跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.144) 您好!臺灣時間:2025/12/01 10:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:江玟菱
研究生(外文):CHIANG, WEN-LIN
論文名稱:進給系統健康診斷技術之研發
論文名稱(外文):Developments of Fault Detection Techniques for Ball Screw Feed Drive Systems
指導教授:鄭志鈞
指導教授(外文):CHENG,CHIH-CHUN
口試委員:薛幼苓陳任之黃逸群
口試委員(外文):HSUEH, YU-LINGCHAN, YUM-JIHUANG,YI-CYUN
口試日期:2018-07-19
學位類別:碩士
校院名稱:國立中正大學
系所名稱:機械工程系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:69
中文關鍵詞:滾動軸承奇異譜熵取樣熵頻帶能量特徵全息譜希爾伯轉換費雪分數主成份分析健康診斷自組織映射圖
外文關鍵詞:Rolling bearingSingular Spectrum EntropyBand Energy FeaturesHolospectrumHilbert transformFisher scorePrincipal components analysisHealth diagnosisSelf-organizing map
相關次數:
  • 被引用被引用:2
  • 點閱點閱:557
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:1
本研究目的為發展進給系統健康診斷系統。在進給系統中最容易發生故障的部分為滾珠螺桿之預壓力消失,其次為滾動軸承,而軸承故障主要原因為裝配不當及元件損毀,因此本研究主要針對滾動軸承之組裝與元件進行健康狀態分析,共分為三個部分。第一部分發展頻帶能量特徵方法,利用軸承振動訊號,經解調後取得其包絡譜,再引用頻帶切割與掃頻的概念提取有效的頻域特徵,結合取樣熵(Sample Entropy, SE)、方均根(Root mean square, RMS)及奇異譜熵(Singular Spectrum Entropy, SSE)等時域特徵對軸承進行健康診斷。第二部分使用全息譜觀察滾動軸承運轉時軌跡之變化,並提取能代表軸承旋轉情形之振動特徵,進而針對組裝之機械故障進行狀態監測,避免因裝配問題造成軸承使用壽命減短,可及時調整組裝方式並解決問題。第三部分將軸承振動訊號提取之特徵以自組織映射圖(Self-Organizing map, SOM)建立健康模型,再透過計算待測資料與健康模型之最小量化誤差(Minimum quantization error, MQE)來量化軸承及組裝狀態,並結合移動窗與馬式距離(Mahalanobis distance)的概念對軸承進行長期監控,觀察軸承之全生命週期狀態與預防突發之異常狀況。最後,透過SOM結合時、頻域特徵與全息譜同步對軸承組裝及滾動軸承狀態進行健康診斷,並引用2012PHM集NASA軸承疲勞實驗數據集進行驗證,由實驗結果證明,此進給系統健康診斷技術能有效提升狀態估測準確度。

The purpose of this research is to develop a diagnosis system for ball screw feed drive systems. The most prone to failure component in the feed drive system is the preload loss, followed by the rolling bearings. Furthermore, the main cause of the bearing failure is the installation error and/or component damage. The thesis consists of three parts. In the first part, several features extracted from the vibration measurements in frequency domain and time domain such as Sample entropy (SE), Root mean square (RMS), Singular spectrum entropy (SSE) and band energy are compared for their effectiveness in diagnosing the ball bearing faults. In the second part, features which could represent the assembly condition of the ball screw feed drive systems such as misalignment using the holographic spectrum are proposed and their effectiveness are also investigated. Finally, all the features aiming to detecting faults of ball screw feed drive systems due to bearing and/or assembly extracted from the vibration measurements are merged using Self-organizing map (SOM) . Whether the ball screw feed drive systems is healthy can be determined by calculating the Mahalanobis distance according to the Minimum quantization error (MQE) from the SOM. The proposed diagnosis technique is validated using the data sets from PHM and NASA. Experimental results show that the ball screw feed drive system can be diagnosed with a reasonable accuracy by this system.
目 錄
目 錄 I
表 目 錄 III
圖 目 錄 V
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 1
1-3 文獻回顧 2
1-3-1 軸承健康診斷 3
1-3-2 全息譜 4
1-3-3 文獻回顧總結 5
1-4 研究流程與方法 5
第二章 軸承健康特徵擷取與排序 7
2-1 取樣熵與奇異譜熵 7
2-2 滾珠軸承特徵與包絡譜分析 9
2-3 頻域能量特徵 12
2-4 特徵重要性排序 14
2-4-1 主成份分析與費雪法 15
2-4-2 應用貝氏定理於特徵排序 17
第三章 應用全息譜於偏心診斷 21
3-1 全息譜與轉子不平衡之介紹 21
3-1-1 二維全息譜與三維全息譜 21
3-1-2 轉子不平衡 23
3-2 工具機主軸與進給軸全息譜診斷 25
3-2-1 進給平台全息譜 25
3-2-2 工具機主軸全息譜 32
3-2-3 全息譜特徵擷取 39
第四章 軸承疲勞實驗與診斷機制 41
4-1 軸承實驗數據 41
4-1-1 2012PHM軸承預診大賽疲勞實驗 41
4-1-2 NASA軸承疲勞實驗 43
4-2 健康診斷系統模型訓練 45
4-2-1 自組織映射圖之理論與應用 45
4-2-2 應用MQE與馬式距離於軸承狀態識別 46
第五章 進給系統健康診斷技術之驗證 51
5-1 軸承元件狀態監測 51
5-2 軸承組裝狀態監測 60
第六章 結論與未來展望 65
6-1 研究結論 65
6-2 未來研究方向 66
參考文獻 67


[1]NSK精密軸承技術部,2013應用技術論壇:超高速主軸技術與軸承監控系統 評量結果介紹,2013。
[2]朱孝賢,包絡譜分析於軸承故障診斷之探討暨工程應用,2005。
[3]B. Li, M. Y. Chow, Y. Tipsuwan and J. C. Hung, “ Neural-Network-Based Motor Rolling Bearing Fault Diagnosis,” IEEE Transactions on Industrial Electronics, Vol. 47, No. 5, pp. 1060-1069, 2000.
[4]林庭毅,基於多尺度方均根、多尺度熵、費雪法、與倒傳遞網路之軸承錯 誤診斷系統,2012。
[5]F. Wang, Y. Zhang, B. Zhang and W. Su, “ Application of wavelet packet sample entropy in the forecast of rolling element bearing fault trend,” Multimedia and Signal Processing (CMSP), 2011 International Conference on, Vol. 2, IEEE, 2011.
[6]T. Y. Wu, C. L. Yu and D. C. Liu, “ On Multi-Scale Entropy Analysis of Order-Tracking Measurement for Bearing Fault Diagnosis under Variable Speed,” Entropy, 2016.
[7]B. Chen, Z. Yan, W. Chen, ” Defect Detection for Wheel-Bearings with Time-Spectral Kurtosis and Entropy, ” Entropy, 2014
[8]J. M. Colebrook, “Continuous plankton records-zooplankton and environment, northeast Atlantic and North-Sea,” Oceanologica acta, 1(1), pp. 9-23, 1978.
[9]陶新民,基于最大小波奇异谱的轴承故障诊断方法,振動測試與診斷 30.1,pp. 78-82,2010。
[10]T. Liu, J. Chen and G. Dong, “Singular spectrum analysis and continuous hidden Markov model for rolling element bearing fault diagnosis,” Journal of Vibration and Control, 21(8), pp. 1506-1521, 2015.
[11]K. Pearson, “LIII. On Lines and Planes of Closest Fit to Systems of Points in Space,” The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 2, No.11, pp. 559-572, 1901.
[12]D. Antory, “Application of a Data-driven Monitoring Technique to Diagnose Air Leaks in an Automotive Diesel Engine: A case Study,” Mechanical Systems and Signal Processing, Vol. 21, pp. 795-808, 2007.
[13]T. Kohonen, “The Self-Organizing Map,” Proceedings of the IEEE, Vol. 78,No. 9, pp. 1464-1480, 1990.
[14]F. Zhong, T. Shi and T. He, “ Fault diagnosis of motor bearing using self-organizing maps,” Electrical Machines and Systems, 2005, ICEMS 2005, Proceedings of the Eighth International Conference on,. Vol. 3, IEEE, 2005.
[15]許哲瑋,滾珠螺桿進給系統之間康診斷與監測,國立中正大學機械工程學系碩士論文,2016。
[16]林育新,滾動軸承智能診斷與剩餘壽命預估之研發,國立中正大學機械工程學系碩士論文,2017。
[17]P. Goldman and A. Muszynska, “ Application of full spectrum to rotating machinery diagnostics,” Orbit 20.1, pp. 17-21, 1999.
[18]L. Shi, “ A modified balancing method for flexible rotors based on multi-sensor fusion,” J. Appl. , pp. 465-469, 2005.
[19]賴宥宏,植基於結構基因類神經網路之旋轉機械故障診斷系統,國立台北科技大學自動化科技研究所碩士論文,2009。
[20]C. W. Lee and Y. S. Han, “ The directional Wigner distribution and its applications,” Journal of Sound and Vibration ,pp.585-600, 1998.
[21]屈梁生, 機械故障的全息診斷原理,科學出版社, 2007。
[22]史東峰, 屈梁生,“三维全息谱分解在回轉機械診断中的應用研究,” 西安交通大學學报, pp. 94-97, 1998。
[23]X. Dong, X. Zhang, Z. Ma, G. Wen and Z. Zhang, “Research on a Rotating Machinery Fault Prognosis Method Using Three-Dimensional Spatial Representations,” Shock and Vibration, 2016.
[24]P. Chen, K. Wang and K. Feng, “ Application of Order-Tracking Holospectrum to Cracked Rotor Fault Diagnostics under Nonstationary,” 2016 Prognostics and System Health Management Conference, 2016.
[25]Y. Liao, G. Lang, F. Wu and L. Qu, “ An improvement to holospectrum based field balancing method by reselection of balancing object,” Journal of Vibration and Acoustics , 2009.
[26]Y. Zhang, Q. Wei, D. Zou and M. Shao, “ Study on the relationship between the imbalance status and its vibration response in balancing method of rotors,” 2016.
[27]M. MacCamhaoil, “ Static and dynamic balancing of rigid rotors,” Bruel & Kjaer application notes, 2012.
[28]曹文昌,適當本質模態函數篩選應用於滾珠軸承故障診斷,2013。
[29]R. A. Fisher, “The Use of Multiple Measurements in Taxonomic Problems,” Annals of eugenics, vol.7, Part II, pp.179-188, 1936.
[30]Acoustics and Vibration Database,http://data-acoustics.com/measurements/bearing-faults/bearing-6/,2012。
[31]NASA Bearing Data Set,https://ti.arc.nasa.gov/tech/dash/pcoe/prognostic-data-repository,2007。
[32]NPTEL courses,http://nptel.ac.in/courses/112103024/41。
L. Qu, X. Liu, G. Peyronne, Y. Chen, “The holospectrum: a new method for rotor surveillance and diagnosis,” Mechanical systems and signal processing ,1989.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top