.378。
10. G. Yan, R. Zong, et al. Anticancer drug-loaded nanospheres based on biodegradable amphiphilic epsilon-caprolactone and carbonate copolymers. Pharmaceutical Research 27(12), 2743-2752 (2010).
11. J. Meyer, L. Quenzer, Psychopharmacology:drugs, the brain, and behavior. (Sunderland, MA: Sinauer Associates, 2013).
12. United states of america department of health and human services food and drug administration, Drugs@FDA:FDA approved drug products. Labeling: doxorubicin hydrochloride.
13. 陳志堯。最新圖解藥理學1998。臺北市:合記。P.385-386。
14. D. Riddick, C. Lee, et al. Symposium report:cancer chemotherapy and drug metabolism. Drug metabolism and disposition 33, 1083-1096 (2005).
15. United states of america department of health and human services food and drug administration, Drugs@FDA:FDA approved drug products. Labeling:methotrexate Injection.
16. 藥品仿單:麥勒崔斯德Methotrexate Injection B.P. 100mg/ml, 輝瑞大藥廠股份有限公司, 衛署藥輸字第021713號.
17. United states of america department of health and human services food and drug administration, Drugs@FDA:FDA approved drug products. Labeling:TAXOL®(paclitaxel) Injection.
18. 藥品仿單:汰癌勝®注射液TAXOL® Injection(Paclitaxel), 台灣必治妥施貴寶股份有限公司, 衛署藥輸字第021157號.
19. United states of america department of health and human services food and drug administration, Drugs@FDA:FDA approved drug products. Labeling:prednisolone.
20. United states of america department of health and human services food and drug administration, Drugs@FDA:FDA approved drug products. Labeling:TAXOTERE (docetaxel).
21. 藥品仿單:剋癌易注射液Taxotere(docetaxel), 賽諾菲股份有限公司,衛署藥輸字第025289號.
22. United states of america department of health and human services food and drug administration, Drugs@FDA:FDA approved drug products. Labeling:T REVLIMID® (lenalidomide)
23. 藥品仿單:瑞復美膠囊Revlimid (lenalidomide) Capsules, 賽基有限公司, 衛署藥輸字第025217號.
24. United states of america department of health and human services food and drug administration, Drugs@FDA:FDA approved drug products. Labeling:VELCADE(bortezomib).
25. 藥品仿單:法國萬科靜脈凍晶注射劑Velcade powder for solution for injection, 嬌生股份有限公司, 衛署藥輸字第025559號.
26. United states of america department of health and human services food and drug administration, Drugs@FDA:FDA approved drug products. Labeling:VOTRIENT(pazopanib).
27. R. Bukowski, U. Yasothan, et al. Pazopanib. Nature Reviews Drug Discovery 9, 17-18 (2010).
28. 藥品仿單:福退癌膜衣錠Votrient (pazopanib HCl), 荷商葛蘭素史克藥廠股份有限公司, 衛署藥輸字第025433號.
29. K. Soppimath, T. Aminabhavi, et al. Biodegradable polymeric nanoparticles as drug delivery devices. Journal of Controlled Release 70, 1-20 (2001).
30. M. Talelli, M. Barz, et al. Core-crosslinked polymeric micelles: principles, preparation, biomedical applications and clinical translation. Nano Today 10(1), 93-117 (2015).
31. T. Tadros, Handbook of Colloid and Interface Science. (Walter de Gruyter GmbH & Co KG, 2017).
32. K. Kataoka, A. Harada, et al. Block copolymer micelles for drug delivery: design, characterization and biological significance. Advanced Drug Delivery Reviews 47, 113-131 (2001).
33. A. Jhaveri, V. Torchilin, Multifunctional polymeric micelles for delivery of drugs and siRNA. Frontiers in Pharmacology 5(77), 1-26 (2014).
34. A. Anselmo, S. Mitragotri. Nanoparticles in the clinic. Bioengineering & Translational Medicine 1, 10-29 (2016).
35. M. Jones, J. Leroux, Polymeric micelles - a new generation of colloidal drug carriers. European Journal of Pharmaceutics and Biopharmaceutics 48, 101-111 (1999).
36. N. Kamaly, B. Yameen. et al. Degradable controlled-release polymers and polymeric nanoparticles:mechanisms of controlling drug release. Chemical Reviews 116, 2602-2663 (2016).
37. J. Li, M. Huo, et al. Redox-sensitive micelles selfassembled from amphiphilic hyaluronic acid-deoxycholic acid conjugates for targeted intracellular delivery of paclitaxel. Biomaterials 33, 2310−2320 (2012).
38. X. Guo, D. Li, Thermo-triggered drug release from actively targeting polymer micelles. ACS Applied Materials & Interfaces 6, 8549−8559 (2014).
39. N. Kamaly, B. Yameen, et al. Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chemical reviews 116, 2602-2663 (2016).
40. D. Ling, W. Park, et al. Multifunctional tumor pH-sensitive self-assembled nanoparticles for bimodal imaging and treatment of resistant heterogeneous tumors. Journal of the American Chemical Society 136, 5647−5655 (2014).
41. K. Na, Y. Bar, Polymeric Drug Delivery. (Systems. Taylor & Francis, Boca Raton, 2005).
42. J. Dissemond, M. Wiitthoff, et al. pH Vales on chronic wounds:evaluation during modern wound therapy. Hautarzt 54, 959-965 (2001).
43. M. Stubbs, J. McSheehy, et al. Causes and consequences of tumour acidity and implications for treatment. Molecular Medicine Today 6, 15-19 (2000).
44. T. Tanala, I. Nisgio, et al. Collapse of gels in an electric field. Science 218, 467-469 (1982).
45. Y. Osada, H. Okuzaki. A polymer gel with electrically driven motility. Nature 355, 242-244 (1992).
46. J. Luzio, B. Rous, et al. Lysosome–endosome fusion and lysosome biogenesis. Journal of Cell Science 113, 1515–1524 (2000).
47. I. Mellman, R. Fuchs, et al. Acidification of the endocytic and exocytic
pathways. Annual Review of Biochemistry 55, 663–700 (1986).
48. P. Vaupel, F. Kallinowski et al. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors:a review. Cancer Research 49, 6449-6465 (1989).
49. B. Storrie, M. Desjardins, The biogenesis of lysosomes:is it a kiss and run, continuous fusion and fission process? Bioessays 18, 895–903 (1996).
50. S. Kornfeld, I. Mellman, The biogenesis of lysosomes. Annual Review of Cell and Developmental Biology 5, 483–525 (1989).
51. H. Storrie, D. Mooney, Sustained delivery of plasmid DNA from polymeric scaffolds for tissue engineering. Advanced Drug Delivery Reviews 58, 500-514 (2006).
52. S. Simoes, J. Moreira, et al. On the formulation of pH-sensitive liposomes with long circulation times. Advanced Drug Delivery Reviews 56, 947-965 (2004).
53. A. Felber, M. Dufresne, et al. pH-sensitive vesicles, polymeric micelles, and nanospheres prepared with polycarboxylates. Advanced Drug Delivery Reviews 64, 979-992 (2012).
54. K. Miyata, R. Christie, et al. Polymeric micelles for nano-scale drug delivery. Reactive and Functional Polymers 71, 227–234 (2011).
55. S. Solomatin, T. Bronich, et al. Environmentally responsive nanoparticles from block ionomer complexes:effects of pH and ionic strength. Langmuir 19, 8069–8076 (2003).
56. J. Liu, Y. Huang, et al. pH-sensitive nano-systems for drug delivery in cancer therapy. Biotechnology Advances 32, 693-710 (2014).
57. Y. Bae, N. Nishiyama, et al. Preparation and biological characterization of polymeric micelle drug carriers with intracellular pH-triggered drug release property:tumor permeability, controlled subcellular drug distribution, and enhanced in vivo antitumor efficacy. Bioconjugate Chemistry 16, 122-130 (2005).
58. Y. Bae, W. Jang, et al. Multifunctional polymeric micelles with folate- mediated cancer cell targeting and pH-triggered drug releasing properties for active intracellular drug delivery. Molecular Systems Biology 1, 242-250 (2005).
59. E. Lee, K. Oh, et al. Tumor pH-responsive flower-like micelles of poly(l-lactic acid)-b-poly(ethylene glycol)-b-poly(l-histidine). Journal of Controlled Release 123, 19-26 (2007).
60. Z. Zhang, S. Tan, et al. Vitamin E TPGS as a molecular biomaterial for drug delivery. Biomaterials 33, 4889-4906 (2012).
61. L. Mu, T. Elbayoumi, et al. Mixed micelles made of poly(ethylene
glycol)-phosphatidylethanolamine conjugate and d-alpha-tocopheryl polyethyleneglycol 1000 succinate as pharmaceutical nanocarriers for camptothecin. International Journal of Pharmaceutics 306, 142-149 (2005).
62. W. Cheow, K. Hadinoto, Factors affecting drug encapsulation and stability of lipid-polymer hybrid nanoparticles. Colloids and Surfaces B: Biointerfaces 85, 214-220 (2011).
63. W. Krasavage, C. Terhaar, D-alpha-tocopheryl polyethylene glycol 1000 succinate. acute toxicity, subchronic feeding, reproduction and teralogic studies in the rat. Journal of Agricultural and Food Chemistry 25, 273-278 (1977).
64. C. Yang, T. Wu, et al. Recent advances in the application of vitamin E TPGS for drug delivery. Theranostics 8(2), 464-485 (2018).
65. S. Wu, W. Hopkins, Characteristics of d-alpha-tocopheryl PEG 1000
succinate for applications as an absorption enhancer in drug delivery
systems. Pharmaceutical Technology 23, 52-60 (1999).
66. S. Dandan, L. Xueming, et al. Mixed micelles based on a pH-sensitive prodrug and TPGS for enhancing drug efficacy against multidrug-resistant cancer cells. Colloids and Surfaces B:Biointerfaces 159, 419-426 (2017).
67. T. Hao, D. Chen, et al. Micelles of d‑α-tocopheryl polyethylene glycol 2000 succinate (TPGS 2K) for doxorubicin delivery with reversal of multidrug resistance. ACS Applied Materials & Interfaces 7, 18064-18075 (2015).
68. M. Sadoqi, C. Laucam, et al. Investigation of the micellar properties of the tocopheryl polyethylene glycol succinate surfactants TPGS 400 and TPGS 1000 by steady state fluorometry. Journal of Colloid and Interface Science 333, 585-589 (2009).
69. P. Chandrasekharan, D. Maity, et al. Vitamin E (d-alpha-tocopheryl-co-poly(ethylene glycol) 1000 succinate micelles-superparamagnetic iron oxide nanoparticles for enhanced thermotherapy and MRI. Biomaterials 32, 5663-5672 (2011).
70. M. Sheu, S. Chen, et al. Influence of micelle solubilization by tocopheryl polyethylene glycol succinate (TPGS) on solubility enhancement and percutaneous penetration of estradiol. Journal of Controlled Release 88, 355-368 (2003).
71. H. Zhao, L. Yung, Addition of TPGS to folate-conjugated polymer micelles for selective tumor targeting. Journal of Biomedical Materials Research Part A 91, 505-518 (2009).
72. L. Yu, A. Bridgers, et al. Vitamin E TPGS increases absorption flux of an HIV protease inhibitor by enhancing its solubility and permeability. Pharmaceutical Research 16, 1812-1817 (1999).
73. J. Dintaman, J. Silverman, Inhibition of p-glycoprotein by d-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS). Pharmaceutical Research 16, 1550-1556 (1999).
74. Z. Zhang, S. Lee, et al. In vitro and in vivo investigation on PLA–TPGS nanoparticles for controlled and sustained small molecule chemotherapy. Pharmaceutical Research 25(8), 1925-1935 (2008).
75. C. Prashant, M. Dipak, et al. Superparamagnetic iron oxide - loaded poly (lactic acid)-d-alpha-tocopherol polyethylene glycol 1000 succinate copolymer nanoparticles as MRI contrast agent. Biomaterials 31, 5588-5597 (2010).
76. S. Tan, C. Zou, et al. Recent developments in d-a-tocopheryl polyethylene glycol-succinate-based nanomedicine for cancer therapy. Drug delivery 24(1), 1831-1842 (2017).
77. W. Guo, L. Deng, et al. Sericin nanomicelles with enhanced cellular uptake and pH-triggered release of doxorubicin reverse cancer drug resistance. Drug delivery 25(1), 1103-1116 (2018).
78. S. Feng, Nanoparticles of biodegradable polymers for new-concept chemotherapy. Expert Review of Medical Devices 1, 115-125 (2004).
79. S. Feng. New-concept chemotherapy by nanoparticles of biodegradable
polymers:where are we now? Nanomedicine 1, 297-309 (2006).
80. Z. Zhang, X. Yang, et al. Copolymer technology for advanced nanomedicine. Nanomedicine 6, 583-587 (2011).
81. N. Cao, S. Feng, Doxorubicin conjugated to d-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS):conjugation chemistry, characterization, in vitro and in vivo evaluation. Biomaterials 29, 3856-3865 (2008).
82. H. Z. Zhao, L. Yung, Addition of TPGS to folate-conjugated polymer micelles for selective tumor targeting. Journal of Biomedical Materials Research Part A 91, 505-518 (2009).
83. M. Muthu, S. Kulkarni, et al. Vitamin E TPGS coated liposomes enhanced cellular uptake and cytotoxicity of docetaxel in brain cancer cells. International Journal of Pharmaceutics 421, 332-340 (2011).
84. K. Win, S. Feng, Effects of particle size and surface coating on cellular
uptake of polymeric nanoparticles for oral delivery of anticancer drugs.
Biomaterials 26, 2713-2722 (2005).
85. V. Anbharasi, N. Cao, et al. Doxorubicin conjugated to d-a-tocopheryl polyethylene glycol succinate and folic acid as a prodrug for targeted chemotherapy. Journal of Biomedical Materials Research Part A 94(3), 730-743 (2010).
86. G. Wang, B. Yu, et al. Controlled preparation and antitumor efficacy of vitamin E TPGS-functionalized PLGA nanoparticles for delivery of paclitaxel. International Journal of Pharmaceutics 446, 24-33 (2013).
87. H. Zhu, H. Chen, et al. Co-delivery of chemotherapeutic drugs with vitamin E TPGS by porous PLGA nanoparticles for enhanced chemotherapy against multi-drug resistance. Biomaterials 35, 2391-2400 (2014).
88. D. Zhao, H. Zhang, et al. Redox-sensitive mPEG-SS-PTX/TPGS mixed micelles: an efficient drug delivery system for overcoming multidrug resistance. International Journal of Pharmaceutics 515, 281-292 (2016).
89. K. Dong, Y. Yan, et al. Biodegradable mixed MPEG-SS-2SA/TPGS micelles for triggered intracellular release of paclitaxel and reversing multidrug resistance. International Journal of Nanomedicine 11, 5109-5123 (2016).
90. S. Masahiro, H. Kenji, Polymer organogelators that make supramolecular organogels through physical cross-linking and self-assembly. Chemical Society Reviews 39(2), 455-463 (2010).
91. T. Deming, Synthetic polypeptides for biomedical applications. Progress in Polymer Science 32, 858–875 (2007).
92. J. Zednik, R. Riva, et al. pH-responsive biodegradable amphiphilic networks. Polymer 49, 697–702 (2008).
93. R. Riva, P. Lussis, et al. Contribution of “click chemistry” to the synthesis of antimicrobial aliphatic copolyester. Polymer 49, 2023–2028 (2008).
94. S. Dixon, L. Wiggins, The conversion of sucrose into pyridazine derivatives:the nitration of pyridazine derivatives. Journal of the Chemical Society 9, 3236–3239 (1950).
95. R. Freidinger, W. Whitter, et al. Novel glutamic-acid derived cholecystokinin receptor ligands. Journal of Medicinal Chemistry 33, 591–595 (1990).
96. H. Dong, D. Xun, et al. The synthesis, deprotection and properties of poly(γ-benzyl-l-glutamate). Science China Chemistry 56(6), 729-738 (2013).
97. M. Barbosa, V. Montembault, et al. Synthesis and characterization of novel poly(γ-benzyl-l-glutamate) derivatives ailored for the preparation of nanoparticles of pharmaceutical interest. Polymer International 56, 317-324 (2007).
98. N. Cui, J. Qian, et al. Preparation and characterization of foamy poly(gbenzyl-l-glutamate-co-l-phenylalanine)/ bioglass composite scaffolds for bone tissue engineering. RSC Advances 6, 73699-73708 (2016).
99. G. Liu, W. Zhuang, et al. Drug carrier system self-assembled from biomimetic polyphosphorycholine and biodegradable polypeptide based diblock copolymers. Polymer 100, 45–55 (2016).
100. J. Guo, Y. Huang, et al. Synthesis and characterization of functional poly(γ-benzyl-l-glutamate) (PBLG) as a hydrophobic precursor. Polymer 50, 2847-2855 (2009)
101. H. Sugimoto, E. Nakanishi, et al. Aggregate formation and release behaviour of hydrophobic drugs with graft copolypeptide-containing tryptophan. Polymer International 53, 972–983 (2004).
102. K. Turcheniuk, A. Tarasevych, et al. Recent advances in surface chemistry strategies for the fabrication of functional iron oxide based magnetic nanoparticles. Nanoscale 5(22), 10729-10752 (2013).
103. M. Baalousha, J. Lead, Rationalizing nanomaterial sizes measured by atomic force microscopy, flow field-flow fractionation, and dynamic light scattering:sample preparation, polydispersity, and particle structure. Environmental Science & Technology 46(11), 6134-6142 (2012).
104. S. Owen, P. Dianna, et al. Polymeric micelle stability. Nano today 7, 53-65 (2012).
105. Y. Mi, J. Zhao, et al. Vitamin E TPGS prodrug micelles for hydrophilic drug delivery with neuroprotective effects. International Journal of Pharmaceuties 438, 98-106 (2012).
106. Y. Xu, Y. Lu, et al. Nanomicelles based on a boronate ester-linked diblock copolymer asthe carrier of doxorubicin with enhanced cellular uptake. Colloids and Surfaces B:Biointerfaces 141, 318-326 (2016).
107. T. Thambi, V. Deepagan, et al. Synthesis and physicochemical characterization of amphiphilic block copolymers bearing acid-sensitive orthoester linkage as the drug carrier. Polymer 52, 4753-4759 (2011).
108. M. Cagel, E. Bernabeu, et al. Mixed micelles for encapsulation of doxorubicin with enhanced in vitro cytotoxicity on breast and ovarian cancer cell lines versus Doxil®. Biomedicine & Pharmacotherapy 95, 894-903 (2017).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top