跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/11/13 14:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黎子頎
研究生(外文):Tzu-Chi Li
論文名稱:以資料探勘技術應用於服務滿意度與顧客推薦之研究-以白蘭氏健康博物館為例
論文名稱(外文):A Case Study of Using Data Mining Techniques in Service Satisfaction and Customer Recommendation - Use Brand’s Health Museum as An Example
指導教授:吳信宏吳信宏引用關係
指導教授(外文):Hsin-Hung Wu
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:企業管理學系
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:59
中文關鍵詞:顧客推薦白蘭氏健康博物館資料探勘
外文關鍵詞:Customer RecommendationBrand’s Health MuseumData Mining
相關次數:
  • 被引用被引用:1
  • 點閱點閱:593
  • 評分評分:
  • 下載下載:116
  • 收藏至我的研究室書目清單書目收藏:2
  本研究採用位於彰濱工業區的白蘭氏健康博物館於民國一百年全年度之顧客來訪問卷,利用IBM SPSS Modeler 15.0軟體,首先以分類與迴歸樹 (Classification and Regression Tree, CART)分析建立預測模式,將量表中的7個服務滿意度問項當作投入變數,顧客推薦作為目標變數,分析投入變數與目標變數間的規則,找出最能影響顧客推薦之變數。接著進行維度縮減與特徵選取篩選變數,分別重新投入CART分析。最後,使用貝氏網路 (Bayesian Network)重複以上過程,另外以人工方式篩檢變數,重新投入貝氏網路分析,並將所有CART與貝氏網路模型進行評估。
  在原始模型之CART分析後發現樹深有5層,且得到6條規則,整理後分析投入變數與目標變數間之規則。維度縮減後模型無法產生樹狀圖與規則;特徵選取之結果則與原始模型之CART結果相同。貝氏網路方面,各模型使用結構類型為Markov Blanket時皆無法分析,僅有結構類型為TAN (Tree Augmented Naive Bayes)時有產生貝氏網路圖。而後我們計算出貝氏網路模型中已知顧客滿意度的情況下,顧客推薦所發生之機率。模型評估方面,貝氏網路各模型之表現較CART各模型好,特徵選取之貝氏網路為表現最好的模型,其次為篩檢變數之貝氏網路模型。最後我們提出各模型的管理意涵。

  This study used the 2011 internal customers’ questionnaires from Brand’s Health Museum, and used IBM SPSS Modeler 15.0 for analyses by considering seven satisfaction items as input variables and customer recommendation as a target variable. First , we used classification and regression tree (CART) to classify and predict the customers’ behaviors. Second, dimension reduction and feature selection were individually performed to identify the variables, and these variables become the input variables for CART. Third, Bayesian network (BN) was applied to repeat the prior processes. Besides, we subjectively identify the critical variables from BN graph, and these variables become the input variables for BN. Finally, we evaluated the performance among CART and BN models.
In the original CART model, tree depth was five, and six rules were generated. Nevertheless, the CART model with dimension reduction could not generate the tree and any rule, while the CART model with feature selection found all input variables as critical variables. By using the same input variables as the original CART model did, the results of using CART model with feature selection and original CART model were the same. As for BN, only the TAN (Tree Augmented Naive Bayes) structure in all models could generate BN graph. Hence, we computed the probabilities of customer recommendation while consumer satisfaction is given. In model evaluation, the performances of BN models are better than those of CART models, and the best model is BN model with feature selection. In the end, we suggested managerial implications for each model.

目錄

誌謝 I
摘要 II
Abstract III
圖目錄 VII
表目錄 VIII
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 3
第三節 研究流程 4
第二章 文獻回顧 5
第一節 產業觀光 5
第二節 觀光工廠 8
第三節 口碑傳播 10
一、口碑傳播定義 10
二、口碑傳播與推薦他人之關係 12
第四節 資料探勘 13
一、資料探勘 13
二、分類與迴歸樹 16
三、貝氏網路 17
四、維度縮減與特徵選取 19
第三章 研究方法 21
第一節 研究工具與步驟 21
第二節 資料來源 21
第三節 CART模型分析 25
一、CART預測模型建置 25
二、維度縮減之CART 26
三、特徵選取之CART 27
第四節 貝氏網路模型分析 28
一、貝氏網路模型建置 28
二、篩檢變數之貝氏網路 28
三、維度縮減之貝氏網路 28
四、特徵選取之貝氏網路 29
第五節 模型評估 29
第四章 研究分析 30
第一節 CART結果 30
一、原始模型之CART結果 30
二、維度縮減之CART結果 34
三、特徵選取之CART結果 35
第二節 貝氏網路結果 35
一、原始模型之貝氏網路結果 35
二、篩檢變數之貝氏網路結果 36
三、維度縮減之貝氏網路結果 39
四、特徵選取之貝氏網路結果 42
第三節 各模型比較與模型評估 42
第五章 結論 46
第一節 CART分析之結論與建議 46
第二節 貝氏網路分析之結論與建議 47
參考文獻 50
一、中文文獻 50
二、英文文獻 51
三、網路資源 58


圖目錄
圖1.1 研究流程 4
圖2.1 知識發現流程 14
圖2.2 DAG圖形 18
圖4.1 原始模型之CART決策樹圖 31
圖4.3 維度縮減之CART決策樹圖 34
圖4.4 原始模型之貝氏網路圖 (Markov Blanket) 35
圖4.5 原始模型之貝氏網路圖 (TAN) 35
圖4.6 篩檢變數之貝氏網路圖 36
圖4.7 維度縮減之貝氏網路圖 40
圖4.8 模型評估 44


表目錄
表2.1 產業觀光相關定義 6
表2.2 觀光工廠相關定義 9
表2.3 口碑傳播相關定義 10
表2.4 資料探勘功能與方法 14
表3.1 白蘭氏健康博物館問卷變數代碼對照表 22
表3.2 人口統計變數代碼對照表 23
表3.3 人口變數統計表 24
表3.4 訓練-測試正確率 25
表3.5 主成份分析解說總變異量 26
表3.6 主成份分析轉軸後的成份矩陣 27
表4.1 原始模型之CART預測重要變數表 30
表4.2 原始模型之CART規則整理 32
表4.3 原始模型之CART預測正確率 (一) 33
表4.4 原始模型之CART預測正確率 (二) 33
表4.5 原始模型之CART效能評估 33
表4.6 維度縮減之CART 預測正確率 34
表4.7 篩檢變數之貝氏網路變數變數權重表 37
表4.8 篩檢變數之貝氏網路變數H條件機率 37
表4.9 篩檢變數之貝氏網路變數D對於變數H之條件機率 37
表4.10 篩檢變數之貝氏網路變數E對於變數D及變數H之條件機率 37
表4.11 篩檢變數之貝氏網路變數H對於變數D及變數E之條件機率 39
表4.12 維度縮減之貝氏網路變數H條件機率 40
表4.13 維度縮減之貝氏網路變數A對於變數H之條件機率 40
表4.14 維度縮減之貝氏網路變數H對於變數A之條件機率 41
表4.15 各模型結果整理 (CART) 42
表4.16 各模型結果比較 (貝氏網路) 43

一、中文文獻

交通部觀光局 (1992),台灣地區觀光遊憩系統開發計畫,台北:交通部觀光局。
李君如 (2007),邁向觀光工廠之發展策略,服務創新與企業家精神-觀光工廠研討會論文集,164-172。
李君如與陳俞伶 (2009),觀光吸引力、服務品質、知覺價值、顧客 滿意度及忠誠度關係之研究-以白蘭氏觀光工廠為例,顧客滿意學刊,5 (1),93-120
李君如 (2012),白蘭氏健康博物館遊客參觀品質、滿意度與參觀效益之模式建構與驗證,品質學報,19(6),541-564。
林震岩 (2006),多變量分析:SPSS的操作與應用,台北:智勝文化。
紀孟宜與王俊明 (2012),影響銀髮族購買戶外用品口碑傳播因素量表之編製,南開學報,9(2),49-55。
陳世杰與詹玉艷 (2012),觀光工廠特色商品開發研究,商業設計學報,16,131-149。
陳雅君 (2005),閒置工業區導入產業觀光可行性研究,國立政治大學地政學系私立中國地政研究所碩士論文。
陳順宇 (2005),多變量分析,台北:華泰書局。
須田寬 (2001),產業觀光,東京:交通新聞社。
曾宇良與王建興,2011,結合鄉村造鎮計畫地方產業共創產業觀光成效之研究–以日本宮崎縣綾町為例,華岡地理學報,27,53–64。
曾宇良與曾慈慧 (2005),日本新型態造鎮計畫「產業觀光」對台灣休閒農業與永續觀光發展之啟示,農推文彙,50,201-218。
張璠、張吉宏與朱琦文 (2001),體驗經濟時代來臨對工業區發展之影響,經濟情勢暨評論季刊,6(4),154-169。
經濟部工業局 (2000),彰濱工業區產業觀光整體發展規劃,台北:經濟部工業局。
楊正寬 (2001),觀光行政與法規,台北:揚智文化。
經濟部工業局 (2003),工廠兼營觀光服務作業要點,經工字第○九二○四六○五五八○號令訂定,台北:經濟部工業局。
經濟部工業局 (2013b),地方型群聚產業發展計畫:工廠觀光化產業輔導申請輔導作業手冊,台北:經濟部工業局。
鄭妃君與陳瑞龍 (2012),餐飲業服務品質、口碑傳播與再購意願之相關性研究,運動休閒餐旅研究,7(4),63 -81。
廖述賢與溫志皓 (2009),資料採礦與商業智慧,台北:雙葉書廊。
蔡長清與高淑娟 (2011),觀光工廠遊客之涉入程度、態度、主觀規範、知覺行為控制與旅遊意願之相關研究-以高雄橋頭糖廠為例,商業現代化學刊,6(2),255-274。
蔡家嫻 (2012),產業觀光工廠服務流程與顧客滿意度關係之研究,國立彰化師範大學企業管理學系國際企業經營管理碩士學位班碩士論文。
謝邦昌、鄭宇庭與蘇志雄 (2011),資料採礦與商業智慧,台北:碁峰資訊。

二、英文文獻

Arndt, J. (1967), Role of product-related conversations in the diffusion of a new product, Journal of Marketing Research, 4(1), 291-295.
Bae Y. and Chang H. (2012), Adoption of smart TVs: a Bayesian network approach, Industrial Management and Data Systems, 112(6), 891-910.
Bansal, H. S. and Voyer, P. A. (2000), Word-of-mouth processes within a Services purchase decision context, Journal of Service Research, 3(2), 166-177.
Berry, M. J. and Linoff, G. S. (1997), Data Mining Techniques: for Marketing, Sales, and Customer Support, John Wiley and Sons, Inc, New York.
Bigne, J. E., Sanchez, M. I., and Sanchez, J. (2001), Tourism image, evaluation variables and after purchase behavior: inter-relationship, Tourism Management, 22(6), 607-616.
Bone, P. F. (1995), Word-of-mouth effects on short-term and long-term product judgments, Journal of Business Research, 32(3), 213-223.
Bouissou, M., Martin, F., and Ourghanlian, A. (1999), Assessment of a safety-critical system including software: a Bayesian belief network for evidence sources, Annual Reliability and Maintainability Symposium, 142-150.
Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984), Classification and Regression Trees, Wadsworth, Belmont.
Brown, T. J., Barry, T. E., Dacin, P. A, and Gunst R. F. (2005), Spreading the word: investigating antecedents of consumers’ positive word-of-mouth intentions and behaviors in a retailing context, Journal of the Academy of Marketing Science, 33(2), 123-138.
Bruyn, A. D. and Lilien, G. L. (2008), A multi-stage model of word-of mouth influence through viral marketing, International Journal of Research in Marketing, 25(3), 151-163.
Byrd, E.T. (2007), Stakeholders in sustainable tourism and their role: applying stakeholder theory to sustainable development, Tourism Review, 62(2), 6-13.
Chon, K. S. (1991), The role of destination image in tourism: a review and discussion, The Tourist Review, 45(2), 2-9.
Dash, M. and Liu, H. (1997), Feature selection for classification, Intelligent Data Analysis, 1(3), 131–156.
Davidow, M. (2003), Have you heard the word? The effect of word of mouth on perceived justice, satisfaction and repurchase intentions following complaint handling, Journal of Consumer Satisfaction, Dissatisfaction and Complaining Behavior, 16(1), 67-80.
Dick, A. S. and Basu K. (1994), Customer loyalty: toward an integrated conceptual framework, Journal of the Academy of Marketing Science, 22(2), 99-113.
Duda, R. O., Hart, P. E., and Stork, D. G. (2012), Pattern Classification, John Wiley and Sons, Inc, New York.
Dunteman, G. H. (1994), Principal component analysis, In: M. S. Lewis-Beck (Eds.), Factor Analysis and Related Techniques, Sage, Sara Miller McCune, CA, 157-245.
Edwards, J. A. and Liurdes, J. C. (1996), Mines and quarries: industrial heritage tourism, Annals of Tourism Research, 23(2), 341-363.
Fakeye, P.C. and Crompton J.L. (1991), Image differences between prospective, first-time, and repeat visitors to the lower Rio Grande Valley, Journal of Travel Research, 30(2), 10-16.
Fayyad, U., Piatetsky-Shapiro, G., and Smyth, P. (1996), From data mining to knowledge discovery in databases, AI Magazine, 17(3), 37-54.
Feng, J. and Papatla, P. (2011), Advertising: stimulant or suppressant of online word of mouth?, Journal of Interactive Marketing, 25(2), 75-84.
Frawley, W. J., Piatetsky-Shapiro, G., and Matheus, C. J. (1992), Knowledge discovery databases: an overview, AI Magazine, 13(3), 57-70.
Franklin, D., Overholser, L., and McHale, E. (2011), Cultural Heritage Tourism: Best Practices and Key Concepts for Regional Initiatives, American Folklore Society.
Gelb, B. D. and Sundaram, S. (2002), Adapting to “word of mouse”, Business Horizon, 45(4), 21-25.
Gorsuch, R. L. (1988), Exploratory factor analysis, In: J. Nesselroade and R. B. Cattell (Eds.), Handbook of Multivariate Experimental Psychology, 231-258.
Grossman, R. L. and Poor, H. V. (1996), Optimization driven data mining and credit scoring, In Computational Intelligence for Financial Engineering, 1996., Proceedings of the IEEE/IAFE 1996 Conference, 104-110.
Guyon, I. and Elisseeff, A. (2003), An introduction to variable and feature selection, Journal of Machine Learning Research, 3, 1157-1182.
Han, J. and Kamber, M. (2006), Data Mining: Concepts and Techniques, 2nd Edition, Morgan Kaufmann.
Harrison-Walker, L. J. (2001), The measurement of word-of-mouth communication and an investigation of service quality and customer commitment as potential antecedents, Journal of Service Research, 4(1), 60-75.
Heckerman, D. and Wellman, M. (1995), Bayesian networks, Communications of the ACM, 38(3), 27-30.
Heckerman, D. (1998), A tutorial on learning with Bayesian networks, NATO ASI series. Series D, Behavioural and Social Sciences, 89, 301-354.
Hennig-Thurau, T., Gwinner, K. P., and Gremler, D. D. (2002), Understanding relationship marketing outcomes an integration of relational benefits and relationship quality, Journal of Service Research, 4(3), 230-247.
Herr, P. M., Kardes, F. R., and Kim, J. (1991), Effect of word-of-mouth and product-attribute information on persuasion: an accessibility-diagnostic perspective, Journal of Consumer Research, 17(4), 454-462.
Hotelling, H. (1933), Analysis of a complex of statistical variables into principal components, Journal of Educational Psychology, 24(7), 498-520.
IBM Corporation (2012), IBM SPSS Modeler 15 User's Guide, IBM Corporation.
Kim, M. K., Park, M. C., and Jeong, D. H. (2004), The effects of customer satisfaction and switching barrier on customer loyalty in Korean mobile telecommunication services, Telecommunications Policy, 28(2), 145-159.
Klösgen, W. and Żytkow, J. M. (1996), Knowledge discovery in databases terminology, In: U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Ulthurusamy (Eds.), Advances in Knowledge Discovery and Data Mining, MIT Press, Cambridge, MA, 573-592.
Koch, R. (1999), The 80/20 Principle: The Secret of Achieving More with Less, Doubleday, New York.
Kuhnert, P. M., Do, K. A., and McClure, R. (2000), Combining non-parametric models with logistic regression: an application to motor vehicle injury data, Computational Statistics and Data Analysis, 34(3), 371-386.
Larose, D. T. (2006), Data Mining Methods and Models, John Wiley and Sons, Inc, New York.
Leisen, B. (2001), Image segmentation: the case of a tourism destination, Journal of Service Marketing, 15(1), 49-66.
Lewicki, P. and Hill, T. (2006), Statistics: Methods and Applications, StatSoft, Inc, Tulsa.
Lin, S.Y., Wei, J.T., Weng, C.C., and Wu, H.H. (2011), A case study of using classification and regression tree and LRFM model in a pediatric dental clinic, International Proceedings of Economic Development and Research–Innovation, Management and Service, 14, 131-135.
Mansfield, Y. (1992), “Industrial landscape” as positive settings for tourism development in declining industrial cities – the case of Haifa, Israel, GeoJournal, 28(4), 457-463.
Marcon, A., Preuilh, P., and Ksouri, S. (2000), Tourisme de découverte économique and visites d'entreprises: bilan, perspectives et préconisations pour un développement harmonieux et durable, Conseil national du tourisme, Paris.
Marney, J. (1995), Selling in tongues, Marketing Magazine, 100(38), 14.
Morgan, N.A. and Rego, L. L. (2006), The value of different customer satisfaction and loyalty metrics in predicting business performance, Marketing Science, 25(5), 426-439.
Naisbitt, J. (1994), Global Paradox: the Bigger the World Economy, the More Powerful its Smallest Players, William Morrow and Co, New York.
Nielsen, N. C. (2012), A review of “industrial tourism: opportunities for city and enterprise”, Tourism Geographies: An International Journal of Tourism Space, Place and Environment, 14(3), 532-534
Otgaar, A. (2012), Towards a common agenda for the development of industrial tourism, Tourism Management Perspectives, 4, 86-91.
Palmatier, R. W., Dant, R. P., Grewal, D., and Evans, K. R. (2006), Factors influencing the effectiveness of relationship marketing: a meta-analysis, Journal of Marketing, 70(4), 136-153.
Pearl, J. (1988), Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, Morgan Kaufmann.
Pearson, K. (1901), On lines and planes of closest fit to systems of points in space, Philosophical Magazine, 2(6), 559–572.
Phung, S. L., Bouzerdoum, A., Chai, D., and Kuczborski, W. (2003), A color-based approach to automatic face detection, Processing of the 3rd IEEE International Symposium, 531-534.
Poon, W. C. and Low, K. L. T. (2005), Are travellers satisfied with Malaysian hotels? International Journal of Contemporary Hospitality Management, 17(3), 217-227.
Prentice, R. C. (1993), Tourism and Heritage Attractions, Routledge, London.
Quinlan, J. R. (1986), Induction of decision trees, Machine Learning, 1(1), 81-106.
Reynolds, K. E. and Arnold, M. J. (2000), Customer loyalty to the salesperson and the store: examining relationship customers in an upscale retail context, Journal of Personal Selling and Sales Management, 20(2), 89-98.
Richins, M. L. (1983), Negative word-of-mouth by dissatisfied consumers: a pilot study, Journal of Marketing, 47(1), 68-78.
Richins, M. L. (1987), A multivariate analysis of responses to dissatisfaction, Journal of the Academy of Marketing Science, 15(3), 24-31.
Richins, M. L. and Root-Shaffer, T. (1988), The role of involvement and opinion leadership in consumer word-of-mouth: an implicit model made explicit, Advances in Consumer Research, 15(1), 32-36.
Roald, D. (2004), Charlie and the Chocolate Factory, Puffin Books, New York.
Rosen, E. (2002), The Anatomy of Buzz: How to Create Word-of-Mouth Marketing, Crown Business.
Rudd, M. A. and Davis, J. A. (1998), Industrial heritage tourism at the Bingham Canyon cooper mine, Journal of Travel Research, 36(3), 85-89.
Rugh, S. S. (2006), Branding Utah: industrial tourism in the postwar American west, The Western Historical Quarterly, 37(4), 445-472
Shabbir, H., Palihawadana, D., and Thwaites, D. (2007), Determining the antecedents and consequences of donor-perceived relationship quality - a dimensional qualitative research approach, Psychology and Marketing, 24(3), 271-293.
Sheth, J. N., Mittal, B., and Newman, B. I. (1999), Customer Behavior: Consumer Behavior and Beyond, Harcourt Brace, New York.
Söderlund , M. (2002), Customer familiarity and its effects on satisfaction and behavioral intentions, Psychology and Marketing, 19(10), 861-879.
Sorensen, E. H., Miller, K. L., and Ooi, C. K. (2000), The decision tree approach to stock selection, The Journal of Portfolio Management, 27(1), 42-52.
Stephenson, T. A. (2000), An Introduction to Bayesian Network Theory and Usage, Idiap Research Report 00-03.
Sundaram, D. S., Mitra, K., and Webster, C. (1998), Word-of-mouth communications: a motivational analysis, Advances in Consumer Research, 25(1), 527-531.
Swan, J. E. and Oliver, R. L. (1989), Postpurchase communications by consumers, Journal of Retailing, 65(4), 516-533.
Swarbrooke, J. and Page, S. J. (2012), Development and Management of Visitor Attractions, Routledge, London.
Vázquez-Casielles, R., Suárez-Álvarez, L., and del Río-Lanza, A. (2013), The word of mouth dynamic: how positive (and negative) WOM drives purchase probability: an analysis of interpersonal and non-interpersonal factors, Journal of Advertising Research, 53(1), 43-60.
Westbrook, R. A. (1987), Product/consumption-based affective responses and postpurchase processes, Journal of Marketing Research, 24(3), 258-270.
Wirtz, J. and Chew, P. (2002), The effects of incentives, deal proneness, satisfaction and tie strength on word-of-mouth behaviour, International Journal of Service Industry Management, 13(2), 141-162.
Wu, S. and Guo, J. (2011), A data mining analysis of the Parkinson’s disease, iBusiness, 3(1), 71-75.
Xie, P. F. (2006), Developing industrial heritage tourism: a case of the proposed jeep museum in Toledo, Ohio, Tourism Management, 27(6), 1321-1330.

三、網路資源

行政院主計總處 (2013),歷年各季國內生產毛額依行業分 (民國102年2月22日更新),2013年3月3日,http://www.dgbas.gov.tw/ct.asp?xItem=14616&;CtNode=3566&;mp=1。
經濟部工業局 (2008a),觀光工廠輔導做法大躍進—評鑑機制啟動, 2012年10月16日,http://www.moea.gov.tw/Mns/populace/news/News.aspx?kind=1&;menu_id=40&;news_id=13172。
經濟部工業局 (2008b),觀光工廠輔導做法大躍進—評鑑機制啟動, 2012年10月16日, http://www.moea.gov.tw/Mns/populace/news/News.aspx?kind=1&;menu_id=40&;news_id=12751。
經濟部工業局 (2013a),102年觀光工廠輔導啟動計畫說明會台中開場, 2013年4月28日,http://www.moea.gov.tw/Mns/populace/news/News.aspx?kind=1&;menu_id=40&;news_id=29860。
觀光工廠自在遊 (2012),101年度優良觀光工廠入選名單與頒獎典禮活動訊息公佈,2013年4月28日,http://www.taiwanplace21.org/news/20121017.html。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top