跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.19) 您好!臺灣時間:2025/09/01 22:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭鈞文
研究生(外文):Jiun-Wen Cheng
論文名稱:理論計算於矽基材表面碳化機制的研究
論文名稱(外文):Theoretical Study of Carbonization of CxHy Species on Si(100) and (111) Surfaces : Mechanism and Kinetics
指導教授:江志強江志強引用關係
指導教授(外文):Jyh-Chiang Jiang
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:化學工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:154
中文關鍵詞: 碳化矽緩衝層 過渡態理論 反應速率常數 矽(111 矽(100
外文關鍵詞:reaction rate constanttransition state theory
相關次數:
  • 被引用被引用:0
  • 點閱點閱:264
  • 評分評分:
  • 下載下載:27
  • 收藏至我的研究室書目清單書目收藏:0
本論文使用ab initio分子軌域理論計算反應位能曲線,再配合過渡態理論,求得反應速率常數,以尋求矽基材碳化初期表面反應的主要發生途徑。有關量子化學計算,皆採用 B3LYP/6-31+G(d) 層級,再配合較大的基底函數 6-311+G(2df,p),對反應相關物種做單點能量計算,能量的部份皆考慮零點振動位能校正。本研究分別討論矽基材在(100)與(111)方向的表面結構、與數種碳氫化合物氣體碳化反應的機制及乙炔分子在矽(100)表面環狀加成產物不同結構的能量差異與比較。計算結果顯示未飽和碳氫化合物在與矽基材表面的碳化反應中,環狀加成反應為主要的碳化反應路徑。在碳化反應中,未飽和碳氫化合物皆比飽和碳氫化合物有效率,原因為斷碳碳π鍵的相對能量較斷碳氫鍵的能量小。最後經由量子穿隧效應修正後的反應速率常數顯示,不同碳化氣體種類中,碳化效率由高至低排序為乙炔、乙烯,甲烷,乙烷,最後則為丙烷。
Modeling of chemical vapor deposition (CVD) processes requires knowledge of the gas-flow dynamics and chemical reactrion occurring in reactor. In order to go beyond simple growth rate predictions based on the lumped kinetics from incomplete experimental kinetic data, quantum chemistry techniques are used to investigate kinetics of chemical reaction involved in carbonization of hydrocarbon, including CH4, C2H6, C3H8, C2H4 and C2H2, on the Si(100) and Si(111) surfaces. Ab initio calculations have been used to determine the structures, energies and vibration frequency of reactants, intermediate and products. All the geometries were optimized at B3LYP/6-31+G(d) level and the energies were determined at B3LYP/6-311+G(2df, p) level. In addition, transition state theory with the correction of tunneling effect is used to do the kinetic evaluation. The results demonstrate the cycloaddition is main reaction on the silicon surface, because of a low activation energy for breaking the C-C π bond to form cycloaddition, which is in good agreement with the experimental prediction. Finally, the carbonization efficiency of hydrocarbon from high to low is C2H2, C2H4, CH4, C2H6, and C3H8.
目錄

中文摘要 I
英文摘要 II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 IX

第一章 緒論 1
1.1前言 1
1.2碳化矽的介紹及其特性 6
1.3矽的特性與結構 9
1.4緩衝層的功能與應用 12
1.5 文獻回顧 15
第二章 理論計算方法 24
2.1 密度泛函理論 (Density Functional Theroy, DFT) 24
2.2 過渡狀態理論 (Transition State Theory,TST) 24
2.2.1 反應路徑包含一個反應過渡狀態 25
2.2.2 反應路徑包含兩個反應過渡狀態 26
2.2.3反應路徑包含三個反應過渡狀態 28
2.2.4 變分過渡態理論 (Variational Transition State Theory,VTST) 31
2.3 量子穿隧效應的計算 31
2.4 計算模擬的步驟流程 33
第三章 結果與討論 34
3.1 矽基材表面的模擬 34
3.2 碳氫化合物在氣相中的解離速率 37
3.3 矽(100)表面的碳化機制 41
3.3.1 矽(100)與甲烷的碳化反應 41
3.3.2 矽(100)與乙烷的碳化反應 43
3.3.3 矽(100)與丙烷的碳化反應 45
3.3.4 矽(100)與乙烯的碳化反應 47
3.3.5 矽(100)與乙炔的碳化反應 50
3.4 矽(111)表面的碳化機制 53
3.4.1 矽(111)與甲烷的碳化反應 54
3.4.2 矽(111)與乙烷的碳化反應 56
3.4.3 矽(111)與丙烷的碳化反應 58
3.4.4 矽(111)與乙烯的碳化反應 62
3.4.5 矽(111)與乙炔的碳化反應 70
3.5 乙炔在矽(100)表面上與兩組雙矽原子單體的環狀加成 79
3.6 討論 84
第四章 結論 89
第五章 參考文獻 91
[1]. L. Sun and K. Gong, Ind. Eng. Chem. Res. 40, 5861 (2001).
[2]. C. R. Stoldt, C. Carraro, W. Robert Ashurst, D. Gao, R. T. Howe, R. Maboudian, Sensor and Actuators A , 97-98, 410 (2002).
[3]. 凱樂士股份有限公司 www.kallex.com.tw/company_history.htm .
[4]. 財團法人國家實驗研究院科技政策與資訊中心科技產業資訊室市場報導
http://cdnet.stpi.org.tw/techroom/market/eeic/eeic024.htm .
[5]. T. I. Kamins and D. J. Meyer, Appl. Phys. Lett. 61, 90 (1992).
[6]. J. L. Shi, L. K. Nanver, K. Grimm, C. C. G. Visser, Thin Solid Film, 364, 254 (2000).
[7]. E. C. Sanchez and S. J. Sibener, J. Phys. Chem. B. 106, 8019 (2002).
[8]. A. M. Wrobel, A. Walkiewicz-Pietrzykowska, J. E. Klemberg-Sapieha, Y. Nakanishi, T. Aoki, Y. Hatanaka, Chem. Mater. 15, 1749 (2003).
[9]. A. M. Wrobel, A. Walkiewicz-Pietrzykowska, D. M. Bielinski, J. E. Klemberg-Sapieha, Y. Nakanishi, T. Aoki, Y. Hatanaka, Chem. Mater. 15, 1757 (2003).
[10]. M. S. Hu, L. S. Hong, Journal of Crystal Growth, 265, 382 (2004).
[11]. 蔡國強, 謝嘉民, 戴寶通, 歐耿良, 毫微米通訊第九卷第一期
[12]. S. Zaima, Y. Yasuda, J. Vac. Sci. Technol. B16, 2626 (1998).
[13]. N. Pinto, R. Murri, C. Pasquali, Materials Science and Engineering, B89, 234 (2002).
[14]. S. Nishino, J. Anthony Powell, H. A. Will, Appl. Phys. Lett. 42(5), 460 (1983).
[15]. C. Yuan and A. J. Steckl, Appl. Phys. Lett. 64, 3000 (1994).
[16]. J. Olander and K. Larsson, J. Phys. Chem. B. 103, 9604 (1999).
[17]. J. Q. Hu, Q. Y. Lu, K. B. Tang, Y. T. Qian, G. E. Zhou, X. M. Liu, and J. X. Wu, Chem. Mater. 11, 2369 (1999).
[18]. H. Tateyama, H. Noma, Y. Adachi, and M. Komatsu, Chem. Mater. 9, 766 (1997).
[19]. E. C. Sanchez and S. J. Sibener, J. Phys. Chem. B. 106, 8019 (2002).
[20] 郝士明, 漫談晶體結構學, 正大印書館股份有限公司 1997.
[21]. C. B. Duke, Chem. Rev. 96, 1237 (1996).
[22]. G. Treboux, T. Nakayama, H. Uchida, M. Aono, J. Phys. Chem. B. 101, 9570 (1997).
[23]. 葉志杰, 物理雙月刊, 十四卷, 六期, 597 (1992).
[24]. M. Kitabatake, Thin Solid Films, 369, 257 (2000).
[25]. 知識創新, 第二十八期 (2002).
[26]. J. Fritsch, P. Pavone, Surface Science, 344, 159 (1995).
[27]. B. Paulus, Surface Science, 408, 195 (1998).
[28]. Y. Jung, C. H. Choi, and M. S. Gordon, J. Phys. Chem. B. 105, 4039 (2001).
[29]. P. L. Silvestrelli, F. Ancilotto, F. Toigo, Science and Supercomputing at CINECA – Report 2001.
[30]. Z. H. Li, Y. C. Li, W. N. Wang, Y. Cao, and K. N. Fan, J. Phys. Chem. B. 108, 14049 (2004).
[31]. F. Tao, Y. H. Lai, and G. Q. Xu, Langmuir, 20, 366 (2004).
[32]. F. Tao, X. F. Chen, Z. H. Wang, and G. Q. Xu, J. Phys. Chem. B, 106, 3890 (2002).
[33]. E. Vasco, C. Polop, and E. Rodriguez-Canas, Phys. Rev. B, 67, 235412 (2003).
[34]. F. TAO and G. Q. XU, Acc. Chem. Res. 37, 882 (2004).
[35]. F. Matsui, H. W. Yeom, A. Imanishi, K. Isawa, I. Matsuda, T. Ohta, Surface Science, 401, L413 (1998).
[36]. J. Yoshinobu, D. Fukushi and M. Uda, E. Nomura, M. Aono, Phys. Rev. B. 46, 9520 (1992).
[37]. M. De Crescenzi, M. Marucci, R. Gunnella, P. Castrucci, M. Casalboni, G. Dufour, F. Rochet, Surface Science, 426, 277 (1999).
[38]. X. Lu, M. Zhu, X. Wang, and Q. Zhang, J. Phys. Chem. B. 108, 4478 (2004).
[39]. Y. Wang, J. Ma, S. Inagaki, and Y. Pei, J. Phys. Chem. B. 109, 5199 (2005).
[40]. H. S. Lee, C. H. Choi, and M. S. Gordon, J. Phys. Chem. B. 109, 5067 (2005).
[41]. X. Lu, M. Zhu, and X. Wang, J. Phys. Chem. B. 108, 7359 (2004).
[42]. P. Minary and M. E. Tuckerman, J. Am. Chem. Soc. 126, 13920 (2004).
[43]. M. Nagao, H. Umeyama, K. Mukai, Y. Yamashita, J. Yoshinobu, K. Akagi, and S. Tsuneyuki, J. Am. Chem. Soc. 126, 9922 (2004).
[44]. P. L. Silvestrelli, O. Pulci, M. Palummo, R. D. Sole, and F. Ancilotto, Phys. Rev. B. 68, 235306 (2003).
[45]. W. Kim, H.Kim, G. Lee, Y. K. Hong, S. Lee, J. Y. Koo, Surface Science, 538, L477 (2003).
[46]. S. F. Bent, J. Phys. Chem. B. 106, 2830 (2002).
[47]. T. Bitzer, T. Rada, and N. V. Richardson, J. Phys. Chem. B. 105, 4535 (2001).
[48]. X. Lu, X. Wang, Q. Yuan, and Q. Zhang, J. Am. Chem. Soc. 125, 7923 (2003).
[49]. D. Rowley, H. Steiner, Discuss. Faraday. Soc. 10, 198 (1951).
[50]. (a) M. Uchiyama, T. Tomioka, A. Amano, J. Phys. Chem. 68, 1878 (1964).
(b) W. J. Tsang, J. Chem. Phys. 42 ,1805 (1965).
(c) D. K. Lewis, J. Bergmann, R. Manjoney, R. Paddock, J. Phys. Chem. 88, 4112 (1984).
[51]. J. Sauer, Chem. Int. Ed. Engl. 6, 16 (1976).
[52]. R. J. Loncharich, K. N. Houk, Annu. Rev. Phys. Chem. 39, 213 (1988) and references therein.
[53]. F. Benardi, A. Bottni, M. J. Field, M. F. Guest, I. H. Hillier, M. A. Robb, A. J. Venturini, J. Am. Chem. Soc. 110, 3050 (1988).
[54]. K. N. Houk, Y. Li, J. D. Evanseck, Angew. Chem. Int. Ed. Engl. 31, 682 (1992)
[55]. Y. Li, K. N. Houk, J. Am. Chem. Soc. 115, 7478 (1993).
[56]. K. N. Houk, Y. Li, J. Storer, L. Raimondi, B. Beno, J. Chem. Soc. , Faraday Trans. 90, 1599 (1994).
[57]. K. N. Houk, J. Gonzalez, Y. Li, Acc. Chem. Res. 28, 81 (1995) and references therein.
[58]. O. Wiest, K. N. Houk, Black, B. Thomas, J. Am. Chem. Soc. 117, 8594 (1995).
[59]. E. Goldstein, B. Beno, K. N. Houk, J. Am. Chem. Soc. 118, 6036 (1996).
[60]. (a) B. R. Beno, K. N. Houk, D. A. Singleton, J. Am. Chem. Soc. 118, 9984 (1996). (b) D. A. Singleton, A. A. Thomas, J. Am. Chem. Soc. 117, 9357 (1995).
[61]. O. Wiest, D. C. Montiel, K. N. Houk, J. Phys. Chem . A. 101, 8378 (1997) and references therein.
[62]. C. H. Huang, L. C. Tsai, W. P. Hu, J. Phys. Chem . A. 105, 9945 (2001).
[63]. A. G. Leach, K. N. Houk, J. Org. Chem. 66, 5192 (2001).
[64]. S. J. Sakai, J. Phys. Chem. A. 104, 922 (2000).
[65]. H. Isobe, Y. Takano, Y. Kitagawa, T. Kawakami, S. Yamanaka, K. Yamaguchi, K. N. Houk, J. Phys. Chem. A. 107, 682 (2003).
[66]. (a) R. B. Woodward, R. Hoffmann, The Conservation of Orbital Symmetry, Verlag Chemie, Academic Press, Veinheim (1970) (b) R. Hoffmann, Acc. Chem. Res. 4, 1 (1971).
[67]. X. Lu, J. Am. Chem. Soc. 125, 6384 (2003).
[68]. R. Di Felice, C.A. Pignedoli, C.M. Bertoni, A. Catellani, P.L. Silvestrelli, C. Sbraccia, F. Ancilotto, M. Palummo, O. Pulci, Surface Science, 532–535, 982 (2003).
[69]. M. De Crescenzi, R. Bernardini, R. Gunnella, P. Castrucci, Solid State Communications, 123, 27 (2002).
[70]. V. De Renzi, R. Biagi, and U. del Pennino, Phys. Rev. B. 64, 155305 (2001).
[71]. F. Rochet, G. Dufour, P. Prieto and F. Sirotti, F. C. Stedile, Phys. Rev. B. 57, 6738 (1998).
[72]. L. Li, C. Tindall, O. Takaoka, Y. Hasegawa, and T. Sakurai , Phys. Rev. B. 56, 4648 (1997).
[73]. C. Koitzsch, D. Conrad, K. Scheerschmidt, F. Scharmann, P. Maslarski, J. Pezoldt, Applied Surface Science, 179, 49 (2001).
[74]. R. H. Zhou, P. L. Cao, and L. Q. Lee, Phys. Rev. B. 47, 10601 (1993).
[75]. B. Weiner, Phys. Rev. B. 43, 1678 (1991).
[76]. S. H. Xu, M. Keeffe, Y. Yang, C. Chen, M. Yu, G. J. Lapeyre, E. Rotenberg, J. Denlinger, and J. T. Yates, Jr, Phys .Rev. Lett. 84, 939 (2000).
[77]. H. Uchida, S. Watanabe, H. Kuramochi, M. Kishida, J. Kim, K. Nishimura, M. Inoue, M. Aono, Surface Science, 532–535, 737 (2003).
[78]. W. J. Hehre, L. Radom, P. V. R. and J. A. Pople, “ab initio Molecular orbital theory”, John Wiley & Sons, New York 1986.
[79]. J. P. LOWE, “Quantum chemistry”, 2nd ed. Academic Press, New York 1993.
[80]. S. M. McMurry, “Quantum chemistry”, Addison-Wesley, New York 1994.
[81]. I. N. Levine,“Quantum chemistry”, 5th ed. Prentice-Hall, New Jersey 2000.
[82]. A. Szabo, and N. S. Ostlund, “Modern quantum chemistry: Introduction to advanced electronic structure theory”, 1993.
[83]. Pilar, Frank L, “Elementary quantum chemistry”, 2nd ed, McGraw-Hill, New York 1990.
[84]. C. J. Cramer, “Essentials of Computational Chemistry – Theories and Models”, John Wiley & Sons, New York 2002.
[85]. K .J. Laidler, “Chemical kinetics”, Harper Collins , New York 1987.
[86]. J. I. Steinfeld, J. S. Francisco, W. L. Hase,“Chemical Kinetics and Dynamics”, Prentice Hall, New Jersey 1999.
[87]. A. Gonzalez-Lafont, M. Moreno, J. M. Lluch, J. Am. Chem. Soc. 126, 13089 (2004).
[88]. S. W. Benson, “Thermochemical kinetics”, John Wiley & Sons, New York 1976.
[89]. R. P. Bell, “The Tunnel Effect in Chemistry”, Chapman and Hall, London and New York
[90]. D. G. Truhlar, A. D. Isaacson, B. C. Garrett, In Theory of Chemical Reaction Dynamic, Bear M., Ed.; CRC Press: Boca Raton, 4, 65 (1985).
[91]. Y. P. Liu, D. H. Lu, A. Gonzales-Lafont, D. G. Ttuhlar, B. C. Garrett, J. Am. Chem. Soc. 115, 7806 (1993).
[92]. M. H. Gordon, J. Phys. Chem. 100, 13213 (1996).
[93]. J. B. Foresman, A. Frisch,“Exploring Chemistry with Electronic Structure Methods”, second edition, 1993.
[94]. P. H ohenberg, W. Kohn, Phsy. Rev. B. 136, 864 (1964).
[95]. W. Kohn, L. J. Sham, Phsy. Rev. A. 140, 1133 (1965).
[96]. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam,
A.D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi,
V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo,
S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui,
K. Morokuma, P. Salvador, J. J. Dannenberg, D. K. Malick,
A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski,
J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko,
P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox,
T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople, Gaussian, Inc., Pittsburgh PA (2001).
[97]. K. Fukui, Recognition of Stereochemical Paths by Orbital Interaction, Acc. Chem. Res. 4, 57 (1971).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top