毛曉明、劉志民 (2005) 。氧化應激在糖尿病糖代謝中的作用。江蘇醫藥。
毛瀅鈞 (2013)。芭樂葉萃取物抑制 α-amylase 及α-glucosidase 及抗糖化活性之探討。國立嘉義大學食品科學碩士論文。王識豪 (2010) 。抗糖化快速篩選步驟之建立與花生膜抗糖化活性成分之分離純化鑑定。國立嘉義大學食品科學博士論文。石雪萍、姚惠源、張衛明 (2008) 。苦瓜籽油的研究現狀及開發前景。江南大學食品學院中國糧油學報。
行政院農業委員會,Council of Agriculture, Executive Yuan, R.O.C.(Taiwan) (2017),106年農業災情報告。
行政院農業委員會高雄區農業改良場,Kaohsiung District Agricultural Research and Extension Station (2007),苦瓜簡易設施生產。
吳啟豪 (2010)。天然多酚抑制高度醣化終產物生成及抗糖毒性物質誘 導發炎及氧化壓力之研究。國立中興大學食品暨應用生物科技學系所碩博士論文。呂岳霖 (2006) 。山苦瓜之生理活性探討-抗氧化、抗菌、細胞毒性與 抑制Semicarbazide-SensitiveAmineOxidase活性。臺北醫學大學 生藥學研究所碩士論文。邱思魁 (2009)。酚類物質:從化學至生物學。國立台灣海洋大學食品科學系食品風味學62-72。
徐澤昌 (2017)。以蛋白質體學分析苦瓜籽油對小鼠白色脂肪之作用。 香港中文大學中醫學碩士論文。
陳俊光 (2016)。糖化終產物與代謝症候群。康聯預防醫學立達診所。
陳煥文 (2017)。糖尿病飲食與治療:以正確知識、吃對食物、用對烹調方法,輕鬆控糖,遠離糖尿病。晨星出版社。
黃祥益 (2007)。苦瓜栽培種類簡介。行政院農業委員會高雄區農業改良所。
劉又崧、米井嘉一 (2013)。抗糖化生活術。晨星出版社。
鄭宇軒 (2011) 。牛心柿未熟果汁酸水解液調控血糖及抑制糖化活性之評估。國立嘉義大學食品科學碩士論文。韓立強、楊國宇、王艷玲、郭爽 (2006) 。肌肽對蛋白氧化和糖化修飾的作用研究。河南農業大學牧醫工程學院。
Abbas, G., Al-Harrasi, A. S., & Hussain, H. (2017). Chapter 9 - α-Glucosidase Enzyme Inhibitors From Natural Products A2 - Brahmachari, Goutam. In Discovery and Development of Antidiabetic Agents from Natural Products, 251-269.
Acosta-Estrada, B. A., Gutiérrez-Uribe, J. A., & Serna-Saldívar, S. O. (2014). Bound phenolics in foods, a review. Food Chemistry, 152, 46-55.
Ademiluyi, A. O., Oboh, G., Aragbaiye, F. P., Oyeleye, S. I., & Ogunsuyi, O. B. (2015). Antioxidant properties and in vitro α-amylase and α-glucosidase inhibitory properties of phenolics constituents from different varieties of Corchorus spp. Journal of Taibah University Medical Sciences, 10(3), 278-287.
Ahad, A., Ahsan, H., Mujeeb, M., & Siddiqui, W. A. (2015). Gallic acid ameliorates renal functions by inhibiting the activation of p38 MAPK in experimentally induced type 2 diabetic rats and cultured rat proximal tubular epithelial cells. Chemico-Biological Interactions, 240, 292-303.
Ahmad, H., Khan, I., & Wahid, A. (2012). Antiglycation and antioxidation properties of juglans regia and calendula officinalis: possible role in reducing diabetic complications and slowing down ageing. Journal of Traditional Chinese Medicine, 32(3), 411-414.
Ahmad, S., Akhter, F., Shahab, U., Rafi, Z., Khan, M. S., Nabi, R., Moinuddin. (2017). Do all roads lead to the Rome? The glycation perspective! Seminars in Cancer Biology.
Ahmad, Z., Zamhuri, K.F., Yaacob, A., Siong, C.H., Selvarajah, M., Ismail, A., Nazrul Hakim, M., (2012). In vitro anti-diabetic activities and chemical analysis of polypeptide-k and oil isolated from seeds of Momordica charantia (bitter gourd). Molecules 17, 9631–9640.
Ahmed, A., Shamsi, A., Khan, M. S., Husain, F. M., & Bano, B. (2018). Methylglyoxal induced glycation and aggregation of human serum albumin: Biochemical and biophysical approach. International Journal of Biological Macromolecules, 113, 269-276.
Amalan, V., Vijayakumar, N., Indumathi, D., & Ramakrishnan, A. (2016). Antidiabetic and antihyperlipidemic activity of p-coumaric acid in diabetic rats, role of pancreatic GLUT 2: In vivo approach. Biomedicine & Pharmacotherapy, 84, 230-236.
Ansari, N. A., Moinuddin, Alam, K., & Ali, A. (2009). Preferential recognition of Amadori-rich lysine residues by serum antibodies in diabetes mellitus: Role of protein glycation in the disease process. Human Immunology, 70(6), 417-424.
Bahorun, T., Luximon-Ramma, A., Crozier, A., Aruoma, O. I. (2004). Total phenol, flavonoid, proanthocyanidin and vitamin C levels and antioxidant activities of Mauritian vegetables. Journal of the Science of Food and Agriculture, 84, 1553-1561.
Baker, J. R., Zyzak, D. V., Thorpe, S. R., Baynes, J. W. (1994). Chemistry of the fructosamine assay: D-glucosone is the product of oxidation of Amadori compounds. Clinical Chemistry, 40, 1950-1955.
Beidokhti, M. N., & Jäger, A. K. (2017). Review of antidiabetic fruits, vegetables, beverages, oils and spices commonly consumed in the diet. Journal of Ethnopharmacology, 201, 26-41.
Belguith-Hadriche, O., Bouaziz, M., Jamoussi, K., Simmonds, M. S. J., El Feki, A., & Makni-Ayedi, F. (2013). Comparative study on hypocholesterolemic and antioxidant activities of various extracts of fenugreek seeds. Food Chemistry, 138(2), 1448-1453.
Braca, A., Siciliano, T., D’Arrigo, M., Germano, M.P., (2008). Chemical composition and antimicrobial activity of Momordica charantia seed essential oil. Fitoterapia 79, 123–125.
Chen, G.-C., Su, H.-M., Lin, Y.-S., Tsou, P.-Y., Chyuan, J.-H., & Chao, P.-M. (2016). A conjugated fatty acid present at high levels in bitter melon seed favorably affects lipid metabolism in hepatocytes by increasing NAD+/NADH ratio and activating PPARα, AMPK and SIRT1 signaling pathway. The Journal of Nutritional Biochemistry, 33, 28-35.
Chen, J., Tian, R., Qiu, M., Lu, L., Zheng, Y., & Zhang, Z. (2008). Trinorcucurbitane and cucurbitane triterpenoids from the roots of Momordica charantia. Phytochemistry, 69(4), 1043-1048.
Christian, K. R., & Jackson, J. C. (2009). Changes in total phenolic and monomeric anthocyanin composition and antioxidant activity of three varieties of sorrel (Hibiscus sabdariffa) during maturity. Journal of Food Composition and Analysis, 22(7), 663-667.
Dandawate, P. R., Subramaniam, D., Padhye, S. B., & Anant, S. (2016). Bitter melon: a panacea for inflammation and cancer. Chinese Journal of Natural Medicines, 14(2), 81-100.
De Melo, M. L. S., Narain, N., & Bora, P. S. (2000). Characterisation of some nutritional constituents of melon (Cucumis melo hybrid AF-522) seeds. Food Chemistry, 68(4), 411-414.
Defaei, M., Taheri-Kafrani, A., Miroliaei, M., & Yaghmaei, P. Improvement of stability and reusability of α-amylase immobilized on naringin functionalized magnetic nanoparticles: A robust nanobiocatalyst. International Journal of Biological Macromolecules.
Derakhshan, Z., Ferrante, M., Tadi, M., Ansari, F., Heydari, A., Hosseini, M. S., Sadrabad, E. K. (2018). Antioxidant activity and total phenolic content of ethanolic extract of pomegranate peels, juice and seeds. Food and Chemical Toxicology, 114, 108-111.
Deshmukh, N. S. (2016). Safety assessment of McB-E60 (extract of a Momordica sp.): Subchronic toxicity study in rats. Toxicology Reports, 3, 481-489.
Duraiswamy, A., Shanmugasundaram, D., Sasikumar, C. S., Cherian, S. M., & Cherian, K. M. (2016). Development of an antidiabetic formulation (ADJ6) and its inhibitory activity against α-amylase and α-glucosidase. Journal of Traditional and Complementary Medicine, 6(3), 204-208.
Durante, M., Montefusco, A., Marrese, P. P., Soccio, M., Pastore, D., Piro, G., Lenucci, M. S. (2017). Seeds of pomegranate, tomato and grapes: An underestimated source of natural bioactive molecules and antioxidants from agri-food by-products. Journal of Food Composition and Analysis, 63, 65-72.
E.D. Schleicher, E. Wagner, A.G. Nerlich (1997). Increased accumulation of the glycoxidation product N(epsilon)-(carboxymethyl)lysine in human tissues in diabetes and aging. J. Clin. Invest., 99, 457-468.
Fang, E. F., & Ng, T. B. (2016). Chapter 28 - Bitter Gourd (Momordica charantia) Oils A2 - Preedy, Victor R. In Essential Oils in Food Preservation, Flavor and Safety, 253-257
Fang, E. F., Zhang, C. Z. Y., Wong, J. H., Shen, J. Y., Li, C. H., & Ng, T. B. (2012). The MAP30 protein from bitter gourd (Momordica charantia) seeds promotes apoptosis in liver cancer cells in vitro and in vivo. Cancer Letters, 324(1), 66-74.
Fernandes, M. C., Ferro, M. D., Paulino, A. F. C., Chaves, H. T., Evtuguin, D. V., & Xavier, A. M. R. B. (2018). Comparative study on hydrolysis and bioethanol production from cardoon and rockrose pretreated by dilute acid hydrolysis. Industrial Crops and Products, 111, 633-641.
Figueiredo-González, M., Grosso, C., Valentão, P., & Andrade, P. B. (2016). α-Glucosidase and α-amylase inhibitors from Myrcia spp.: a stronger alternative to acarbose? Journal of Pharmaceutical and Biomedical Analysis, 118, 322-327.
Figueroa, J. G., Borrás-Linares, I., Lozano-Sánchez, J., & Segura-Carretero, A. (2018). Comprehensive characterization of phenolic and other polar compounds in the seed and seed coat of avocado by HPLC-DAD-ESI-QTOF-MS. Food Research International, 105, 752-763.
Fontana Pereira, D., Cazarolli, L. H., Lavado, C., Mengatto, V., Figueiredo, M. S. R. B., Guedes, A., Silva, F. R. M. B. (2011). Effects of flavonoids on α-glucosidase activity: Potential targets for glucose homeostasis. Nutrition, 27(11), 1161-1167.
Freedman, B. I., Wuerth, J.-P., Cartwright, K., Bain, R. P., Dippe, S., Hershon, K., Spinowitz, B. S. (1999). Design and Baseline Characteristics for the Aminoguanidine Clinical Trial in Overt Type 2 Diabetic Nephropathy (ACTION II). Controlled Clinical Trials, 20(5), 493-510.
Garud, M. S., & Kulkarni, Y. A. (2018). Gallic acid attenuates type I diabetic nephropathy in rats. Chemico-Biological Interactions, 282, 69-76.
Giada, M. d. L. R. (2013). Food Phenolic Compounds: Main Classes, Sources and Their Antioxidant Power. In J. A. Morales-González (Ed.), Oxidative Stress and Chronic Degenerative Diseases - A Role for Antioxidants (pp. Ch. 04). Rijeka: InTech.
Grossmann, M.E., Mizuno, N.K., Dammen, M.L., Schuster, T., Ray, A., Cleary, M.P., (2009). Eleostearic acid inhibits breast cancer proliferation by means of an oxidation-dependent mechanism. Cancer Prev. Res. 2, 879–886.
Ibrahim, S., Al-Ahdal, A., Khedr, A., & Mohamed, G. (2017). Antioxidant α-amylase inhibitors flavonoids from Iris germanica rhizomes. Revista Brasileira de Farmacognosia, 27(2), 170-174.
Ingawale, A. S., Sadiq, M. B., Nguyen, L. T., & Ngan, T. B. (2018). Optimization of extraction conditions and assessment of antioxidant, α-glucosidase inhibitory and antimicrobial activities of Xanthium strumarium L. fruits. Biocatalysis and Agricultural Biotechnology, 14, 40-47.
Jabir, N. R., Ahmad, S., & Tabrez, S. (2018). An insight on the association of glycation with hepatocellular carcinoma. Seminars in Cancer Biology, 49, 56-63.
J.D. Furber (2006). Extracellular glycation crosslinks: prospects for removal. Rejuvenation Res., 9, 274-278.
Jin, L., Piao, Z. H., Sun, S., Liu, B., Ryu, Y., Choi, S. Y., Jeong, M. H. (2017). Gallic acid attenuates pulmonary fibrosis in a mouse model of transverse aortic contraction-induced heart failure. Vascular Pharmacology, 99, 74-82.
Joglekar, M. M., Bavkar, L. N., Sistla, S., & Arvindekar, A. U. (2017). Effective inhibition of protein glycation by combinatorial usage of limonene and aminoguanidine through differential and synergistic mechanisms. International Journal of Biological Macromolecules, 99, 563-569.
Jung, H. A., Jung, Y. J., Yoon, N. Y., Jeong, D. M., Bae, H. J., Kim, D.-W., Choi, J. S. (2008). Inhibitory effects of Nelumbo nucifera leaves on rat lens aldose reductase, advanced glycation endproducts formation, and oxidative stress. Food and Chemical Toxicology, 46(12), 3818-3826.
J.X. Jiang, L.W. Zhu, W.M. Zhang, R.C. Sun., (2007). Characterization of galactomannan gum from fenugreek (Trigonella foenum-graecum) seeds and its rheological properties. International Journal of Polymer Materials 56, 1145-1154.
Kaur, P., Singh, S. K., Garg, V., Gulati, M., & Vaidya, Y. (2015). Optimization of spray drying process for formulation of solid dispersion containing polypeptide-k powder through quality by design approach. Powder Technology, 284, 1-11.
Kavitha, M., Sultan, N. A. M., & Swamy, M. J. (2009). Fluorescence studies on the interaction of hydrophobic ligands with Momordica charantia (bitter gourd) seed lectin. Journal of Photochemistry and Photobiology B: Biology, 94(1), 59-64.
Kawser Hossain, M., Morsy, A., Han, J., Yin, Y., Kim, K., Saha, S., Cho, S.-G. (2016). Molecular Mechanisms of the Anti-Obesity and Anti-Diabetic Properties of Flavonoids (Vol. 17).
Keller, A. C., Ma, J., Kavalier, A., He, K., Brillantes, A.-M. B., & Kennelly, E. J. (2011). Saponins from the traditional medicinal plant Momordica charantia stimulate insulin secretion in vitro. Phytomedicine, 19(1), 32-37.
Kenny, O., Smyth, T. J., Hewage, C. M., & Brunton, N. P. (2013). Antioxidant properties and quantitative UPLC-MS analysis of phenolic compounds from extracts of fenugreek (Trigonella foenum-graecum) seeds and bitter melon (Momordica charantia) fruit. Food Chemistry, 141(4), 4295-4302.
Khanna, P., (2005). Oil from Momordica charantia L., its method of preparation and uses, U.S. Patent, ed R. Saleh, F. Torgils, M.A. Øyvind., (2010). Flavone C-glycosides from seeds of fenugreek, Trigonella foenum-graecum L. Journal of Agriculture and Food Chemistry 58, 7211-7217.
Khan, M. I., Rath, S., Adhami, V. M., & Mukhtar, H. (2017). Hypoxia driven glycation: Mechanisms and therapeutic opportunities. Seminars in Cancer Biology.
Khole, S., Chatterjee, S., Variyar, P., Sharma, A., Devasagayam, T. P. A., & Ghaskadbi, S. (2014). Bioactive constituents of germinated fenugreek seeds with strong antioxidant potential. Journal of Functional Foods, 6, 270-279.
Lebovitz, H. E. (1997). ALPHA-GLUCOSIDASE INHIBITORS. Endocrinology and Metabolism Clinics of North America, 26(3), 539-551.
Lemańska, K., Szymusiak, H., Tyrakowska, B., Zieliński, R., Soffers, A. E. M. F., & Rietjens, I. M. C. M. (2001). The influence of pH on antioxidant properties and the mechanism of antioxidant action of hydroxyflavones. Free Radical Biology and Medicine, 31(7), 869-881.
Li, B. B., Smith, B., & Hossain, M. M. (2006). Extraction of phenolics from citrus peels: I. Solvent extraction method. Separation and Purification Technology, 48(2), 182-188.
Li, D., Sun-Waterhouse, D., Wang, Y., Qiao, X., Chen, Y., & Li, F. (2018). Interactions of Some Common Flavonoid Antioxidants. In Reference Module in Food Science: Elsevier.
Liu, J., Wang, C. N., Wang, Z. Z., Zhang, C., Lu, S., Liu J. B. (2011). The antioxidant and free-radical scavenging activities of extract and fractions from corn silk (Zea mays L.) and related flavone glycosides. Food Chemistry, 126, 261-269.
Li, M., Pernell, C., & Ferruzzi, M. G. (2018). Complexation with phenolic acids affect rheological properties and digestibility of potato starch and maize amylopectin. Food Hydrocolloids, 77, 843-852.
Li, T., Liu, J., Zhang, X., Ji, G. (2007). Antidiabetic activity of lipophilic (-)-epigallocatechin-3-gallate derivative under its role of α-glucosidase inhibition. Biomedicine and Pharmacotherapy, 61, 91-96.
Liu, S., Ai, Z., Qu, F., Chen, Y., & Ni, D. (2017). Effect of steeping temperature on antioxidant and inhibitory activities of green tea extracts against α-amylase, α-glucosidase and intestinal glucose uptake. Food Chemistry, 234, 168-173.
Liu, Y., Kakani, R., & Nair, M. G. (2012). Compounds in functional food fenugreek spice exhibit anti-inflammatory and antioxidant activities. Food Chemistry, 131(4), 1187-1192.
Lou, S.-N., Lin, Y.-S., Hsu, Y.-S., Chiu, E. M., & Ho, C.-T. (2014). Soluble and insoluble phenolic compounds and antioxidant activity of immature calamondin affected by solvents and heat treatment. Food Chemistry, 161, 246-253.
Lung, M.Y., Tsai, J.C., Huang, P.C. (2010). Antioxidant properties of edible basidiomycete Phellinus igniarius in submerged cultures. Journal of Food Science 75, 18-24.
Ma, X., Wu, H., Liu, L., Yao, Q., Wang, S., Zhan, R., Zhou, Y. (2011). Polyphenolic compounds and antioxidant properties in mango fruits. Scientia Horticulturae, 129(1), 102-107.
Madhava Naidu, M., Shyamala, B. N., Pura Naik, J., Sulochanamma, G., & Srinivas, P. (2011). Chemical composition and antioxidant activity of the husk and endosperm of fenugreek seeds. LWT - Food Science and Technology, 44(2), 451-456.
Maher, P. (2012). Methylglyoxal, advanced glycation end products and autism: Is there a connection? Medical Hypotheses, 78(4), 548-552.
Mallek-Ayadi, S., Bahloul, N., & Kechaou, N. (2018). Chemical composition and bioactive compounds of Cucumis melo L. seeds: Potential source for new trends of plant oils. Process Safety and Environmental Protection, 113, 68-77.
Masuda, T., Akiyama, J., Fujimoto, A., Yamauchi, S., Maekawa, T., & Sone, Y. (2010). Antioxidation reaction mechanism studies of phenolic lignans, identification of antioxidation products of secoisolariciresinol from lipid oxidation. Food Chemistry, 123(2), M. Brownlee, H. Vlassara, A. Kooney, P. Ulrich, A. Cerami (1986). Aminoguanidine prevents diabetes-induced arterial wall protein cross-linking. Science, 232, 1629-1632.442-450.
Mizutani, K., Ikeda, K., & Yamori, Y. (2000). Resveratrol Inhibits AGEs-Induced Proliferation and Collagen Synthesis Activity in Vascular Smooth Muscle Cells from Stroke-Prone Spontaneously Hypertensive Rats. Biochemical and Biophysical Research Communications, 274(1), 61-67.
Montoro, P., Braca, A., Pizza, C., & De Tommasi, N. (2005). Structure–antioxidant activity relationships of flavonoids isolated from different plant species. Food Chemistry, 92(2), 349-355.
Moura, M. H. C., Cunha, M. G., Alezandro, M. R., & Genovese, M. I. (2018). Phenolic-rich jaboticaba (Plinia jaboticaba (Vell.) Berg) extracts prevent high-fat-sucrose diet-induced obesity in C57BL/6 mice. Food Research International, 107, 48-60.
Nakasu, P. Y. S., Ienczak, L. J., Costa, A. C., & Rabelo, S. C. (2016). Acid post-hydrolysis of xylooligosaccharides from hydrothermal pretreatment for pentose ethanol production. Fuel, 185, 73-84.
Nam, M.-H., Son, W.-r., Yang, S.-Y., Lee, Y.-S., & Lee, K.-W. (2017). Chebulic acid inhibits advanced glycation end products-mediated vascular dysfunction by suppressing ROS via the ERK/Nrf2 pathway. Journal of Functional Foods, 36, 150-161.
Navarro-González, I., García-Valverde, V., García-Alonso, J., & Periago, M. J. (2011). Chemical profile, functional and antioxidant properties of tomato peel fiber. Food Research International, 44(5), 1528-1535.
Navarro, M., & Morales, F. J. (2017). Effect of hydroxytyrosol and olive leaf extract on 1,2-dicarbonyl compounds, hydroxymethylfurfural and advanced glycation endproducts in a biscuit model. Food Chemistry, 217(Supplement C), 602-609.
Nawirska-Olszańska, A., Kita, A., Biesiada, A., Sokół-Łętowska, A., & Kucharska, A. Z. (2013). Characteristics of antioxidant activity and composition of pumpkin seed oils in 12 cultivars. Food Chemistry, 139(1), 155-161.
Ng, T. B., Wong, C. M., Li, W. W., & Yeung, H. W. (1986). Insulin-like molecules in Momordica charantia seeds. Journal of Ethnopharmacology, 15(1), 107-117.
N. Rabbani, S.S. Alam, S. Riaz, J.R. Larkin, M.W. Akhtar, T. Shafi, P.J. Thornalley, H.J. Bilo, R.O. Gans, G.J. Navis, S.J. Bakker (2010). High-dose thiamine therapy for patients with type 2 diabetes and microalbuminuria: a randomised, double-blind placebo-controlled pilot study. Diabetologia, 52, 208-212.
N. Verzijl, J. DeGroot, E. Oldehinkel, R.A. Bank, S.R. Thorpe, J.W. Baynes, M.T. Bayliss, J.W.Bijlsma, F.P. Lafeber, J.M. Tekoppele (2000). Age-related accumulation of Maillard reaction products in human articular cartilage collagen. Biochem. J., 350, 81-387.
Oboh, G., Ogunsuyi, O. B., Ogunbadejo, M. D., & Adefegha, S. A. (2016). Influence of gallic acid on α-amylase and α-glucosidase inhibitory properties of acarbose. Journal of Food and Drug Analysis, 24(3), 627-634.
Patel, S., & Rauf, A. (2017). Edible seeds from Cucurbitaceae family as potential functional foods: Immense promises, few concerns. Biomedicine & Pharmacotherapy, 91(Supplement C), 330-337.
Peng, X., Cheng, K. W., Ma, j., Chen, B., Ho, C. T., Lo, C., Chen, F., Wang, M. (2008). Cinnamon bark proanthocyanidin as reactive carbonyl scavengers to prevent the formation of advanced glycation endproducts. Journal of Agricultural and Food Chemistry 56, 1907-1911.
Petrie, J. R., Guzik, T. J., & Touyz, R. M. (2017). Diabetes, Hypertension, and Cardiovascular Disease: Clinical Insights and Vascular Mechanisms. Canadian Journal of Cardiology.
Peyroux, J., & Sternberg, M. (2006). Advanced glycation endproducts (AGEs): pharmacological inhibition in diabetes. Pathologie Biologie, 54(7), 405-419.
Poovitha, S., Siva Sai, M., & Parani, M. (2017). Protein extract from the fruit pulp of Momordica dioica shows anti-diabetic, anti-lipidemic and antioxidant activity in diabetic rats. Journal of Functional Foods, 33, 181-187.
Prabu, K., Rajasekaran, A., Bharathi, D., & Ramalakshmi, S. Anti-oxidant activity, phytochemical screening and HPLC profile of rare endemic Cordia diffusa. Journal of King Saud University - Science.
Prieto-Hontoria P.L , P. Pérez-Matute, M. Fernández-Galilea, A. Barber, J.A. Martínez, M.J. Moreno-Aliaga., (2009). Lipoic acid prevents body weight gain induced by a high fat diet in rats: effects on intestinal sugar transport. Physiol. Biochem 65, 43-50.
Priyanto, A. D., Doerksen, R. J., Chang, C.-I., Sung, W.-C., Widjanarko, S. B., Kusnadi, J., Hsu, J.-L. (2015). Screening, discovery, and characterization of angiotensin-I converting enzyme inhibitory peptides derived from proteolytic hydrolysate of bitter melon seed proteins. Journal of Proteomics, 128, 424-435.
P. Salahuddin, G. Rabbani, R.H. Khan (2014). The role of advanced glycation end products in various types of neurodegenerative disease: a therapeutic approach. Cell. Mol. Biol. Lett., 19, 407-437.
Rahbar, S., & Figarola, J. L. (2003). Novel inhibitors of advanced glycation endproducts. Archives of Biochemistry and Biophysics, 419(1), 63-79.
Raina, K., Kumar, D., & Agarwal, R. (2016). Promise of bitter melon (Momordica charantia) bioactives in cancer prevention and therapy. Seminars in Cancer Biology, 40-41, 116-129.
Ranilla, L.G., Kwon, Y. I., Apostolidis, E., Shetty, K. (2010). Phenolic compounds, antioxidant activity and in vitro inhibitory potential against key enzymes relevant for hyperglycemia and hypertension of commonly used medicinal plants, herbs and spices in Latin America Bioresource Technology, 101, 4676-4689.
Rakh, M. S., Khedkar, A. N., Aghav, N. N., & Chaudhari, S. R. (2012). Antiallergic and analgesic activity of Momordica dioica Roxb. Willd fruit seed. Asian Pacific Journal of Tropical Biomedicine, 2(1, Supplement), S192-S196.
Ramkissoon, J. S., Mahomoodally, M. F., Ahmed, N., & Subratty, A. H. (2013). Antioxidant and anti–glycation activities correlates with phenolic composition of tropical medicinal herbs. Asian Pacific Journal of Tropical Medicine, 6(7), 561-569.
Ramkissoon, J. S., Mahomoodally, M. F., Subratty, A. H., & Ahmed, N. (2016). Inhibition of glucose- and fructose-mediated protein glycation by infusions and ethanolic extracts of ten culinary herbs and spices. Asian Pacific Journal of Tropical Biomedicine, 6(6), 492-500.
Rao, P. S., & Mohan, G. K. (2017). In vitro alpha-amylase inhibition and in vivo antioxidant potential of Momordica dioica seeds in streptozotocin-induced oxidative stress in diabetic rats. Saudi Journal of Biological Sciences, 24(6), 1262-1267.
Reddy, V. P., & Beyaz, A. (2006). Inhibitors of the Maillard reaction and AGE breakers as therapeutics for multiple diseases. Drug Discovery Today, 11(13), 646-654.
Renaudin, C., Roze, S., Valentine, W. J., & Palmer, A. J. (2004). PDB15 A COST-EFFECTIVENESS ANALYSIS OF SWITCHING TYPE-2 DIABETES PATIENTS FROM IMMEDIATE-RELEASE METFORMIN (GLUCOPHAGE®) TO A NEW EXTENDEDRELEASE FORMULATION OF METFORMIN (GLUCOPHAGE®XR). Value in Health, 7(6), 739.
R.G. Khalifah, Y. Chen, J.J. Wassenberg (2005). Post-Amadori AGE inhibition as a therapeutic target for diabetic complications: a rational approach to second-generation Amadorin design. Ann. N. Y. Acad. Sci., 1043, 793-806.
Roidoung, S., Dolan, K. D., & Siddiq, M. (2016). Gallic acid as a protective antioxidant against anthocyanin degradation and color loss in vitamin-C fortified cranberry juice. Food Chemistry, 210, 422-427.
Ross, K. A., Beta, T., & Arntfield, S. D. (2009). A comparative study on the phenolic acids identified and quantified in dry beans using HPLC as affected by different extraction and hydrolysis methods. Food Chemistry, 113(1), 336-344.
Rupachandra, S., & Sarada, D. V. L. (2013). Anticancer activity of methanol extract of the seeds of Borreria hispida and Momordica dioica. Journal of Pharmacy Research, 6(5), 565-568.
Sadowska-Bartosz, I., & Bartosz, G. (2016). Effect of glycation inhibitors on aging and age-related diseases. Mechanisms of Ageing and Development, 160, 1-18.
Saha, S.S., Ghosh, M., (2012). Antioxidant and anti-inflammatory effect of conjugated linolenic acid isomers against streptozotocin-induced diabetes. Br. J. Nutr. 108, 974–983.
Sajithlal, G. B., Chithra, P., & Chandrakasan, G. (1998). Effect of curcumin on the advanced glycation and cross-linking of collagen in diabetic rats. Biochemical Pharmacology, 56(12), 1607-1614.
Saleem, F., Sarkar, D., Ankolekar, C., & Shetty, K. (2017). Phenolic bioactives and associated antioxidant and anti-hyperglycemic functions of select species of Apiaceae family targeting for type 2 diabetes relevant nutraceuticals. Industrial Crops and Products, 107, 518-525.
Shen, Y., Xu, Z., & Sheng, Z. (2017). Ability of resveratrol to inhibit advanced glycation end product formation and carbohydrate-hydrolyzing enzyme activity, and to conjugate methylglyoxal. Food Chemistry, 216, 153-160.
Simm, A., Müller, B., Nass, N., Hofmann, B., Bushnaq, H., Silber, R.-E., & Bartling, B. (2015). Protein glycation — Between tissue aging and protection. Experimental Gerontology, 68, 71-75.
Sánchez-Moreno, C., A. Larrauri, J., & Saura-Calixto, F. (1999). Free radical scavenging capacity and inhibition of lipid oxidation of wines, grape juices and related polyphenolic constituents. Food Research International, 32(6), 407-412.
Spínola, V., Pinto, J., & Castilho, P. C. (2018). Hypoglycemic, anti-glycation and antioxidant in vitro properties of two Vaccinium species from Macaronesia: A relation to their phenolic composition. Journal of Functional Foods, 40, 595-605.
Srinivasan, P., Vijayakumar, S., Kothandaraman, S., & Palani, M. (2018). Anti-diabetic activity of quercetin extracted from Phyllanthus emblica L. fruit: In silico and in vivo approaches. Journal of Pharmaceutical Analysis, 8(2), 109-118.
Sultana, B., Anwar, F., & Przybylski, R. (2007). Antioxidant activity of phenolic components present in barks of Azadirachta indica, Terminalia arjuna, Acacia nilotica, and Eugenia jambolana Lam. trees. Food Chemistry, 104(3), 1106-1114.
Sundarram, A., & Murthy, T. P. K. (2014). ¦Á-Amylase Production and Applications: A Review. Journal of Applied & Environmental Microbiology, 2(4), 166-175.
Sytar, O., Hemmerich, I., Zivcak, M., Rauh, C., & Brestic, M. (2018). Comparative analysis of bioactive phenolic compounds composition from 26 medicinal plants. Saudi Journal of Biological Sciences, 25(4), 631-641.
Taghavi, F., Habibi-Rezaei, M., Amani, M., Saboury, A. A., & Moosavi-Movahedi, A. A. (2017). The status of glycation in protein aggregation. International Journal of Biological Macromolecules, 100, 67-74.
Taha, M., Shah, S. A. A., Afifi, M., Imran, S., Sultan, S., Rahim, F., & Khan, K. M. (2018). Synthesis, α-glucosidase inhibition and molecular docking study of coumarin based derivatives. Bioorganic Chemistry, 77, 586-592.
Tan, H.-F., & Gan, C.-Y. (2016). Polysaccharide with antioxidant, α-amylase inhibitory and ACE inhibitory activities from Momordica charantia. International Journal of Biological Macromolecules, 85, 487-496.
Thilagam, E., Parimaladevi, B., Kumarappan, C., & Chandra Mandal, S. (2013). α-Glucosidase and α-Amylase Inhibitory Activity of Senna surattensis. Journal of Acupuncture and Meridian Studies, 6(1), 24-30.
Trakoon-osot, W., Sotanaphun, U., Phanachet, P., Porasuphatana, S., Udomsubpayakul, U., & Komindr, S. (2013). Pilot study: Hypoglycemic and antiglycation activities of bitter melon (Momordica charantia L.) in type 2 diabetic patients. Journal of Pharmacy Research, 6(8), 859-864.
Van den Berg, R., Haenen, G. R. M. M., van den Berg, H., van der Vijgh, W., & Bast, A. (2000). The predictive value of the antioxidant capacity of structurally related flavonoids using the Trolox equivalent antioxidant capacity (TEAC) assay. Food Chemistry, 70(3), 391-395.
Villa, M., Parravano, M., Micheli, A., Gaddini, L., Matteucci, A., Mallozzi, C., Pricci, F. (2017). A quick, simple method for detecting circulating fluorescent advanced glycation end-products: Correlation with in vitro and in vivo non-enzymatic glycation. Metabolism, 71, 64-69.
Virdi, J., Sivakami, S., Shahani, S., Suthar, A. C., Banavalikar, M. M., & Biyani, M. K. (2003). Antihyperglycemic effects of three extracts from Momordica charantia. Journal of Ethnopharmacology, 88(1), 107-111.
Wang, S., Zheng, Y., Xiang, F., Li, S., & Yang, G. (2016). Antifungal activity of Momordica charantia seed extracts toward the pathogenic fungus Fusarium solani L. Journal of Food and Drug Analysis, 24(4), 881-887.
Wang, W., Liu, H., Wang, Z., Qi, J., Yuan, S., Zhang, W., Jia, A.-Q. (2016). Phytochemicals from Camellia nitidissima Chi inhibited the formation of advanced glycation end-products by scavenging methylglyoxal. Food Chemistry, 205, 204-211.
Wang, Y., Yang, Z., & Wei, X. (2010). Sugar compositions, α-glucosidase inhibitory and amylase inhibitory activities of polysaccharides from leaves and flowers of Camellia sinensis obtained by different extraction methods. International Journal of Biological Macromolecules, 47(4), 534-539.
Wautier, M.-P., Guillausseau, P.-J., & Wautier, J.-L. (2017). Activation of the receptor for advanced glycation end products and consequences on health. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 11(4), 305-309.
Wells-Knecht, K., Zyzak, D., Litchfield, J., Thorpe, S., Baynes, J. (1995). Mechanism of autoxidative glycosylation: identification of glyoxal and arabinose as intermediates in the autoxidative modification of proteins by glucose. Biochemistry 34, 3702-3709.
W.G. Taylor, M.S. Zaman, Z. Mir, P.S. Mir, S.N. Acharya, G.J. Mears, et al., (1997). Analysis of steroidal sapogenins from amber fenugreek (Trigonella foenum-graecum) by capillary gas chromatography and combined gas chromatography/mass spectrometry. Journal of Agriculture and Food Chemistry 45, 753-759.
W.K. Bolton, D.C. Cattran, M.E. Williams, S.G. Adler, G.B. Appel, K. Cartwright, P.G. Foiles, B.I. Freedman, P. Raskin, R.E. Ratner, B.S. Spinowitz, F.C. Whittier, J.P. Wuerth (2004). Randomized trial of an inhibitor of formation of advanced glycation end products in diabetic nephropathy. Am. J. Nephrol., 24, 32-40.
Wresdiyati, T., Sa'Diah, S., Winarto, A. D. I., & Febriyani, V. (2015). Alpha-Glucosidase Inhibition and Hypoglycemic Activities of Sweitenia mahagoni Seed Extract. HAYATI Journal of Biosciences, 22(2), 73-78.
Wu, J. W., Hsieh, C. L., Wang, H. Y., Chen, H. Y. (2009). Inhibitory effects of guava (Psidium guajava L.) leaf extracts and its active compounds on the glycation process of protein of protein. Food Chemistry, 113,78-84.
Xanthopoulou, M. N., Nomikos, T., Fragopoulou, E., & Antonopoulou, S. (2009). Antioxidant and lipoxygenase inhibitory activities of pumpkin seed extracts. Food Research International, 42(5), 641-646.
Yamada, H., Sasaki, T., Niwa, S., Oishi, T., Murata, M., Kawakami, T., & Aimoto, S. (2004). Intact glycation end products containing carboxymethyl-lysine and glyoxal lysine dimer obtained from synthetic collagen model peptide. Bioorganic & Medicinal Chemistry Letters, 14(22), 5677-5680.
Yamagishi, S.-i. (2011). Role of advanced glycation end products (AGEs) and receptor for AGEs (RAGE) in vascular damage in diabetes. Experimental Gerontology, 46(4), 217-224.
Yang, R., Wang, W.-X., Chen, H.-J., He, Z.-C., & Jia, A.-Q. (2018). The inhibition of advanced glycation end-products by five fractions and three main flavonoids from Camellia nitidissima Chi flowers. Journal of Food and Drug Analysis, 26(1), 252-259.
Yao, X., Zhu, L., Chen, Y., Tian, J., & Wang, Y. (2013). In vivo and in vitro antioxidant activity and α-glucosidase, α-amylase inhibitory effects of flavonoids from Cichorium glandulosum seeds. Food Chemistry, 139(1), 59-66.
Yasir, M., Sultana, B., Nigam, P. S., & Owusu-Apenten, R. (2016). Antioxidant and genoprotective activity of selected cucurbitaceae seed extracts and LC–ESIMS/MS identification of phenolic components. Food Chemistry, 199, 307-313.
Yeh, W.-J., Hsia, S.-M., Lee, W.-H., & Wu, C.-H. (2017). Polyphenols with antiglycation activity and mechanisms of action: A review of recent findings. Journal of Food and Drug Analysis, 25(1), 84-92.
Yılmaz, Z., Kalaz, E. B., Aydın, A. F., Olgaç, V., Doğru-Abbasoğlu, S., Uysal, M., & Koçak-Toker, N. (2018). The effect of resveratrol on glycation and oxidation products in plasma and liver of chronic methylglyoxal-treated rats. Pharmacological Reports, 70(3), 584-590.
Y.J. Chen, D.C. Chan, C.K. Chiang, C.C. Wang, T.H. Yang, K.C. Lan, S.C. Chao, K.S.Tsai, R.S. Yang, S.H. Liu (2015). Advanced glycation end-products induced VEGF production and inflammatory responses in human synoviocytes via RAGE-NF-κB pathway activation. J. Orthop. Res.
Yoon, S.-R., & Shim, S.-M. (2015). Inhibitory effect of polyphenols in Houttuynia cordata on advanced glycation end-products (AGEs) by trapping methylglyoxal. LWT - Food Science and Technology, 61(1), 158-163.
Yousuf, M. J., & Vellaichamy, E. (2015). Protective activity of gallic acid against glyoxal -induced renal fibrosis in experimental rats. Toxicology Reports, 2, 1246-1254.
Yu, J. S., Roh, H.-S., Lee, S., Jung, K., Baek, K.-H., & Kim, K. H. (2017). Antiproliferative effect of Momordica cochinchinensis seeds on human lung cancer cells and isolation of the major constituents. Revista Brasileira de Farmacognosia, 27(3), 329-333.
Yuan, X., Gu, X., & Tang, J. (2008). Purification and characterisation of a hypoglycemic peptide from Momordica Charantia L. Var. abbreviata Ser. Food Chemistry, 111(2), 415-420.
Yue, J., Xu, J., Cao, J., Zhang, X., & Zhao, Y. (2017). Cucurbitane triterpenoids from Momordica charantia L. and their inhibitory activity against α-glucosidase, α-amylase and protein tyrosine phosphatase 1B (PTP1B). Journal of Functional Foods, 37, 624-631.
Zhang, B.-w., Xing, Y., Wen, C., Yu, X.-x., Sun, W.-l., Xiu, Z.-l., & Dong, Y.-s. (2017). Pentacyclic triterpenes as α-glucosidase and α-amylase inhibitors: Structure-activity relationships and the synergism with acarbose. Bioorganic & Medicinal Chemistry Letters, 27(22), 5065-5070.
Zhang, L.-J., Liaw, C.-C., Hsiao, P.-C., Huang, H.-C., Lin, M.-J., Lin, Z.-H., Kuo, Y.-H. (2014). Cucurbitane-type glycosides from the fruits of Momordica charantia and their hypoglycaemic and cytotoxic activities. Journal of Functional Foods, 6, 564-574.
Zhang, Y., Pan, Z., Venkitasamy, C., Ma, H., & Li, Y. (2015). Umami taste amino acids produced by hydrolyzing extracted protein from tomato seed meal. LWT - Food Science and Technology, 62(2), 1154-1161.