1.國民健康署乳癌防治文章(2013) ‧ 取自http://www.hpa.gov.tw/BHPNet/Web/healthtopic/TopicArticle.aspx?No=201312230001&parentid=200712250033
2.林震岩(2012)‧多變量分析:spss的操作與應用‧台北:智勝文化。
3.陳景祥(2012)‧R軟體:應用統計方法‧台北:東華書局。
4.羅綸謙, 蔣依吾(2010)‧臨床望舌彩色圖解。
5.廖偉志(2014碩士論文) ‧使用二階段虛擬最大概似估計法預測乳癌分期之探究‧國立彰化師範大學統計資訊研究所。6.林逸捷(2014碩士論文) ‧根據舌象資料利用多維度分群作乳癌分期‧國立彰化師範大學數學所。7.Anderberg, M.R. (1973). Cluster Analysis for Applications. Academic Press.
8.Borg, I., Groenen, P. (1997). Modern Multidimensional Scaling, Theory and Applications. Springer-Verlag, New York.
9.Cox, T.F., Cox, M.A.A., (1994). Multidimensional Scaling. Chapmanand Hall, London.
10.Gilks, W., Richardson, S., & Spiegelhalter, D. (1995). Markov Chain Monte Carlo in practice. London, UK: Chapman and Hall.
11.Huang, Z.( 1997a). Clustering large data sets with mixed numeric and categorical values. Proceedings of the First Pacific Asia Knowledge Discovery and Data Mining Conference, Singapore: World Scientific, pp. 21–34.
12.Huang, Z.( 1997b). A fast clustering algorithm to cluster very large categorical data sets in data mining. Proceedings of the SIGMOD Workshop on Research Issues on Data Mining and Knowledge Discovery, Dept. of Computer Science, The University of British Columbia, Canada, pp. 1–8.
13.Huang, Z. (1998). Extensions to the k-means algorithm for clustering large data sets with categorical values. Data Mining and Knowledge Discovery 2, pp.283-304.
14.Kruskal, J.B.,(1964). Nonmetric multidimensional scaling: A numerical method.Psychometrika 29,pp. 115–129.
15.Kaufman, L. and Rousseeuw, P.J. 1990. Finding Groups in Data—An Introduction to Cluster Analysis. Wiley.
16.Li, Z., Yuan, J., Yang, H., & Zhang, K (2008). K-mean Algorithm with a Distance Based on the Characteristic of Differences. In Wireless Communications, Networking and Mobile Computing, 2008. WiCOM'08. 4th International Conference on (pp. 1-4). IEEE.
17.Lo, L. C., Chen, Y. F., Chen, W. J., Cheng, T. L., Chiang, J. Y. (2012). The study on the agreement between automatic tongue diagnosis system and traditional chinese medicine practitioners. Evidence-Based Complementary and Alternative Medicine,2012.
18.Lo, L. C., Cheng, T. L., Chiang, J. Y., Damdinsuren, N. (2013). Breast Cancer Index:A Perspective on Tongue Diagnosis in Traditional Chinese Medicine. Journal of Traditional and Complementary Medicine, Vo1. 3, No. 3, pp. 194-203.
19.Moldovanu, S., Moraru, L. (2010). Mass detection and classification in breast ultrasound image using K-means clustering algorithm. In Electrical and Electronics Engineering (ISEEE), 2010 3rd International Symposium on (pp. 197-200). IEEE.
20.Roman Rouzier, Charles M. Perou, W. Fraser Symmans, et al. (2005). Breast cancer molecular subtypes respond differently to preoperative chemotherapy.Clinical Cancer Research, 2005;11,pp. 5678-5685.
21.Shabbar Naqvi, Jonathan M. Garibaldi.(2011). complexities involved in the analysis of Fourier Transform Infrared Spectroscopy of breast cancer data with clustering algorithms.In Computer Science and Electronic Engineering Conference (CEEC), 2011 3rd (pp. 80-85). IEEE.
22.Selim, S.Z. and Ismail, M.A. (1984). k-Means-type algorithms: A generalized convergence theorem and characterization of local optimality. IEEE Transactions on Pattern Analysis and Machine Intelligence 6,pp.81–87.
23.Tibshirani, R. (2001).Estimating the Number of Clusters Via the Gap Statistic.
24.Zhong, W., Altun, G., Harrison, R., Tai, P. C., Pan, Y. (2005). Improved K-Means Clustering Algorithm for Exploring Local Protein Sequence Motifs Representing Common Structural Property. NanoBioscience, IEEE Transactions on, VOL. 4, NO. 3,pp.255-265.