|
[1]M. E. Hoque, M. Courgeon, J.-C. Martin, B. Mutlu, and R. W. Picard, Mach: My automated conversation coach, in Proceedings of the 2013 ACM international joint conference on Pervasive and ubiquitous computing, 2013, pp. 697-706. [2]H. Jones and N. Sabouret, TARDIS-A simulation platform with an affective virtual recruiter for job interviews, IDGEI (Intelligent Digital Games for Empowerment and Inclusion), 2013. [3]E. Levin, R. Pieraccini, and W. Eckert, Using Markov decision process for learning dialogue strategies, in Acoustics, Speech and Signal Processing, 1998. Proceedings of the 1998 IEEE International Conference on, 1998, pp. 201-204. [4]S. Young, M. Gašić, B. Thomson, and J. D. Williams, Pomdp-based statistical spoken dialog systems: A review, Proceedings of the IEEE, vol. 101, pp. 1160-1179, 2013. [5]H. Cuayáhuitl, SimpleDS: A Simple Deep Reinforcement Learning Dialogue System, arXiv preprint arXiv:1601.04574, 2016. [6]E. Ferreira and F. Lefevre, Reinforcement-learning based dialogue system for human–robot interactions with socially-inspired rewards, Computer Speech & Language, vol. 34, pp. 256-274, 2015. [7]S. P. Singh, M. J. Kearns, D. J. Litman, and M. A. Walker, Reinforcement Learning for Spoken Dialogue Systems, in Nips, 1999, pp. 956-962. [8]P.-H. Su, D. Vandyke, M. Gasic, D. Kim, N. Mrksic, T.-H. Wen, et al., Learning from real users: Rating dialogue success with neural networks for reinforcement learning in spoken dialogue systems, arXiv preprint arXiv:1508.03386, 2015. [9]G. Tesauro, Temporal difference learning and TD-Gammon, Communications of the ACM, vol. 38, pp. 58-68, 1995. [10]C. J. Watkins and P. Dayan, Q-learning, Machine learning, vol. 8, pp. 279-292, 1992. [11]M. Riedmiller, Neural fitted Q iteration–first experiences with a data efficient neural reinforcement learning method, in European Conference on Machine Learning, 2005, pp. 317-328. [12]V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, et al., Playing atari with deep reinforcement learning, arXiv preprint arXiv:1312.5602, 2013. [13]M. Agarwal, R. Shah, and P. Mannem, Automatic question generation using discourse cues, in Proceedings of the 6th Workshop on Innovative Use of NLP for Building Educational Applications, 2011, pp. 1-9. [14]W. Chen, Aist, G., Mostow, J.: Generating questions automatically from informational text, in Proceedings of the 2nd Workshop on Question Generation, held at the Conference on AI in, Education, 2009, pp. 17-24. [15]Y. C. S. A. Hasan, Towards Automatic Topical Question Generation. [16]S. S. Pradhan, W. Ward, K. Hacioglu, J. H. Martin, and D. Jurafsky, Shallow Semantic Parsing using Support Vector Machines, in HLT-NAACL, 2004, pp. 233-240. [17]L. Ratinov and D. Roth, Design challenges and misconceptions in named entity recognition, in Proceedings of the Thirteenth Conference on Computational Natural Language Learning, 2009, pp. 147-155. [18]A. H. Oh and A. I. Rudnicky, Stochastic language generation for spoken dialogue systems, in Proceedings of the 2000 ANLP/NAACL Workshop on Conversational systems-Volume 3, 2000, pp. 27-32. [19]F. Mairesse and S. Young, Stochastic language generation in dialogue using factored language models, Computational Linguistics, 2014. [20]T.-H. Wen, M. Gasic, D. Kim, N. Mrksic, P.-H. Su, D. Vandyke, et al., Stochastic language generation in dialogue using recurrent neural networks with convolutional sentence reranking, arXiv preprint arXiv:1508.01755, 2015. [21]T.-H. Wen, M. Gasic, N. Mrksic, P.-H. Su, D. Vandyke, and S. Young, Semantically conditioned lstm-based natural language generation for spoken dialogue systems, arXiv preprint arXiv:1508.01745, 2015. [22]Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin, A neural probabilistic language model, journal of machine learning research, vol. 3, pp. 1137-1155, 2003. [23]T. Mikolov, M. Karafiát, L. Burget, J. Cernocký, and S. Khudanpur, Recurrent neural network based language model, in Interspeech, 2010, p. 3. [24]T. Mikolov, K. Chen, G. Corrado, and J. Dean, Efficient estimation of word representations in vector space, arXiv preprint arXiv:1301.3781, 2013. [25]L. Žilka and F. Jurčíček, LecTrack: Incremental Dialog State Tracking with Long Short-Term Memory Networks, in International Conference on Text, Speech, and Dialogue, 2015, pp. 174-182. [26]L.-J. Lin, Reinforcement learning for robots using neural networks, DTIC Document1993. [27]S. Hochreiter and J. Schmidhuber, Long short-term memory, Neural computation, vol. 9, pp. 1735-1780, 1997. [28]D. R. Traum, S. Robinson, and J. Stephan, Evaluation of Multi-party Virtual Reality Dialogue Interaction, in LREC, 2004.
|