跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/06 08:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鍾侑容
研究生(外文):Yu-Jung Chung
論文名稱:白玉苦瓜籽萃取物抑制醣類消化酵素與糖化反應能力之研究
論文名稱(外文):Studies on Saccharidases Inhibition and Anti-glycation Activities by Momordica charantia L. seed extracts
指導教授:黃健政黃健政引用關係
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:食品科學系研究所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:140
中文關鍵詞:白玉苦瓜籽機能性成分α-amylaseα-glucosidase抗糖化反應高等糖化終期產物
相關次數:
  • 被引用被引用:1
  • 點閱點閱:336
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究以白玉苦瓜 (Momordica charantia L.) 種子作為原料,測量其基本成分並利用不同濃度乙醇萃取進行萃取,分析酚類化合物含量與抗氧化能力,並且探討萃取物對醣類消化酵素α-amylase 及α-glucosidase活性的抑制能力;進一步透過 BSA-Glucose 及 BSA-Methylglyoxal (MGO) 系統模擬體內糖化反應,評估萃取物抑制糖化反應產物之作用情形。結果顯示,以 70% 乙醇萃取能夠得到最多總酚類化合物含量 (189.58 mg GAE/g extract) 及總類黃酮化合物含量 (10.28 mg Rutin/g extract),透過 HPLC 圖譜分析,其主要可測得 gallic acid 化合物。在抗氧化能力試驗中,以 70% 乙醇萃取物具有良好的總抗氧化能力 (115.52 mg Trolox/g extract) 與螯合亞鐵離子能力 (8.62 mg EDTA/g extract);70% 乙醇萃取物之抑制 α-amylase 及α-glucosidase 活性 IC50 分別為 457 ppm 及 107 ppm,比市售藥物 Acarbose (IC50 分別為 1380 ppm 及 367 ppm 有較佳抑制效果。以苦瓜籽乙醇萃取物進行體外模擬糖化試驗,在 BSA-Glucose 及 BSA- MGO 系統中,與 Aminoguanidine 標準品進行比較,水萃物和 70% 乙醇萃取物具有捕捉活性 ketoamine compounds 及α-dicarbonyl compounds 之能力,能夠有效延緩糖化的發生,達到抑制高等糖化終期產物的生成,其中又以 70% 乙醇萃取物之抑制效果較佳。
由 HPLC 圖譜分析苦瓜籽 70% 乙醇萃取物,發現其含有可水解單寧成分,進一步利用鹽酸進行不同時間酸水解後得到酸水解萃取物 (HAE 0、30、60、90 和 120),探討酸處理對於苦瓜籽 70% 乙醇萃取物之抗氧化能力、調控血糖關鍵酵素活性與糖化反應產物抑制情形。結果顯示,隨著酸水解時間的增加其總酚含量亦隨之增加,以 HAE 90 之組別含量最高 (260.31 mg GAE/g extract),當水解時間達 120 分鐘時含量下降,原因為酸水解程度已達到最大的利用率,超過酚類化合物所能負荷的程度,進一步在熱與酸的環境下,破壞產物的結構;透過 HPLC 圖譜進行分析,可分離出 gallic acid、protocatechuic acid、chlorogenic acid 及 p- coumaric acid 等成分。不同酸水解時間之水解物皆比未水解之 70% 乙醇萃取物具有良好抗氧化能力與酵素活性抑制的效果,各酸水解物之作用能力相當並以 HAE 90 之組別總抗氧化能力最高 (201.68 mg Trolox/g extract)。而 HAE 90組別之抑制 α-amylase 及α-glucosidase 活性最佳。將酸水解萃取物進行抗糖化活性分析,在 BSA-Glucose 及 BSA- MGO 系統中,並以 HAE 0 和 HAE 90 進行比較,隨著反應天數增加,能夠逐漸抑制還原糖、Schiff base 與 Amardori 產物之羰基或雙羰基作用,並且具有捕捉活性 α-dicarbonyl compounds 的能力,可達到最佳抑制高等糖化終期產物之生成。因此,可利用 80℃ 酸水解 90 分鐘,將聚合程度較高的原花青素裂解,並且保留原有的酚酸類物質,提供良好抗氧化與抗糖化作用能力。綜合上述,在試管模擬試驗中,證實苦瓜籽乙醇萃取物具有調控餐後血糖的能力,能夠延緩糖化反應的進行,達到預防保健的功效,期望將苦瓜籽應用於開發天然抗氧化劑與健康食品,以提升農業副產物之經濟價值與利用性。
In this study, the seeds of Momordica charantia L. were employed as raw materials, and were extracted by different concentrations of ethanol solution. The contents of polyphenolic compounds and antioxidant capacity in the extracts were determined and inhibitive activities of α-amylase and α-glucosidase were also analyzed. In addition, the inhibition of glycation in BSA-Glucose and BSA-Methylglyoxal (MGO) systems were subjected to investigation. The results showed that using the 70% ethanol extraction method was able to obtain the maximum of total phenolic compound content (189.58 mg GAE/g extract) and total flavonoid content (10.28 mg Rutin/g extract) in the different resulting ethanol extracts. By using HPLC analysis, the main measured compounds were gallic acid. According to the antioxidative capacity assay, the 70% ethanol extracts was good at total antioxidant capacity (115.52 mg Trolox/g extract) and Ferrous ion chelating ability (8.62 mg EDTA/g extract). Inhibitory abilities of α-amylase and α-glucosidase by the 70% ethanol extracts of IC50 were 457 ppm and 107 ppm respectively, which was better than Acarbose (IC50 were 1380 ppm and 367 ppm respectively). The water extracts and 70% ethanol extracts were subjected to the evaluation of in vitro glycation simulation. In BSA-Glucose and BSA-MGO systems, water extracts and 70% ethanol extracts had been observed to be capable of capturing ketoamine compounds and α-dicarbonyl compounds, so it could effectively retard the occurrence of glycation and inhibit advanced glycation end- products formation. The inhibitory effect of 70% ethanol extracts on glycation was superior to that of other ethanol solution.
Base on HPLC analysis, 70% ethanol extracts was evidently to be the existence of condensed tannin polymers. Further, utilized the hydrochloric acid to hydrolyze the 70% ethanol extracts with different hydration duration to obtain different hydrolysates (HAE 0, 30, 60, 90, and 120), accordingly, explored the acid treatment effects of 70% ethanol extracts on antioxidative capacity, saccharidase activity and glycation products inhibition. The results revealed that the contents of polyphenolic compound increased with the raising hydrolysis time, and HAE 90 provided the highest phenolic contents (260.31 mg GAE/g extract). When the hydrolysis time reached 120 minutes, the content decreased. Because the degree of acid hydrolysis reached the maximum. Further destroys the structure of the product under heat and acid. Gallic acid, protocatechuic acid, chlorogenic acid, and p-coumaric acid can be separated from the hydrochloric acid method by HPLC. Different hydrolysates had greater antioxidative capacity and digestive enzyme inhibitory effects than unhydrolyzed 70% ethanol extracts. Each hydrolysates provided the similar ability, including the total antioxidant capacity (201.68 mg Trolox/g extract). HAE 90 had the best inhibition of α-amylase and α-glucosidase activity. Therefore, The acid hydrolysis extract was analyzed for anti-glycation activity in the BSA-Glucose and BSA-MGO systems. And HAE 0 and HAE 90 were as the reaction days increase, the ability to gradually inhibit the carbonyl or dicarbonyl interaction of reducing sugars, Schiff bases and Amardori products. Moreover, this hydrolysate would also capture the α-dicarbonyl compounds, so it could effectively inhibit advanced glycation end-proucts formation. Therefore, condensed tannin can be decomposed with acid hydrolyzed at 80° C for 90 minutes in 70% ethanol extracts, and preserved the phenolic acids. In conclusion, it could be confirmed that the seed of bitter melon ethanol extracts can regulate the postprandial blood glucose levels and retard the in vitro glycation. The author expects bitter melon seeds not only could be used to develop natural antioxidants and healthy food, but to improve their economic value and utilization.
中文摘要--------------------------------------------- I
英文摘要-----------------------------------------------III
謝誌----------------------------------------------------V
目錄---------------------------------------------------VI
表目錄------------------------------------------------XII
圖目錄-----------------------------------------------XIII
附表目錄------------------------------------------------XV
附圖目錄-----------------------------------------------XVI
第一章 前言----------------------------------------------1
第二章 文獻回顧------------------------------------------4
一、糖尿病概述-------------------------------------------4
(一) 糖尿病定義------------------------------------------4
(二) 糖尿病分類------------------------------------------6
1. 第一型糖尿病 (Type 1 Diabetes Mellitus, T1DM) -------6
2. 第二型糖尿病 (Type 2 Diabetes Mellitus, T2DM) -------6
3. 妊娠性糖尿病 (Gestational Diabetes Mellitus, GDM) ---7
4. 其他特異型糖尿病 (Other specific type of diabetes) --8
(三) 糖尿病診斷------------------------------------------8
二、醣類消化酵素與人體血糖調控之關係----------------------10
(一) 關鍵酵素-------------------------------------------10
1. α-amylase -----------------------------------------10
2. α-glucosidase -------------------------------------11
(二) α-amylase & α-glucosidase inhibitors -------------11
1. 市售藥物--------------------------------------------12
2. 天然來源--------------------------------------------12
三、糖化反應 (Glycation) -------------------------------13
(一) 體內糖化反應---------------------------------------16
(二) 糖化反應機制 (Mechanism of glycation) -------------18
1. 起始期 (Initiation) - 初期產物----------------------18
2. 延長期 (Propagation) - 中間產物---------------------19
3. 終止期 (Termination) - 終期產物---------------------19
(三) 糖化反應引發疾病-----------------------------------20
(四) 高血糖與體內氧化作用之關係--------------------------22
(五) 高等糖化終期產物 (AGEs) 之致病機制------------------24
1. 蛋白質的交聯反應------------------------------------24
2. 細胞與細胞外間質 (Matrix) 之作用改變-----------------24
3. 低密度脂蛋白 (Low Density Lipoprotein)的過度糖化-----26
(六) 抗糖化作用機制-------------------------------------27
(七) AGEs抑制劑-----------------------------------------29
1. 合成藥物--------------------------------------------29
2. 天然來源--------------------------------------------30
四、苦瓜概述--------------------------------------------32
(一) 苦瓜簡介-------------------------------------------32
(二) 苦瓜的種類與分布-----------------------------------32
(三) 苦瓜傳統療效與加工產品------------------------------35
(四) 農業副產物-----------------------------------------38
五、苦瓜籽----------------------------------------------38
(一) 苦瓜籽之藥用性質與相關文獻--------------------------39
(二) 苦瓜籽之機能性成分與生理活性-------------------------44
1. 機能性成分 (Functional compounds) -------------------44
(1) 多酚類化合物(Polyphenols)---------------------------44
(2) 類黃酮(Flavonoids) --------------------------------47
2. 清除自由基及抗氧化能力--------------------------------49
3. 抗糖尿病之相關活性-----------------------------------49
4. 其他生理活性-----------------------------------------49
第三章、材料與方法--------------------------------------50
一、實驗流程架構圖--------------------------------------50
二、實驗材料--------------------------------------------52
(一) 樣品來源與製備-------------------------------------52
(二) 實驗藥品與耗材-------------------------------------53
(三) 儀器設備-------------------------------------------54
三、實驗方法--------------------------------------------55
(一) 樣品萃取液酸水解液之製備----------------------------55
1. 樣品萃取液製備---------------------------------------55
2. 萃取物酸水解液之製備----------------------------------55
3. 苦瓜籽萃取物酸水解液之製備----------------------------55
(二) 基本成分分析---------------------------------------56
1. 水活性測定-------------------------------------------56
2. 水分含量測定-----------------------------------------56
3. 粗蛋白含量測定---------------------------------------56
4. 粗脂肪含量測定---------------------------------------57
5. 粗纖維含量測定---------------------------------------57
6. 粗灰分含量測定---------------------------------------58
7. 碳水化合物含量測定-----------------------------------58
(三) 機能性成分分析-------------------------------------59
1. 總酚含量測定-----------------------------------------59
2. 類黃酮含量測定---------------------------------------59
3. 高效能液相層析 (HPLC) 分析---------------------------60
(四) 抗氧化能力分析-------------------------------------61
1. 總抗氧化能力 (Trolox equivalent antioxidant capacity
assay, TEAC) 測定-------------------------------------61
2. 清除 DPPH (1,1-diphenyl-2-picryl-hydrazyl) 自由基能
力測定------------------------------------------------61
3. 螯和亞鐵離子能力測定 (Ferrous ion chelating ability)-61
(五) 酵素活性測定---------------------------------------62
1. 抑制 α-澱粉酶 (α-amylase) 活性分析-------------------62
2. 抑制 α-葡萄糖苷酶 (α-glucosidase) 活性分析------------62
(六) 抑制糖化反應--------------------------------------63
1. 模擬糖化反應系統-------------------------------------63
2. 抑制初期產物 (ketoamine compound) 能力分析------------64
3. 抑制中期產物 (α-dicarbonyl compound) 能力分析---------64
4. 抑制糖化終期產物 (Advanced glycation end products,
AGEs) 能力分析---------------------------------------65
(七) 統計分析-------------------------------------------65
第四章、結果與討論--------------------------------------66
一、基本成分分析---------------------------------------66
二、不同萃取條件之比較-----------------------------------67
(一) 機能性成分分析-------------------------------------67
1. 總酚類含量-------------------------------------------67
2. 總類黃酮含量-----------------------------------------69
(二) 抗氧化活性評估-------------------------------------69
1. 總抗氧化能力 (TEAC)----------------------------------70
2. DPPH自由基清除能力-----------------------------------70
3. 螯合亞鐵離子能力分析----------------------------------71
(三) 不同萃取條件之萃取物其 HPLC 圖譜-------------------73
(四) 抑制酵素活性分析-----------------------------------75
1. α-amylase活性---------------------------------------75
2. α-glucosidase 活性----------------------------------77
三、不同條件酸水解苦瓜籽萃取物 (HAE) 之比較-------------79
(一) 酚類化合物含量變化---------------------------------79
(二) 總抗氧化能力分析-----------------------------------80
(三) 苦瓜籽酸水解萃取物之組成分分析-----------------------83
(四) 抑制酵素活性分析-----------------------------------85
1. α-amylase活性---------------------------------------85
2. α-glucosidase 活性----------------------------------87
四、模擬糖化系統反應,評估非酵素性褐變反應過程中,各期產物趨勢變化情形--------------------------------------------89
(一) BSA-Glucose system--------------------------------89
1. 初期產物 (ketoamine compound) -----------------------89
2. 中間產物 (α-dicarbonyl compound) --------------------93
3. 高等糖化終期產物 (advanced glycation endproducts) -97
(二) BSA-MGO system ----------------------------------101
1. 初期產物 (ketoamine compound) ----------------------101
2. 中間產物 (α-dicarbonyl compounds) ------------------105
3. 高等糖化終期產物 (advanced glycation endproducts) -108
(三) BSA- Glucose & BSA-MGO system--------------------111
(四) 苦瓜籽萃取物之抗糖化生成途徑------------------------111
第五章 結論-------------------------------------------113
第六章 參考文獻----------------------------------------115
毛曉明、劉志民 (2005) 。氧化應激在糖尿病糖代謝中的作用。江蘇醫藥。
毛瀅鈞 (2013)。芭樂葉萃取物抑制 α-amylase 及α-glucosidase 及抗糖化活性之探討。國立嘉義大學食品科學碩士論文。
王識豪 (2010) 。抗糖化快速篩選步驟之建立與花生膜抗糖化活性成分之分離純化鑑定。國立嘉義大學食品科學博士論文。
石雪萍、姚惠源、張衛明 (2008) 。苦瓜籽油的研究現狀及開發前景。江南大學食品學院中國糧油學報。
行政院農業委員會,Council of Agriculture, Executive Yuan, R.O.C.(Taiwan) (2017),106年農業災情報告。
行政院農業委員會高雄區農業改良場,Kaohsiung District Agricultural Research and Extension Station (2007),苦瓜簡易設施生產。
吳啟豪 (2010)。天然多酚抑制高度醣化終產物生成及抗糖毒性物質誘 導發炎及氧化壓力之研究。國立中興大學食品暨應用生物科技學系所碩博士論文。
呂岳霖 (2006) 。山苦瓜之生理活性探討-抗氧化、抗菌、細胞毒性與 抑制Semicarbazide-SensitiveAmineOxidase活性。臺北醫學大學 生藥學研究所碩士論文。
邱思魁 (2009)。酚類物質:從化學至生物學。國立台灣海洋大學食品科學系食品風味學62-72。
徐澤昌 (2017)。以蛋白質體學分析苦瓜籽油對小鼠白色脂肪之作用。 香港中文大學中醫學碩士論文。
陳俊光 (2016)。糖化終產物與代謝症候群。康聯預防醫學立達診所。
陳煥文 (2017)。糖尿病飲食與治療:以正確知識、吃對食物、用對烹調方法,輕鬆控糖,遠離糖尿病。晨星出版社。
黃祥益 (2007)。苦瓜栽培種類簡介。行政院農業委員會高雄區農業改良所。
劉又崧、米井嘉一 (2013)。抗糖化生活術。晨星出版社。
鄭宇軒 (2011) 。牛心柿未熟果汁酸水解液調控血糖及抑制糖化活性之評估。國立嘉義大學食品科學碩士論文。
韓立強、楊國宇、王艷玲、郭爽 (2006) 。肌肽對蛋白氧化和糖化修飾的作用研究。河南農業大學牧醫工程學院。
Abbas, G., Al-Harrasi, A. S., & Hussain, H. (2017). Chapter 9 - α-Glucosidase Enzyme Inhibitors From Natural Products A2 - Brahmachari, Goutam. In Discovery and Development of Antidiabetic Agents from Natural Products, 251-269.
Acosta-Estrada, B. A., Gutiérrez-Uribe, J. A., & Serna-Saldívar, S. O. (2014). Bound phenolics in foods, a review. Food Chemistry, 152, 46-55.
Ademiluyi, A. O., Oboh, G., Aragbaiye, F. P., Oyeleye, S. I., & Ogunsuyi, O. B. (2015). Antioxidant properties and in vitro α-amylase and α-glucosidase inhibitory properties of phenolics constituents from different varieties of Corchorus spp. Journal of Taibah University Medical Sciences, 10(3), 278-287.
Ahad, A., Ahsan, H., Mujeeb, M., & Siddiqui, W. A. (2015). Gallic acid ameliorates renal functions by inhibiting the activation of p38 MAPK in experimentally induced type 2 diabetic rats and cultured rat proximal tubular epithelial cells. Chemico-Biological Interactions, 240, 292-303.
Ahmad, H., Khan, I., & Wahid, A. (2012). Antiglycation and antioxidation properties of juglans regia and calendula officinalis: possible role in reducing diabetic complications and slowing down ageing. Journal of Traditional Chinese Medicine, 32(3), 411-414.
Ahmad, S., Akhter, F., Shahab, U., Rafi, Z., Khan, M. S., Nabi, R., Moinuddin. (2017). Do all roads lead to the Rome? The glycation perspective! Seminars in Cancer Biology.
Ahmad, Z., Zamhuri, K.F., Yaacob, A., Siong, C.H., Selvarajah, M., Ismail, A., Nazrul Hakim, M., (2012). In vitro anti-diabetic activities and chemical analysis of polypeptide-k and oil isolated from seeds of Momordica charantia (bitter gourd). Molecules 17, 9631–9640.
Ahmed, A., Shamsi, A., Khan, M. S., Husain, F. M., & Bano, B. (2018). Methylglyoxal induced glycation and aggregation of human serum albumin: Biochemical and biophysical approach. International Journal of Biological Macromolecules, 113, 269-276.
Amalan, V., Vijayakumar, N., Indumathi, D., & Ramakrishnan, A. (2016). Antidiabetic and antihyperlipidemic activity of p-coumaric acid in diabetic rats, role of pancreatic GLUT 2: In vivo approach. Biomedicine & Pharmacotherapy, 84, 230-236.
Ansari, N. A., Moinuddin, Alam, K., & Ali, A. (2009). Preferential recognition of Amadori-rich lysine residues by serum antibodies in diabetes mellitus: Role of protein glycation in the disease process. Human Immunology, 70(6), 417-424.
Bahorun, T., Luximon-Ramma, A., Crozier, A., Aruoma, O. I. (2004). Total phenol, flavonoid, proanthocyanidin and vitamin C levels and antioxidant activities of Mauritian vegetables. Journal of the Science of Food and Agriculture, 84, 1553-1561.
Baker, J. R., Zyzak, D. V., Thorpe, S. R., Baynes, J. W. (1994). Chemistry of the fructosamine assay: D-glucosone is the product of oxidation of Amadori compounds. Clinical Chemistry, 40, 1950-1955.
Beidokhti, M. N., & Jäger, A. K. (2017). Review of antidiabetic fruits, vegetables, beverages, oils and spices commonly consumed in the diet. Journal of Ethnopharmacology, 201, 26-41.
Belguith-Hadriche, O., Bouaziz, M., Jamoussi, K., Simmonds, M. S. J., El Feki, A., & Makni-Ayedi, F. (2013). Comparative study on hypocholesterolemic and antioxidant activities of various extracts of fenugreek seeds. Food Chemistry, 138(2), 1448-1453.
Braca, A., Siciliano, T., D’Arrigo, M., Germano, M.P., (2008). Chemical composition and antimicrobial activity of Momordica charantia seed essential oil. Fitoterapia 79, 123–125.
Chen, G.-C., Su, H.-M., Lin, Y.-S., Tsou, P.-Y., Chyuan, J.-H., & Chao, P.-M. (2016). A conjugated fatty acid present at high levels in bitter melon seed favorably affects lipid metabolism in hepatocytes by increasing NAD+/NADH ratio and activating PPARα, AMPK and SIRT1 signaling pathway. The Journal of Nutritional Biochemistry, 33, 28-35.
Chen, J., Tian, R., Qiu, M., Lu, L., Zheng, Y., & Zhang, Z. (2008). Trinorcucurbitane and cucurbitane triterpenoids from the roots of Momordica charantia. Phytochemistry, 69(4), 1043-1048.
Christian, K. R., & Jackson, J. C. (2009). Changes in total phenolic and monomeric anthocyanin composition and antioxidant activity of three varieties of sorrel (Hibiscus sabdariffa) during maturity. Journal of Food Composition and Analysis, 22(7), 663-667.
Dandawate, P. R., Subramaniam, D., Padhye, S. B., & Anant, S. (2016). Bitter melon: a panacea for inflammation and cancer. Chinese Journal of Natural Medicines, 14(2), 81-100.
De Melo, M. L. S., Narain, N., & Bora, P. S. (2000). Characterisation of some nutritional constituents of melon (Cucumis melo hybrid AF-522) seeds. Food Chemistry, 68(4), 411-414.
Defaei, M., Taheri-Kafrani, A., Miroliaei, M., & Yaghmaei, P. Improvement of stability and reusability of α-amylase immobilized on naringin functionalized magnetic nanoparticles: A robust nanobiocatalyst. International Journal of Biological Macromolecules.

Derakhshan, Z., Ferrante, M., Tadi, M., Ansari, F., Heydari, A., Hosseini, M. S., Sadrabad, E. K. (2018). Antioxidant activity and total phenolic content of ethanolic extract of pomegranate peels, juice and seeds. Food and Chemical Toxicology, 114, 108-111.
Deshmukh, N. S. (2016). Safety assessment of McB-E60 (extract of a Momordica sp.): Subchronic toxicity study in rats. Toxicology Reports, 3, 481-489.
Duraiswamy, A., Shanmugasundaram, D., Sasikumar, C. S., Cherian, S. M., & Cherian, K. M. (2016). Development of an antidiabetic formulation (ADJ6) and its inhibitory activity against α-amylase and α-glucosidase. Journal of Traditional and Complementary Medicine, 6(3), 204-208.
Durante, M., Montefusco, A., Marrese, P. P., Soccio, M., Pastore, D., Piro, G., Lenucci, M. S. (2017). Seeds of pomegranate, tomato and grapes: An underestimated source of natural bioactive molecules and antioxidants from agri-food by-products. Journal of Food Composition and Analysis, 63, 65-72.
E.D. Schleicher, E. Wagner, A.G. Nerlich (1997). Increased accumulation of the glycoxidation product N(epsilon)-(carboxymethyl)lysine in human tissues in diabetes and aging. J. Clin. Invest., 99, 457-468.
Fang, E. F., & Ng, T. B. (2016). Chapter 28 - Bitter Gourd (Momordica charantia) Oils A2 - Preedy, Victor R. In Essential Oils in Food Preservation, Flavor and Safety, 253-257
Fang, E. F., Zhang, C. Z. Y., Wong, J. H., Shen, J. Y., Li, C. H., & Ng, T. B. (2012). The MAP30 protein from bitter gourd (Momordica charantia) seeds promotes apoptosis in liver cancer cells in vitro and in vivo. Cancer Letters, 324(1), 66-74.
Fernandes, M. C., Ferro, M. D., Paulino, A. F. C., Chaves, H. T., Evtuguin, D. V., & Xavier, A. M. R. B. (2018). Comparative study on hydrolysis and bioethanol production from cardoon and rockrose pretreated by dilute acid hydrolysis. Industrial Crops and Products, 111, 633-641.
Figueiredo-González, M., Grosso, C., Valentão, P., & Andrade, P. B. (2016). α-Glucosidase and α-amylase inhibitors from Myrcia spp.: a stronger alternative to acarbose? Journal of Pharmaceutical and Biomedical Analysis, 118, 322-327.
Figueroa, J. G., Borrás-Linares, I., Lozano-Sánchez, J., & Segura-Carretero, A. (2018). Comprehensive characterization of phenolic and other polar compounds in the seed and seed coat of avocado by HPLC-DAD-ESI-QTOF-MS. Food Research International, 105, 752-763.
Fontana Pereira, D., Cazarolli, L. H., Lavado, C., Mengatto, V., Figueiredo, M. S. R. B., Guedes, A., Silva, F. R. M. B. (2011). Effects of flavonoids on α-glucosidase activity: Potential targets for glucose homeostasis. Nutrition, 27(11), 1161-1167.
Freedman, B. I., Wuerth, J.-P., Cartwright, K., Bain, R. P., Dippe, S., Hershon, K., Spinowitz, B. S. (1999). Design and Baseline Characteristics for the Aminoguanidine Clinical Trial in Overt Type 2 Diabetic Nephropathy (ACTION II). Controlled Clinical Trials, 20(5), 493-510.
Garud, M. S., & Kulkarni, Y. A. (2018). Gallic acid attenuates type I diabetic nephropathy in rats. Chemico-Biological Interactions, 282, 69-76.
Giada, M. d. L. R. (2013). Food Phenolic Compounds: Main Classes, Sources and Their Antioxidant Power. In J. A. Morales-González (Ed.), Oxidative Stress and Chronic Degenerative Diseases - A Role for Antioxidants (pp. Ch. 04). Rijeka: InTech.
Grossmann, M.E., Mizuno, N.K., Dammen, M.L., Schuster, T., Ray, A., Cleary, M.P., (2009). Eleostearic acid inhibits breast cancer proliferation by means of an oxidation-dependent mechanism. Cancer Prev. Res. 2, 879–886.
Ibrahim, S., Al-Ahdal, A., Khedr, A., & Mohamed, G. (2017). Antioxidant α-amylase inhibitors flavonoids from Iris germanica rhizomes. Revista Brasileira de Farmacognosia, 27(2), 170-174.
Ingawale, A. S., Sadiq, M. B., Nguyen, L. T., & Ngan, T. B. (2018). Optimization of extraction conditions and assessment of antioxidant, α-glucosidase inhibitory and antimicrobial activities of Xanthium strumarium L. fruits. Biocatalysis and Agricultural Biotechnology, 14, 40-47.
Jabir, N. R., Ahmad, S., & Tabrez, S. (2018). An insight on the association of glycation with hepatocellular carcinoma. Seminars in Cancer Biology, 49, 56-63.
J.D. Furber (2006). Extracellular glycation crosslinks: prospects for removal. Rejuvenation Res., 9, 274-278.
Jin, L., Piao, Z. H., Sun, S., Liu, B., Ryu, Y., Choi, S. Y., Jeong, M. H. (2017). Gallic acid attenuates pulmonary fibrosis in a mouse model of transverse aortic contraction-induced heart failure. Vascular Pharmacology, 99, 74-82.
Joglekar, M. M., Bavkar, L. N., Sistla, S., & Arvindekar, A. U. (2017). Effective inhibition of protein glycation by combinatorial usage of limonene and aminoguanidine through differential and synergistic mechanisms. International Journal of Biological Macromolecules, 99, 563-569.
Jung, H. A., Jung, Y. J., Yoon, N. Y., Jeong, D. M., Bae, H. J., Kim, D.-W., Choi, J. S. (2008). Inhibitory effects of Nelumbo nucifera leaves on rat lens aldose reductase, advanced glycation endproducts formation, and oxidative stress. Food and Chemical Toxicology, 46(12), 3818-3826.
J.X. Jiang, L.W. Zhu, W.M. Zhang, R.C. Sun., (2007). Characterization of galactomannan gum from fenugreek (Trigonella foenum-graecum) seeds and its rheological properties. International Journal of Polymer Materials 56, 1145-1154.
Kaur, P., Singh, S. K., Garg, V., Gulati, M., & Vaidya, Y. (2015). Optimization of spray drying process for formulation of solid dispersion containing polypeptide-k powder through quality by design approach. Powder Technology, 284, 1-11.
Kavitha, M., Sultan, N. A. M., & Swamy, M. J. (2009). Fluorescence studies on the interaction of hydrophobic ligands with Momordica charantia (bitter gourd) seed lectin. Journal of Photochemistry and Photobiology B: Biology, 94(1), 59-64.
Kawser Hossain, M., Morsy, A., Han, J., Yin, Y., Kim, K., Saha, S., Cho, S.-G. (2016). Molecular Mechanisms of the Anti-Obesity and Anti-Diabetic Properties of Flavonoids (Vol. 17).
Keller, A. C., Ma, J., Kavalier, A., He, K., Brillantes, A.-M. B., & Kennelly, E. J. (2011). Saponins from the traditional medicinal plant Momordica charantia stimulate insulin secretion in vitro. Phytomedicine, 19(1), 32-37.
Kenny, O., Smyth, T. J., Hewage, C. M., & Brunton, N. P. (2013). Antioxidant properties and quantitative UPLC-MS analysis of phenolic compounds from extracts of fenugreek (Trigonella foenum-graecum) seeds and bitter melon (Momordica charantia) fruit. Food Chemistry, 141(4), 4295-4302.
Khanna, P., (2005). Oil from Momordica charantia L., its method of preparation and uses, U.S. Patent, ed R. Saleh, F. Torgils, M.A. Øyvind., (2010). Flavone C-glycosides from seeds of fenugreek, Trigonella foenum-graecum L. Journal of Agriculture and Food Chemistry 58, 7211-7217.
Khan, M. I., Rath, S., Adhami, V. M., & Mukhtar, H. (2017). Hypoxia driven glycation: Mechanisms and therapeutic opportunities. Seminars in Cancer Biology.
Khole, S., Chatterjee, S., Variyar, P., Sharma, A., Devasagayam, T. P. A., & Ghaskadbi, S. (2014). Bioactive constituents of germinated fenugreek seeds with strong antioxidant potential. Journal of Functional Foods, 6, 270-279.
Lebovitz, H. E. (1997). ALPHA-GLUCOSIDASE INHIBITORS. Endocrinology and Metabolism Clinics of North America, 26(3), 539-551.
Lemańska, K., Szymusiak, H., Tyrakowska, B., Zieliński, R., Soffers, A. E. M. F., & Rietjens, I. M. C. M. (2001). The influence of pH on antioxidant properties and the mechanism of antioxidant action of hydroxyflavones. Free Radical Biology and Medicine, 31(7), 869-881.
Li, B. B., Smith, B., & Hossain, M. M. (2006). Extraction of phenolics from citrus peels: I. Solvent extraction method. Separation and Purification Technology, 48(2), 182-188.
Li, D., Sun-Waterhouse, D., Wang, Y., Qiao, X., Chen, Y., & Li, F. (2018). Interactions of Some Common Flavonoid Antioxidants. In Reference Module in Food Science: Elsevier.
Liu, J., Wang, C. N., Wang, Z. Z., Zhang, C., Lu, S., Liu J. B. (2011). The antioxidant and free-radical scavenging activities of extract and fractions from corn silk (Zea mays L.) and related flavone glycosides. Food Chemistry, 126, 261-269.
Li, M., Pernell, C., & Ferruzzi, M. G. (2018). Complexation with phenolic acids affect rheological properties and digestibility of potato starch and maize amylopectin. Food Hydrocolloids, 77, 843-852.
Li, T., Liu, J., Zhang, X., Ji, G. (2007). Antidiabetic activity of lipophilic (-)-epigallocatechin-3-gallate derivative under its role of α-glucosidase inhibition. Biomedicine and Pharmacotherapy, 61, 91-96.
Liu, S., Ai, Z., Qu, F., Chen, Y., & Ni, D. (2017). Effect of steeping temperature on antioxidant and inhibitory activities of green tea extracts against α-amylase, α-glucosidase and intestinal glucose uptake. Food Chemistry, 234, 168-173.
Liu, Y., Kakani, R., & Nair, M. G. (2012). Compounds in functional food fenugreek spice exhibit anti-inflammatory and antioxidant activities. Food Chemistry, 131(4), 1187-1192.
Lou, S.-N., Lin, Y.-S., Hsu, Y.-S., Chiu, E. M., & Ho, C.-T. (2014). Soluble and insoluble phenolic compounds and antioxidant activity of immature calamondin affected by solvents and heat treatment. Food Chemistry, 161, 246-253.
Lung, M.Y., Tsai, J.C., Huang, P.C. (2010). Antioxidant properties of edible basidiomycete Phellinus igniarius in submerged cultures. Journal of Food Science 75, 18-24.
Ma, X., Wu, H., Liu, L., Yao, Q., Wang, S., Zhan, R., Zhou, Y. (2011). Polyphenolic compounds and antioxidant properties in mango fruits. Scientia Horticulturae, 129(1), 102-107.
Madhava Naidu, M., Shyamala, B. N., Pura Naik, J., Sulochanamma, G., & Srinivas, P. (2011). Chemical composition and antioxidant activity of the husk and endosperm of fenugreek seeds. LWT - Food Science and Technology, 44(2), 451-456.
Maher, P. (2012). Methylglyoxal, advanced glycation end products and autism: Is there a connection? Medical Hypotheses, 78(4), 548-552.
Mallek-Ayadi, S., Bahloul, N., & Kechaou, N. (2018). Chemical composition and bioactive compounds of Cucumis melo L. seeds: Potential source for new trends of plant oils. Process Safety and Environmental Protection, 113, 68-77.
Masuda, T., Akiyama, J., Fujimoto, A., Yamauchi, S., Maekawa, T., & Sone, Y. (2010). Antioxidation reaction mechanism studies of phenolic lignans, identification of antioxidation products of secoisolariciresinol from lipid oxidation. Food Chemistry, 123(2), M. Brownlee, H. Vlassara, A. Kooney, P. Ulrich, A. Cerami (1986). Aminoguanidine prevents diabetes-induced arterial wall protein cross-linking. Science, 232, 1629-1632.442-450.
Mizutani, K., Ikeda, K., & Yamori, Y. (2000). Resveratrol Inhibits AGEs-Induced Proliferation and Collagen Synthesis Activity in Vascular Smooth Muscle Cells from Stroke-Prone Spontaneously Hypertensive Rats. Biochemical and Biophysical Research Communications, 274(1), 61-67.
Montoro, P., Braca, A., Pizza, C., & De Tommasi, N. (2005). Structure–antioxidant activity relationships of flavonoids isolated from different plant species. Food Chemistry, 92(2), 349-355.
Moura, M. H. C., Cunha, M. G., Alezandro, M. R., & Genovese, M. I. (2018). Phenolic-rich jaboticaba (Plinia jaboticaba (Vell.) Berg) extracts prevent high-fat-sucrose diet-induced obesity in C57BL/6 mice. Food Research International, 107, 48-60.
Nakasu, P. Y. S., Ienczak, L. J., Costa, A. C., & Rabelo, S. C. (2016). Acid post-hydrolysis of xylooligosaccharides from hydrothermal pretreatment for pentose ethanol production. Fuel, 185, 73-84.
Nam, M.-H., Son, W.-r., Yang, S.-Y., Lee, Y.-S., & Lee, K.-W. (2017). Chebulic acid inhibits advanced glycation end products-mediated vascular dysfunction by suppressing ROS via the ERK/Nrf2 pathway. Journal of Functional Foods, 36, 150-161.
Navarro-González, I., García-Valverde, V., García-Alonso, J., & Periago, M. J. (2011). Chemical profile, functional and antioxidant properties of tomato peel fiber. Food Research International, 44(5), 1528-1535.
Navarro, M., & Morales, F. J. (2017). Effect of hydroxytyrosol and olive leaf extract on 1,2-dicarbonyl compounds, hydroxymethylfurfural and advanced glycation endproducts in a biscuit model. Food Chemistry, 217(Supplement C), 602-609.
Nawirska-Olszańska, A., Kita, A., Biesiada, A., Sokół-Łętowska, A., & Kucharska, A. Z. (2013). Characteristics of antioxidant activity and composition of pumpkin seed oils in 12 cultivars. Food Chemistry, 139(1), 155-161.
Ng, T. B., Wong, C. M., Li, W. W., & Yeung, H. W. (1986). Insulin-like molecules in Momordica charantia seeds. Journal of Ethnopharmacology, 15(1), 107-117.
N. Rabbani, S.S. Alam, S. Riaz, J.R. Larkin, M.W. Akhtar, T. Shafi, P.J. Thornalley, H.J. Bilo, R.O. Gans, G.J. Navis, S.J. Bakker (2010). High-dose thiamine therapy for patients with type 2 diabetes and microalbuminuria: a randomised, double-blind placebo-controlled pilot study. Diabetologia, 52, 208-212.
N. Verzijl, J. DeGroot, E. Oldehinkel, R.A. Bank, S.R. Thorpe, J.W. Baynes, M.T. Bayliss, J.W.Bijlsma, F.P. Lafeber, J.M. Tekoppele (2000). Age-related accumulation of Maillard reaction products in human articular cartilage collagen. Biochem. J., 350, 81-387.
Oboh, G., Ogunsuyi, O. B., Ogunbadejo, M. D., & Adefegha, S. A. (2016). Influence of gallic acid on α-amylase and α-glucosidase inhibitory properties of acarbose. Journal of Food and Drug Analysis, 24(3), 627-634.
Patel, S., & Rauf, A. (2017). Edible seeds from Cucurbitaceae family as potential functional foods: Immense promises, few concerns. Biomedicine & Pharmacotherapy, 91(Supplement C), 330-337.
Peng, X., Cheng, K. W., Ma, j., Chen, B., Ho, C. T., Lo, C., Chen, F., Wang, M. (2008). Cinnamon bark proanthocyanidin as reactive carbonyl scavengers to prevent the formation of advanced glycation endproducts. Journal of Agricultural and Food Chemistry 56, 1907-1911.
Petrie, J. R., Guzik, T. J., & Touyz, R. M. (2017). Diabetes, Hypertension, and Cardiovascular Disease: Clinical Insights and Vascular Mechanisms. Canadian Journal of Cardiology.
Peyroux, J., & Sternberg, M. (2006). Advanced glycation endproducts (AGEs): pharmacological inhibition in diabetes. Pathologie Biologie, 54(7), 405-419.
Poovitha, S., Siva Sai, M., & Parani, M. (2017). Protein extract from the fruit pulp of Momordica dioica shows anti-diabetic, anti-lipidemic and antioxidant activity in diabetic rats. Journal of Functional Foods, 33, 181-187.
Prabu, K., Rajasekaran, A., Bharathi, D., & Ramalakshmi, S. Anti-oxidant activity, phytochemical screening and HPLC profile of rare endemic Cordia diffusa. Journal of King Saud University - Science.
Prieto-Hontoria P.L , P. Pérez-Matute, M. Fernández-Galilea, A. Barber, J.A. Martínez, M.J. Moreno-Aliaga., (2009). Lipoic acid prevents body weight gain induced by a high fat diet in rats: effects on intestinal sugar transport. Physiol. Biochem 65, 43-50.
Priyanto, A. D., Doerksen, R. J., Chang, C.-I., Sung, W.-C., Widjanarko, S. B., Kusnadi, J., Hsu, J.-L. (2015). Screening, discovery, and characterization of angiotensin-I converting enzyme inhibitory peptides derived from proteolytic hydrolysate of bitter melon seed proteins. Journal of Proteomics, 128, 424-435.
P. Salahuddin, G. Rabbani, R.H. Khan (2014). The role of advanced glycation end products in various types of neurodegenerative disease: a therapeutic approach. Cell. Mol. Biol. Lett., 19, 407-437.
Rahbar, S., & Figarola, J. L. (2003). Novel inhibitors of advanced glycation endproducts. Archives of Biochemistry and Biophysics, 419(1), 63-79.
Raina, K., Kumar, D., & Agarwal, R. (2016). Promise of bitter melon (Momordica charantia) bioactives in cancer prevention and therapy. Seminars in Cancer Biology, 40-41, 116-129.
Ranilla, L.G., Kwon, Y. I., Apostolidis, E., Shetty, K. (2010). Phenolic compounds, antioxidant activity and in vitro inhibitory potential against key enzymes relevant for hyperglycemia and hypertension of commonly used medicinal plants, herbs and spices in Latin America Bioresource Technology, 101, 4676-4689.
Rakh, M. S., Khedkar, A. N., Aghav, N. N., & Chaudhari, S. R. (2012). Antiallergic and analgesic activity of Momordica dioica Roxb. Willd fruit seed. Asian Pacific Journal of Tropical Biomedicine, 2(1, Supplement), S192-S196.
Ramkissoon, J. S., Mahomoodally, M. F., Ahmed, N., & Subratty, A. H. (2013). Antioxidant and anti–glycation activities correlates with phenolic composition of tropical medicinal herbs. Asian Pacific Journal of Tropical Medicine, 6(7), 561-569.
Ramkissoon, J. S., Mahomoodally, M. F., Subratty, A. H., & Ahmed, N. (2016). Inhibition of glucose- and fructose-mediated protein glycation by infusions and ethanolic extracts of ten culinary herbs and spices. Asian Pacific Journal of Tropical Biomedicine, 6(6), 492-500.
Rao, P. S., & Mohan, G. K. (2017). In vitro alpha-amylase inhibition and in vivo antioxidant potential of Momordica dioica seeds in streptozotocin-induced oxidative stress in diabetic rats. Saudi Journal of Biological Sciences, 24(6), 1262-1267.
Reddy, V. P., & Beyaz, A. (2006). Inhibitors of the Maillard reaction and AGE breakers as therapeutics for multiple diseases. Drug Discovery Today, 11(13), 646-654.
Renaudin, C., Roze, S., Valentine, W. J., & Palmer, A. J. (2004). PDB15 A COST-EFFECTIVENESS ANALYSIS OF SWITCHING TYPE-2 DIABETES PATIENTS FROM IMMEDIATE-RELEASE METFORMIN (GLUCOPHAGE®) TO A NEW EXTENDEDRELEASE FORMULATION OF METFORMIN (GLUCOPHAGE®XR). Value in Health, 7(6), 739.
R.G. Khalifah, Y. Chen, J.J. Wassenberg (2005). Post-Amadori AGE inhibition as a therapeutic target for diabetic complications: a rational approach to second-generation Amadorin design. Ann. N. Y. Acad. Sci., 1043, 793-806.
Roidoung, S., Dolan, K. D., & Siddiq, M. (2016). Gallic acid as a protective antioxidant against anthocyanin degradation and color loss in vitamin-C fortified cranberry juice. Food Chemistry, 210, 422-427.
Ross, K. A., Beta, T., & Arntfield, S. D. (2009). A comparative study on the phenolic acids identified and quantified in dry beans using HPLC as affected by different extraction and hydrolysis methods. Food Chemistry, 113(1), 336-344.
Rupachandra, S., & Sarada, D. V. L. (2013). Anticancer activity of methanol extract of the seeds of Borreria hispida and Momordica dioica. Journal of Pharmacy Research, 6(5), 565-568.
Sadowska-Bartosz, I., & Bartosz, G. (2016). Effect of glycation inhibitors on aging and age-related diseases. Mechanisms of Ageing and Development, 160, 1-18.
Saha, S.S., Ghosh, M., (2012). Antioxidant and anti-inflammatory effect of conjugated linolenic acid isomers against streptozotocin-induced diabetes. Br. J. Nutr. 108, 974–983.
Sajithlal, G. B., Chithra, P., & Chandrakasan, G. (1998). Effect of curcumin on the advanced glycation and cross-linking of collagen in diabetic rats. Biochemical Pharmacology, 56(12), 1607-1614.
Saleem, F., Sarkar, D., Ankolekar, C., & Shetty, K. (2017). Phenolic bioactives and associated antioxidant and anti-hyperglycemic functions of select species of Apiaceae family targeting for type 2 diabetes relevant nutraceuticals. Industrial Crops and Products, 107, 518-525.
Shen, Y., Xu, Z., & Sheng, Z. (2017). Ability of resveratrol to inhibit advanced glycation end product formation and carbohydrate-hydrolyzing enzyme activity, and to conjugate methylglyoxal. Food Chemistry, 216, 153-160.
Simm, A., Müller, B., Nass, N., Hofmann, B., Bushnaq, H., Silber, R.-E., & Bartling, B. (2015). Protein glycation — Between tissue aging and protection. Experimental Gerontology, 68, 71-75.
Sánchez-Moreno, C., A. Larrauri, J., & Saura-Calixto, F. (1999). Free radical scavenging capacity and inhibition of lipid oxidation of wines, grape juices and related polyphenolic constituents. Food Research International, 32(6), 407-412.
Spínola, V., Pinto, J., & Castilho, P. C. (2018). Hypoglycemic, anti-glycation and antioxidant in vitro properties of two Vaccinium species from Macaronesia: A relation to their phenolic composition. Journal of Functional Foods, 40, 595-605.
Srinivasan, P., Vijayakumar, S., Kothandaraman, S., & Palani, M. (2018). Anti-diabetic activity of quercetin extracted from Phyllanthus emblica L. fruit: In silico and in vivo approaches. Journal of Pharmaceutical Analysis, 8(2), 109-118.
Sultana, B., Anwar, F., & Przybylski, R. (2007). Antioxidant activity of phenolic components present in barks of Azadirachta indica, Terminalia arjuna, Acacia nilotica, and Eugenia jambolana Lam. trees. Food Chemistry, 104(3), 1106-1114.
Sundarram, A., & Murthy, T. P. K. (2014). ¦Á-Amylase Production and Applications: A Review. Journal of Applied & Environmental Microbiology, 2(4), 166-175.
Sytar, O., Hemmerich, I., Zivcak, M., Rauh, C., & Brestic, M. (2018). Comparative analysis of bioactive phenolic compounds composition from 26 medicinal plants. Saudi Journal of Biological Sciences, 25(4), 631-641.
Taghavi, F., Habibi-Rezaei, M., Amani, M., Saboury, A. A., & Moosavi-Movahedi, A. A. (2017). The status of glycation in protein aggregation. International Journal of Biological Macromolecules, 100, 67-74.
Taha, M., Shah, S. A. A., Afifi, M., Imran, S., Sultan, S., Rahim, F., & Khan, K. M. (2018). Synthesis, α-glucosidase inhibition and molecular docking study of coumarin based derivatives. Bioorganic Chemistry, 77, 586-592.
Tan, H.-F., & Gan, C.-Y. (2016). Polysaccharide with antioxidant, α-amylase inhibitory and ACE inhibitory activities from Momordica charantia. International Journal of Biological Macromolecules, 85, 487-496.
Thilagam, E., Parimaladevi, B., Kumarappan, C., & Chandra Mandal, S. (2013). α-Glucosidase and α-Amylase Inhibitory Activity of Senna surattensis. Journal of Acupuncture and Meridian Studies, 6(1), 24-30.
Trakoon-osot, W., Sotanaphun, U., Phanachet, P., Porasuphatana, S., Udomsubpayakul, U., & Komindr, S. (2013). Pilot study: Hypoglycemic and antiglycation activities of bitter melon (Momordica charantia L.) in type 2 diabetic patients. Journal of Pharmacy Research, 6(8), 859-864.
Van den Berg, R., Haenen, G. R. M. M., van den Berg, H., van der Vijgh, W., & Bast, A. (2000). The predictive value of the antioxidant capacity of structurally related flavonoids using the Trolox equivalent antioxidant capacity (TEAC) assay. Food Chemistry, 70(3), 391-395.
Villa, M., Parravano, M., Micheli, A., Gaddini, L., Matteucci, A., Mallozzi, C., Pricci, F. (2017). A quick, simple method for detecting circulating fluorescent advanced glycation end-products: Correlation with in vitro and in vivo non-enzymatic glycation. Metabolism, 71, 64-69.
Virdi, J., Sivakami, S., Shahani, S., Suthar, A. C., Banavalikar, M. M., & Biyani, M. K. (2003). Antihyperglycemic effects of three extracts from Momordica charantia. Journal of Ethnopharmacology, 88(1), 107-111.
Wang, S., Zheng, Y., Xiang, F., Li, S., & Yang, G. (2016). Antifungal activity of Momordica charantia seed extracts toward the pathogenic fungus Fusarium solani L. Journal of Food and Drug Analysis, 24(4), 881-887.
Wang, W., Liu, H., Wang, Z., Qi, J., Yuan, S., Zhang, W., Jia, A.-Q. (2016). Phytochemicals from Camellia nitidissima Chi inhibited the formation of advanced glycation end-products by scavenging methylglyoxal. Food Chemistry, 205, 204-211.
Wang, Y., Yang, Z., & Wei, X. (2010). Sugar compositions, α-glucosidase inhibitory and amylase inhibitory activities of polysaccharides from leaves and flowers of Camellia sinensis obtained by different extraction methods. International Journal of Biological Macromolecules, 47(4), 534-539.
Wautier, M.-P., Guillausseau, P.-J., & Wautier, J.-L. (2017). Activation of the receptor for advanced glycation end products and consequences on health. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 11(4), 305-309.
Wells-Knecht, K., Zyzak, D., Litchfield, J., Thorpe, S., Baynes, J. (1995). Mechanism of autoxidative glycosylation: identification of glyoxal and arabinose as intermediates in the autoxidative modification of proteins by glucose. Biochemistry 34, 3702-3709.
W.G. Taylor, M.S. Zaman, Z. Mir, P.S. Mir, S.N. Acharya, G.J. Mears, et al., (1997). Analysis of steroidal sapogenins from amber fenugreek (Trigonella foenum-graecum) by capillary gas chromatography and combined gas chromatography/mass spectrometry. Journal of Agriculture and Food Chemistry 45, 753-759.
W.K. Bolton, D.C. Cattran, M.E. Williams, S.G. Adler, G.B. Appel, K. Cartwright, P.G. Foiles, B.I. Freedman, P. Raskin, R.E. Ratner, B.S. Spinowitz, F.C. Whittier, J.P. Wuerth (2004). Randomized trial of an inhibitor of formation of advanced glycation end products in diabetic nephropathy. Am. J. Nephrol., 24, 32-40.
Wresdiyati, T., Sa'Diah, S., Winarto, A. D. I., & Febriyani, V. (2015). Alpha-Glucosidase Inhibition and Hypoglycemic Activities of Sweitenia mahagoni Seed Extract. HAYATI Journal of Biosciences, 22(2), 73-78.
Wu, J. W., Hsieh, C. L., Wang, H. Y., Chen, H. Y. (2009). Inhibitory effects of guava (Psidium guajava L.) leaf extracts and its active compounds on the glycation process of protein of protein. Food Chemistry, 113,78-84.
Xanthopoulou, M. N., Nomikos, T., Fragopoulou, E., & Antonopoulou, S. (2009). Antioxidant and lipoxygenase inhibitory activities of pumpkin seed extracts. Food Research International, 42(5), 641-646.
Yamada, H., Sasaki, T., Niwa, S., Oishi, T., Murata, M., Kawakami, T., & Aimoto, S. (2004). Intact glycation end products containing carboxymethyl-lysine and glyoxal lysine dimer obtained from synthetic collagen model peptide. Bioorganic & Medicinal Chemistry Letters, 14(22), 5677-5680.
Yamagishi, S.-i. (2011). Role of advanced glycation end products (AGEs) and receptor for AGEs (RAGE) in vascular damage in diabetes. Experimental Gerontology, 46(4), 217-224.
Yang, R., Wang, W.-X., Chen, H.-J., He, Z.-C., & Jia, A.-Q. (2018). The inhibition of advanced glycation end-products by five fractions and three main flavonoids from Camellia nitidissima Chi flowers. Journal of Food and Drug Analysis, 26(1), 252-259.
Yao, X., Zhu, L., Chen, Y., Tian, J., & Wang, Y. (2013). In vivo and in vitro antioxidant activity and α-glucosidase, α-amylase inhibitory effects of flavonoids from Cichorium glandulosum seeds. Food Chemistry, 139(1), 59-66.
Yasir, M., Sultana, B., Nigam, P. S., & Owusu-Apenten, R. (2016). Antioxidant and genoprotective activity of selected cucurbitaceae seed extracts and LC–ESIMS/MS identification of phenolic components. Food Chemistry, 199, 307-313.
Yeh, W.-J., Hsia, S.-M., Lee, W.-H., & Wu, C.-H. (2017). Polyphenols with antiglycation activity and mechanisms of action: A review of recent findings. Journal of Food and Drug Analysis, 25(1), 84-92.
Yılmaz, Z., Kalaz, E. B., Aydın, A. F., Olgaç, V., Doğru-Abbasoğlu, S., Uysal, M., & Koçak-Toker, N. (2018). The effect of resveratrol on glycation and oxidation products in plasma and liver of chronic methylglyoxal-treated rats. Pharmacological Reports, 70(3), 584-590.
Y.J. Chen, D.C. Chan, C.K. Chiang, C.C. Wang, T.H. Yang, K.C. Lan, S.C. Chao, K.S.Tsai, R.S. Yang, S.H. Liu (2015). Advanced glycation end-products induced VEGF production and inflammatory responses in human synoviocytes via RAGE-NF-κB pathway activation. J. Orthop. Res.
Yoon, S.-R., & Shim, S.-M. (2015). Inhibitory effect of polyphenols in Houttuynia cordata on advanced glycation end-products (AGEs) by trapping methylglyoxal. LWT - Food Science and Technology, 61(1), 158-163.
Yousuf, M. J., & Vellaichamy, E. (2015). Protective activity of gallic acid against glyoxal -induced renal fibrosis in experimental rats. Toxicology Reports, 2, 1246-1254.
Yu, J. S., Roh, H.-S., Lee, S., Jung, K., Baek, K.-H., & Kim, K. H. (2017). Antiproliferative effect of Momordica cochinchinensis seeds on human lung cancer cells and isolation of the major constituents. Revista Brasileira de Farmacognosia, 27(3), 329-333.
Yuan, X., Gu, X., & Tang, J. (2008). Purification and characterisation of a hypoglycemic peptide from Momordica Charantia L. Var. abbreviata Ser. Food Chemistry, 111(2), 415-420.

Yue, J., Xu, J., Cao, J., Zhang, X., & Zhao, Y. (2017). Cucurbitane triterpenoids from Momordica charantia L. and their inhibitory activity against α-glucosidase, α-amylase and protein tyrosine phosphatase 1B (PTP1B). Journal of Functional Foods, 37, 624-631.
Zhang, B.-w., Xing, Y., Wen, C., Yu, X.-x., Sun, W.-l., Xiu, Z.-l., & Dong, Y.-s. (2017). Pentacyclic triterpenes as α-glucosidase and α-amylase inhibitors: Structure-activity relationships and the synergism with acarbose. Bioorganic & Medicinal Chemistry Letters, 27(22), 5065-5070.
Zhang, L.-J., Liaw, C.-C., Hsiao, P.-C., Huang, H.-C., Lin, M.-J., Lin, Z.-H., Kuo, Y.-H. (2014). Cucurbitane-type glycosides from the fruits of Momordica charantia and their hypoglycaemic and cytotoxic activities. Journal of Functional Foods, 6, 564-574.
Zhang, Y., Pan, Z., Venkitasamy, C., Ma, H., & Li, Y. (2015). Umami taste amino acids produced by hydrolyzing extracted protein from tomato seed meal. LWT - Food Science and Technology, 62(2), 1154-1161.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊