跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.219) 您好!臺灣時間:2025/12/01 08:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李景隆
研究生(外文):Lee, Chin-Lung
論文名稱:以人類腦血管周細胞與人類星形細胞調控人腦微血管內皮細胞建立血腦屏障模型
論文名稱(外文):A Further Representative In Vitro Human Blood-Brain Barrier Model: Human Brain Microvascular Endothelial Cells Regulated By Human Brain Vascular Pericytes And Human Astrocytes
指導教授:郭勇志郭勇志引用關係
指導教授(外文):Kuo, Yung-Chih
口試委員:朱一民徐善慧蔡瑞瑩
口試委員(外文):Chu, I-MingTsay, Ruey-Yug
口試日期:2012-07-25
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:115
中文關鍵詞:血腦屏障人腦微血管內皮細胞人腦血管周細胞人類星形細胞P-醣蛋白TGF-β1VEGFMMP-9
外文關鍵詞:blood-brain barrierhuman brain microvascular endothelial cellshuman astrocytesP-glycoproteintransforming growth factor-β1ascular endothelial growth factormatrix metalloproteinases
相關次數:
  • 被引用被引用:0
  • 點閱點閱:640
  • 評分評分:
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用人腦血管周細胞與人類星形細胞依不同比例與人腦微血管內皮細胞共培養,並利用周細胞條件化培養基及星形細胞條件化培養基共培養建立出生體外人類血腦屏障(blood-brain barrier, BBB)模型。研究發現當人腦血管周細胞與人類星形細胞比例為1: 2,並利用周細胞與星形細胞條件化培養基比例為1: 1與人腦微血管內皮細胞共培養7天後transendothelial electrical resistance (TEER)值提高為319±16.67 Ω×cm2、propidium iodide穿透率下降為單層培養之39 %,且P-醣蛋白活性與人腦血管周細胞與人類星形細胞比例為1: 1及1: 6的培養模型相較之下提高84%與104%,使得體外模型更近似生體內血腦屏障,本研究透過不同人腦血管周細胞與人類星形細胞比例(1: 1, 1: 2, 1: 6)與人腦微血管內皮細胞建立的血腦屏障模型,檢測TEER值與propidium iodide穿透率測定BBB完整性及屏障功能,並利用鈣黃綠素螢光染劑滯留率測定抗藥性蛋白P-醣蛋白活性,再者配合檢測影響BBB完整性之細胞生理因子transforming growth factor beta 1 (TGF-β1)、matrix metalloproteinase-9 (MMP-9)、vascular endothelial growth factor (VEGF)濃度,實驗結果顯示與其他模型相比,當人腦血管周細胞與人類星形細胞比例為1: 2以及周細胞條件化培養基與星形細胞條件化培養基與人腦微血管內皮細胞建立之血腦屏障模型有較高的TGF-β1濃度以及較低的MMP-9、VEGF濃度,顯示建立符合生體覆蓋比例之血腦屏障模型更具代表性與研究利用性,並利用TGF-β1 receptor抑制劑SB431542、VEGF抑制劑asterric acid、MMP-9抑制劑CTT與鈣黃綠素螢光染劑滯留率,探討血腦屏障的多重抗藥性蛋白P-醣蛋白的活性與各生理因子間的交互作用,發現TGF-β1會正向調控P-醣蛋白活性,而VEGF會抑制P-醣蛋白活性。

關鍵字:血腦屏障、人腦微血管內皮細胞、人腦血管周細胞、人類星形細胞、P-醣蛋白、TGF-β1、VEGF、MMP-9

We constructed in vitro human blood-brain barrier (BBB) model using pericyte-condition medium (PCM) and astrocyte-condition medium and different ratio between human brain vascular pericytes (HBVPs) and human astrocytes (HAs) (1: 1, 1: 2, 1: 6) co-culture with human brain microvascular endothelial cells (HBMECs). After 7 days of co-culture of HBMECs, HBVPs, HAs (HBVPs:HAs=1: 2), PCM2, ACM2 (PCM: ACM= 1: 1), the transendothelial electrical resistance (TEER) increased to 319±16.67 Ω×cm2, reduced permeability of propidium iodide (PI) about 39 %. The activity of P-glycoprotein (P-gp) of the model with HBVPs: HAs= 1: 2 is higher than the model with HBVPs: HAs= 1: 1 (1.84-fold) and the model with HBVPs: HAs= 1: 6 (2.04-fold). We showed the co-culture models barrier integrity among three different ratio between HBVPs and HAs (1: 1, 1: 2, 1: 6) by TEER and propidium iodide permeability measurements and P-gp activity. The analysis of the three major barrier integrity modulators transforming growth factor-β1 (TGF-β1), vascular endothelial growth factor (VEGF), and matrix metalloproteinases (MMPs) displayed higher TGF-β1 activity and lower levels VEGF, MMP-9 in the coculture with HBVPs: HAs= 1: 2. It suggest constructed a in vitro model match the in vivo coverage ratio of HBVPs on HBMECs is more representative. Finally, we used the TGF-β1 inhibitor SB431542, VEGF inhibitor asterric acid, and MMP-9 inhibitor CTT to discuss the relationship between barrier integrity modulators and the P-gp activity. In our study we find that TGF-β1 can up-regular P-gp activity and VEGF can down-regular P-gp activity.

Keyword: blood-brain barrier, human brain microvascular endothelial cells, human astrocytes, P-glycoprotein, transforming growth factor-β1, ascular endothelial growth factor, matrix metalloproteinases.

摘要................................................................................................................................I
Abstract………………………………………………………………………………III
目錄…………………………………………………………………………………...V
圖目錄………………………………………………………………………………..XI
表目錄………………………………………………………………………………XII
第一章 研究動機與目的……………………………………………………………1
第二章 文獻回顧……………………………………………………………………3
2.1 血腦屏障(blood-brain barrier, BBB)…………………………………………3
2.1.1 The Tight junctions of blood-brain barrier…………………………….4
2.1.2 神經血管單元(neurovascular unit, NVU)……………………………5
2.1.3 腦微血管內皮細胞……………………………………………………5
2.1.4 星形細胞………………………………………………………………6
2.1.5 腦血管周細胞…………………………………………………………8
2.2 生體外BBB模型(in vitro BBB model)………………………….…..……….9
2.2.1 初代培養(primary cultures)……………………………….…………10
2.2.2 共培養模型(co-culture model)………………………………………11
2.3 ATP binding cassette (ABC) transporters…………………………………12
2.3.1 P-gp作用機制………………………………………………………13
2.4 調節BBB完整性的細胞分泌因子(secreted factor)………………………13
2.4.1 TGF-β1作用機制和抑制劑……………………………………….14
2.4.2 VEGF作用機制和抑制劑…………………………………………15
2.4.3 MMP-9作用機制和抑制劑………………………………………..16
第三章 實驗材料、儀器、原理及方法…………………………………………..17
3.1 實驗材料…………………………………………………………………...17
3.1.1 人腦微血管內皮細胞培養於transwell PET 膜表面預處理材料..17
3.1.2 人類腦血管周細胞培養於transwell PET 膜表面預處理材料….17
3.1.3 人類星形細胞培養於transwell PET 膜表面預處理材料………..18
3.1.4 人類腦微血管內皮細胞繼代培養…………………………………19
3.1.5 人類腦血管周細胞繼代培養材料…………………………………20
3.1.6 人類星形細胞繼代培養材料………………………………………21
3.1.7 人腦微血管內皮細胞與人腦血管周細胞、人類星形細胞觀察、記數與存活率計算材料………………………………………………21
3.1.8 人腦微血管內皮細胞與人腦血管周細胞、人類星形細胞保存材料……………………………………………………………………22
3.1.9 免疫螢光法材料……………………………………………………22
3.1.10 酵素連結免疫吸附法(ELIZA, enzyme-linked immunosorbent assay)材料…………………………………………………………………24
3.1.11 Calcein-AM 滯留率分析: P-gp功能鑑定材料…………………..24
3.1.12 電子顯微鏡材料……………………………………………………25
3.1.13 其他實驗器具和耗材………………………………………………26
3.2 實驗儀器…………………………………………………………………...28
3.3 實驗原理及方法…………………………………………………………...31
3.3.1 Fibronectin溶液配製………………………………………………31
3.3.2 冷凍液配製…………………………………………………………31
3.3.3 Gelatin溶液配製……………………………………………………31
3.3.4 細胞繼代培養預處理………………………………………………31
3.3.5 Transwell 培養皿上PET膜的表面預處理......................................31
3.3.6 人腦微血管內皮細胞和人腦血管周細胞、人類星形細胞培養基配製………………………………………………………………….32
3.3.7 人類腦微血管內皮細胞和人腦血管周細胞、人類星形細胞繼代培養........................................................................................................32
3.3.8 周細胞條件化培養基(pericyte-conditioned medium, PCM)............34
3.3.9 星形細胞條件化培養基(astrocyte-conditioned medium, ACM)......34
3.3.10 人類腦微血管內皮細胞和人類星形細胞共培養............................35
3.3.10.1 以星形細胞與人腦微血管內皮細胞共培養......................35
3.3.10.2 以周細胞條件化培養基和星形細胞條件化培養基、人類星 形細胞、人腦微血管內皮細胞共培養................................35
3.3.11 人類腦微血管內皮細胞和人腦血管周細胞、人類星形細胞共培養.......................................................................................................36
3.3.11.1 以人腦血管周細胞和、人類星形細胞和人腦微血管內皮細胞共培養..............................................................................36
3.3.11.2 以周細胞條件化培養基和星形細胞條件化培養基、人腦血管周細胞、人類星形細胞、人腦微血管內皮細胞共培養..........................................................................................37
3.3.12 酵素連結免疫吸附法(ELIZA, enzyme-linked immunosorbent assay)……………………..…………………………………………38
3.3.12.1 Human MMP-9 assay...........................................................38
3.3.12.2 Human VEGF assay.............................................................39
3.3.12.3 Human TGF-β1 assay……………………………………..40
3.3.13 Calcein-AM 滯留率分析: P-gp功能鑑定........................................41
3.3.13.1 蛋白質定量(BCA protein assay)檢量線.............................41
3.3.13.2 細胞蛋白質萃取溶液(ewtraction buffer)配製....................41
3.3.13.3 P-gp功能鑑定......................................................................42
3.3.14 免疫螢光法…………………………………………………………42
3.3.14.1 von Willebrand factor VIII 免疫螢光法.............................42
3.3.14.2 Glial fibrillary acidic protein (GFAP)免疫螢光法……….43
3.3.14.3 α-smooth muscle actin免疫螢光法…………………….44
3.3.14.4 ZO-1免疫螢光法………………………………………45
3.3.15 人腦微血管內皮細胞的電阻測定………………………………46
3.3.15.1 電極前處理……………………………………………..46
3.3.15.2 細胞的電阻測定……………………………………….46
3.3.16 體外BBB模型的穿透實驗…………………………………….47
3.3.16.1 Propidium iodide穿透實驗……………………………47
3.3.16.2 Propidium iodide檢量線……………………………….48
3.3.16.3 物質穿透體外BBB模型的穿透率計算………………48
第四章 結果與討論...............................................................................................49
  4.1 周細胞條件化培養基和星形細胞條件化培養基、人類星形細胞、人腦血管周細胞與人腦微血管內皮細胞共培養對於TEER和propidium iodide穿透率的影響……………………………………………………49
4.1.1周細胞條件化培養基和星形細胞條件化培養基與HBMECs對於TEER和propidium iodide穿透率的影響…………………………49
4.1.2 周細胞條件化培養基和星形細胞條件化培養基、人類星形細胞與HBMECs對於TEER和propidium iodide穿透率的影響……….50
4.1.3 不同比例之HBVPs與HAs以及利用周細胞和星形細胞條件化培養基與HBMECs共培養對於TEER和穿透率的影響………………51
4.2 HBMECs與HBVPs、HAs繼代培養與共培養情形…………………..54
4.3 Calcein-AM滯留率分析: P-gp功能鑑定……………………………..56
4.4 細胞分泌因子TGF-β1、VEGF、MMP-9的抑制劑對於HBMECs的TEER以及propidium iodide穿透率的影響.............................................58
4.5 細胞分泌因子TGF-β1、VEGF、MMP-9的抑制劑對於calcein-AM在HBMECs滯留率的影響………………………………………………60
第五章 結論與建議……………………………………………………………......62
參考文獻……………………………………………………………………………..64

[1] P. Jeffrey, S. Summerfield, 2010, “Assessment of the blood–brain barrier in CNS drug discovery,” Neurobiol. dis., 37, 33-37.
[2] M. A. Petty, E. H. Lo, 2002, “Junctional complexes of the blood–brain barrier: permeability changes in neuroinflammation,”Prog. Neurobiol., 68, 311-323.
[3] F. L. Cardoso, D. Brites, M. A. Brito, 2010, “Looking at the blood–brain barrier: molecular anatomy and possible investigation approaches,” Brain Res. Rev., 64, 328-363.
[4] B. T. Hawkins, T. P. Davis, 2005,“The blood-brain barrier/neurovascular unit in health and disease,” Pharmacol. Rev., 57, 173-185.
[5] E. Khan, 2005, “An examination of the blood-brain barrier in health and disease,” Br. J. Nurs., 14, 509-513.
[6] P. ballabh, A. Braun, M. Nedergaard, 2004,“The blood-brain barrier: an overciew: structure, regulation, and clinical implications,” Neurobiol. Dis., 16, 1-13.
[7] Y. Persidsky, S. H. Ramirez, J. Haorah, G. D. Kanmogne, 2006, “Blood-brain barrier : structural components and function under physiologic and pathologic condition,” J. Neuroimmune. Pharmacol., 1, 223-236.
[8] H. Wolburg, S. Noell, A. Mack, K. Wolburg-Buchholz, H. P. Fallier-Becker, 2009, “Brain endothelial cells and the glio-vascular complex,” Cell Tissue Res., 335, 75-96.
[9] L. González-Mariscal, R. Tapia, D. Chamorro, 2008. “Crosstalk of tight junction components with signaling pathways,” Biochim. Biophys. Acta, 1778, 729-756.
[10] N. Weiss, F. Miller, S. Cazaubon, P. O. Couraud, 2009, “The blood-brain barrier in brain homeostasis and neurological diseases,” Biochim. Biophys. Acta, 1788, 842-857.
[11] S. Terry, M. Nie, K. Matter, M. S. Balda, 2010, “ Rho signaling and tight junction functions,” Physiology, 25, 16-26.
[12] S. W. Lee, W. J. Kim, J. A. Park, Y. K. Choi, Y. W. Kwon, K. W. Kim, 2006, “Blood-brain barrier interfaces and brain tumors,” Arch. Pharm. Res., 29, 265-275.
[13] N. Marchi, M. Cavaglia, V. Fazio, S. Bhudia, K. Hallene, D. Janigro, 2004, “Peripheral markers of blood-brain barrier damage,” Clin. Chim. Acta 342, 1-12.
[14] B. V. Zlokovic, 2008, “The blood-brain barrier in health and chronic neurodegenerative disorders, ” Neuron, 57, 178-201.
[15] A. Zozulay, C. Weidenfeller, H. J. Galla, 2008, “Pericyte-endothelial cell interaction increases MMP-9 secretion at the blood-brain barrier in vitro,” Brain Res., 1189, 1-11.
[16] Y. K. Choi, K. W. Kim, 2008, “Blood-neural barrier : its diversity and coordinated cell-to-cell communication,” BMB. Rep., 41, 345-352.
[17] A. R. Calabria, E. V. Shusta, 2008, “A genomic comparison of in vivo and in vitro brain microvascular endothelial cells,” J. Cereb. Blood Flow Metab., 28, 135-148.
[18] M. Ueno, 2007, “Molecular anatomy of the brain endothelial barrier: an overview of the distributional features,” Curr. Med. Chem., 14, 1199-1206.
[19] B. B. Weksler, E. A. Subileau, N. Perriere, P. Charneau, K. Holloway, M. Leveque, H. Tricoire-Leignel, A. Nicotra, S. Bourdoulous, P. Turowski, D. K. Male, F. Roux, J. Greenwood, I. A. Romero, P. O. Couraud, 2005, “Blood-brain barrier-specific properties of a human adult brain endothelial cell line,” FASEB. J., 19, 1872-1874.
[20] N. J. Abbott, 2002, “Astrocyte-endothelial interactions and blood-brain barrier permeability,” J. Anat., 200, 629-638.
[21] A. G. de Boer, P. J. Gaillard, 2006, “Blood-brain barrier dysfunction and recovery, ” J. Neural. Transm., 113, 455-462.
[22] V. V. Jeliazkova-Mecheva, D. J. Bobily, 2003, “A porcine astrocyte/endothelia cell co-culture model of the blood-brain barrier,” Brain Res. Protoc., 12, 91-98.
[23] N. J. Abbott, L. Ronnback, E. Hansson, 2006, “Astrocyte-endothelial interactions at the blood–brain barrier,” Nat. Rev. Neurosci., 7, 41-53.
[24] V. Siddharthan, Y. V. Kim, S. Liu, K. S. Kim, 2007, “Human astrocytes/astrocyte-conditioned medium and shear stress enhance the barrier properties of human brain microvascular endothelial cell,” Brain Res., 1147, 39-50.
[25] C. H. Lai, K. H. Kuo, 2005, “The critical component to establish in vitro BBB model: pericyte,” Brain Res. Rev., 50, 258-265.
[26] A. Braun, H. Xu, F. Hu, P. Kocherlakota, D. Siegel, P. Chander, Z. Ungvari, A. Csiszar, M. Nedergaard, P. Ballabh, 2007, “Paucity of pericytes in germinal matrix vasculature of premature infants,” J. Neurosci., 27, 12012-12024.
[27] R. G. Bagley, W. Weber, C. Rouleau, B. A. Teicher, 2005, “Pericytes and endothelial precursor cells: cellular interactions and contributions to malignancy,” Cancer Res., 65, 9741-9750.
[28] S. Anatomie, 2010, “CNS pericytes: concepts, misconceptions, and a way out,” Glia, 58, 1-10.
[29] H. Gerhardt, C. Betsholtz, 2003, “Endothelial-pericyte interactions in angiogenesis,” Cell Tissue Res., 314, 15-23.
[30] P. D. Duffy, C. Owen, R. Balabanov, S. Murphy, T. Beaumont, J. A. Rafols, 2000, “Pericyte migration from the vascular wall in response to traumatic brain injury,” Microvasc. Res., 60, 55-69.
[31] E. Gunel, B. Duz, S. Kahraman, H. Kayaly, A. Kubar, E. Timurkaynak, 2002, “Early pericyte response to brain hypoxia in cats: an ultrastructural study,” Microvasc. Res., 64, 116-119.
[32] T. Nishioku, S. Dohgu, F. Takata, T. Eto, N. Ishikawa, K. B. Kodama, S. Nakagawa, A. Yamauchi, Y. Kataoka, 2009, “Detachment of brain pericytes from the basal lamina is involved in disruption of the blood–brain barrier caused by lipopolysaccharide-induced sepsis in mice,” Cell. Mol. Neurobiol., 29, 309-316.
[33] M. Gumbleton, K. L. Audus, 2001, “Progress and limitations in the use of in vitro cel cultures to serve as a permeability screen for the blood-brain barrier,” J. Pharm. Sci., 90, 1681-1698.
[34] L. L. Rubin, J. M. Staddon, 1999, “The cell biology of blood-brain barrier,” Annu. Rev. Neurosci., 22, 11-28.
[35] A. H. Schinkel, 1999, “P-Glycoprotein, a gatekeeper in the blood-brain barrier,” Adv. Drug Deliv. Rev., 36, 179-194.
[36] H. Sun, H. Dai, N. Shaik, W. F. Elmquist, 2003, “Drug efflux transporters in the CNS,” Adv. Drug Deliv. Rev., 55, 83-105.
[37] N. Perriere, S. Yousif, S. Cazaubon, N. Chaverot, F. Bourasset, S. Cisternino, X. Decleves, S. Hori, T. Terasaki, M. Deli, J. M. Scherrmann, J. Temsamani, F. Roux, P. O. Couraud, 2007, “A functional in vitro model of rat blood-brain barrier for molecular analysis of effux transporters,” Brain Res., 1150, 1-13.
[38] C. Coisne, L. Dehouck, C. Faveeuw, Y. Delplace, F. Miller, C. Morissette, L. Fenart, R. Cecchelli, P. Tremblay, B. Dehouck, 2005, “Mouse syngenic in vitro bolld-brain barrier model: a new tool to examine inflammatory events in cerebral endothelium,” Lab. Invest., 85, 734-746.
[39] N. F. Fletcher, M. G. Bexiga, D. J. Brayden, B. Brankin, B. J. Willett, M. J. Hosie, J. M. Jacque, J. J. Callanan, 2009, “Lymphocyte migration through the blood brain barrier (BBB) in feline immunodeficiency virus infection is significantly influenced by the pre-existence of virus and tumor necrosis factor (TNF)-α within the central nerbous system (CNS): studies using an in vitro feline BBB model,” Neuropathol. Appl. Neurobiol., 35, 592-602.
[40] Y. Zhang, C. S. Li, Y. Ye, K. Johnson, J. Poe, S. Johnson, W. Bobrowski, R. Garrido, C. Madhu, 2006, “Porcine brain microvessel endothelial cells as an in vitro model to predict in vivo blood-brain barrier permeability,” Drug Metb. Dispos., 34, 1935-1943.
[41] Y. C. Kuo, H. H. Chen, 2006, “Effect of nanoparticulate polybutylcyanoacrylate and methylmethacrylate– sulfopropylmethacrylate on the permeability of zidovudine and lamivudine across the in vitro blood–brain barrier,” Int. J. Pharmaceut., 327, 160-169.
[42] X. Zhang, D. Y. Alakhova, E. V. Batrakova, S. Li, Z. Yang, Y. Li, A. V. Kabanov, 2009, “Effect of pluronic p85 on amino acid transport in bovine brain microvessel endothelial cells,” J. Neuroimmume Pharmacol., 4, 35-46.
[43] R. Cecchelli, V. Berezowski, S. Lundquist, M. Culot, M. Renftel, M. P. Dehouck, L. Fenart, 2007, “Modelling of the blood-brain barrier in drug discovery and development,” Nat. Rev. Drug Discov., 6, 650-661.
[44] M. Smith, Y. Omidi, M. Gumbleton, 2007, “Primary porcine brain microvascular endothelial cells: biochemical and functional characterization as a model for drug transport and targeting,” J. Drug Target., 15, 253-268.
[45] D. Zenker, D. Begley, H. Bratzke, H. Rubsamen-Waigmann, H. von Briesen, 2003, “Human blood-derived macrophages engance barrier function of cultured primary bovine and human brain capillary endothelial cells,” J. Physiol., 551, 1023-1032.
[46] M. J. Bernas, F. L. Cardoso, S. K. Daley, M. E. Weinand, A. R. Campos, A. J. G. Ferreira, J. B. Hoying, M. H. Witte, D. Brites, Y. Persidsky, S. H. Ramirez, M. A. Brito, 2010, “Establishment of primary cultures of human brain microvascular endothelial cells to provide an in vitro cellular model of the blood-brain barrier,” Nat. Protoc., 5, 1247-1254.
[47] D. W. Beck, R. L. Roberts, J. J. Olson, 1986, “Glial cells influence membrane-associated enzyme activity at the blood-brain barrier,” Brain Res., 381, 131-137.
[48] M. Ramsauer, D. Krause, R. Dermietzel, 2002, “Angiogenesis of the blood-brain barrier in vitro and the function of cerebral pericytes,” FASEB J., 16, 1274-1276.
[49] S. Nakagawa, M. A. Deli, S. Nakao, M. Honda, K. Hayashi, R. Nakaoke, Y. Kataoka, M. Niwa, 2007, “Pericytes from brain microvessels strengthen the barrier integrity in primary cultures of rat brain endothelial cells,” Cell. Mol. Neurobiol., 27, 687-694.
[50] I. Megard, A. Garrigues, S. Orlowski, S. Jorajuria, P. Clayette, E. Ezan, A. Mabondzo, 2002, “A co-culture-based model of human blood-brain barrier: application to active transport of indinavir and in vivo-in vitro correlation,” Brain Res., 927, 153-167.
[51] A. Al Almad, M. Gassman, O. O. Ogunshola, 2009, “Maintaining blood-brain barrier integrity: pericytes perform better than astrocytes during prolonged oxygen deprivation,” J. Cell. Physiol., 218, 612-622.
[52] F. A. Ghazanfari, R. R. Stewart, 2001, “Characteristics of endothelial cells derived from the blood–brain barrier and of astrocytes in culture,” Brain Res., 890, 49-65.
[53] P. J. Gaillard, L. H. Voorwinden, J. L. Nielsen, A. Ivanov, R. Atsumi, H. Engman, C. Ringbom, A. G. de Boer, D. D. Breimer, 2001, “Establishment and functional characterization of an in vitro model of the blood–brain barrier, comprising a co-culture of brain capillary endothelial cells and astrocytes,” Eur. J. Pharm. Sci., 12, 215-222.
[54] Y. C. Kuo, C. H. Lu, 2011, “Effect of human astrocytes on the characteristics of human brain-microvascular endothelial cells in the blood–brain barrier,” Colloid Surf. B-Biointerfaces, 86. 225-231.
[55] J. A. Kim, N. D. Tran, Z. Li, F. Yang, W. Zhou, M. J. Fisher, 2006, “Brain endothelial hemostasis regulation by pericytes,” J. Cereb. Blood Flow Metab.,26, 209-217.
[56] A. Cestelli, C. Catania, S. D'Agostino, I. Di Liegro, L. Licata, G. Schiera, G. L. Pitarresi, G. Savettieri, V. De Caro, G. Giandalia, L. I. Giannola, 2001, “Functional feature of a novel model of blood brain barrier: studies on permeation of test compounds,” J. Control. Release, 76, 139-147.
[57] N. Sumi, T. Nishioku, F. Takata, J. Matsumoto, T. Watanabe, H. Shuto, A. Yamauchi, S. Dohgu, Y. Kataoka, 2010, “Lipopolysaccharide-activated microglia induce dysfunction of the blood–brain barrier in rat microvascular endothelial cells co-cultured with microglia,” Cell. Mol. Neurobiol., 30, 247-253.
[58] S. Nakagawa, M. A. Deli, H. Kawaguchi, T. Shimizudani, T. Shimono, A. Kittel, K. Tanaka, M. Niwa, 2009, “A new blood–brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes,” Neurochem. Int., 54, 253-263.
[59] G. Schiera, S. Sala, A. Gallo, M. P. Raffa, G. L. Pitarresi, G. Savettieri, I. Di Liegro, 2005, “Permeability properties of a three-cell type in vitro model of blood-brain barrier,” J. Cell. Mol. Med., 9, 373-379.
[60] J. Liu, T. V. Johnson, J. Lin, S. H. Ramirez, T. K. Bronich, S. Caplan, Y. Persidsky, H. E. Gendelman, J. Kipnis, 2007, “T cell independent mechanism for copolymer-1-induced neuroprotection,” Eur. J. Immunol., 37, 3143-3154.
[61] J. Haorah, K. Schall, S. H. Ramirez, Y. Persidsky, 2008, “Activation of protein tyrosine kinases and matrix metalloproteinases causes blood-brain barrier injury: novel mechanism for neurodegeneration associatedwith alcohol abuse,” Glia , 56, 78–88.
[62] S. H. Ramirez, D. Heilman, B. Morsey, R. Potula, J. Haorah, Y. Persidsky, 2008, “Activation of peroxisome proliferator-activated receptor gamma (PPARgamma) suppresses Rho GTPases in human brain microvascular endothelial cells and inhibits adhesion and transendothelial migration of HIV-1 infected monocytes,” J. Immunol., 180, 1854-1865.
[63] S. H. Ramirez, R. Potula, S. Fan, T. Eidem, A. Papugani, N. Reichenbach, H. Dykstra, B. B. Weksler, I. A. Romero, P. O. Couraud, Y. Persidsky, 2009, “Methamphetamine disrupts blood-brain barrier function by induction of oxidative stress in brain endothelial cells,” J. Cereb. Blood Flow Metab., 29, 1933-1945.
[64] J. Zaghi, B. Goldenson, M. Inayathullah, A. S. Lossinsky, A. Masoumi, H. Avagyan, M. Mahanian, M. Bernas, M. Weinand, M. J. Rosenthal, A. Espinosa-Jeffrey, J. de Vellis, D. B. Teplow, M. Fiala, 2009, “Alzheimer disease macrophages shuttle amyloid-beta from neurons to vessels, contributing to amyloid angiopathy,” Acta Neuropathol., 117, 111-124.
[65] W. Loscher, H, Potschka, 2005, “Blood-brain barrier active efflux transporters: ATP-binding cassette gene family,” Neurotherapeutics, 2005, 2, 86-98.
[66] J. H. Lin, 2004, “How significant is the role of P-glycoprotein in drug absorption and brain uptake?” Drugs Today, 40, 5-22.
[67] M. F. Fromm, 2003, “Importance of P-glycoprotein for drug disposition in humans,” Eur J Clin Invest., 33, 6-9.
[68] A. H. Schinkel, J. W. Jonker, 2003, “Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview,” Adv. Drug. Deliv. Rev., 55, 3-29.
[69] W. Loscher, H. Potschka, 2002, “Role of multidrug transporters in phar-macoresistance to antiepileptic drugs,” J. Pharmacol. Exp. Ther., 301, 7-14.
[70] R. Derynck, Y. E. Zhang, 2003, “Smad-dependent and Smad-independent pathways in TGF-h family signaling,” Nature, 425, 577-584.
[71] K. C. Flanders, R. F. Ren, C. P. Lippa, 1998, “Transforming growth factor-hs in neurodegenerative disease,” Prog. Neurobiol., 54, 71-85.
[72] S. Dohgu, F. Takata, A. Yamauchi, S. Nakagawa, T. Egawa, M. Naito, T. Tsuruo, Y. Sawada, M. Niwa, Y. Kataoka, 2005, “Brain pericytes contribute to the induction and up-regulation of blood–brain barrier functions through transforming growth factor-β production,” Brain Res., 1038, 208-215.
[73] S. C. Shih, M. Ju, N. Liu, J. R. Mo, J. J. Ney, L. E. H. Smith, 2003, “Transforming growth factor β1 induction of vascular endothelial growth factor receptor 1: Mechanism of pericyte-induced vascular survival in vivo,” P. Natl. Acad. Sci. USA, 100, 15859-15864.
[74] W. Y. Kim, H. Y. Lee, 2009, “Brain angiogenesis in developmental
and pathological processes: mechanism and therapeutic intervention in brain tumors,” FEBS J., 276, 4653-4664.
[75] M. R. Machein, K. H. Plate, 2000, “VEGF in brain tumors,” J.
Neurooncol., 50, 109-120.
[76] M. Shibuya, 2009, “Brain angiogenesis in developmental and
pathological processes: therapeutic aspects of vascular endothelial growth factor,” FEBS J., 276, 4636-4643.
[77] L. P. Aiello, S. E. Bursell, A. Clermont, E. Duh, H. Ishii, C. Takagi,
F. Mori, T. A. Ciulla, K. Ways, M. Jirousek, L. E. Smith, G. L. King, 1997, “Vascular endothelial growth factor-induced retinal permeability is mediated by protein kinase C in vivo and suppressed by an orally effective beta-isoform-selective in-hibitor,” Diabetes, 46, 1473-1480.
[78] M. J. Merrill, E. H. Oldfield , 2005, “A reassessment of vascular endothelial growth factor in central nervous system pathology,” J. Neurosurg., 103, 853-868.
[79] G. Bergers, R. Brekken, G. McMahon, T. H. Vu, T. Itoh, K. Tamaki, K. Tanzawa, P. Thorpe, S. Itohara, Z. Werb, D. Hanahan, 2000, “Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis,” Nat. Cell Biol., 2, 737-744.
[80] B. Davis, J. Tang, L. Zhang, D. Mu, X. Jiang, V. Biran, Z. Vexler, D. M. Ferriero, 2010, “Role of vasodilator stimulated phosphoprotein in VEGF induced blood–brain barrier permeability in endothelial cell monolayers,” Int. J. Dev. Neurosci., 28, 423-428.
[81] B. T. Hawkins, D. B. Sykes, D. S. Miller, 2011, “Rapid, reversible modulation of blood–brain barrier p-glycoprotein transport activity by vascular endothelial growth factor,” J. Neurosci., 30(4), 1417-1425.
[82] E. Candelario-Jalil, Y. Yang, G. A. Rosenberg, 2009, “Diverse roles of matrix metalloproteinases and tissue inhibitors of metalloproteinases in neuroinflammation and cerebral ischemia,” Neuroscience, 158, 983-994.
[83] C. Lohmann, M. Krischke, J. Wegener, H. J. Galla, 2004, “Tyrosine
phosphatase inhibition induces loss of blood–brain barrier integrity by matrix metalloproteinase-dependent and-independent pathways,” Brain Res., 995, 184-196.
[84] M. Asahi, X. Wang, T. Mori, T. Sumii, J. C. Jung, M. A. Moskowitz, M. E. Fini, E. H. Lo, 2001, “Effects of matrix metalloproteinase-9 gene knock-out on the proteolysis of blood–brain barrier and white matter components after cerebral ischemia,” J. Neurosci., 21, 7724-7732.
[85] R. R. Sood, T. Taheri, E. Candelario-Jalil, E. Y. Estrada, G. A. Rosenberg, 2008, “Early beneficial effect of matrix metalloproteinase inhibition on blood–brain barrier permeability as measured by magnetic resonance imaging countered by impaired long-term recovery after stroke in rat brain,” J. Cerebr. Blood. F. Met., 28, 431-438.
[86] E. E. Schneeberger, R. D. Lynch, 1992, “Structure, function, and regulation of cellular thght junctions,” Am. J. Physiol., 262, 647-661.
[87] S. Tsukita, M. Furuse, M. Itoh, 1996, “Molecular dissection of tight junctions,” Cell Struct. Funct., 21, 381-385.
[88] S. Hamm, B. Dehouck, J. Kraus, K. Wolburg-Buchholz, H. Wolburg, W. Risau, R. Cecchelli, B. Engelhardt, M. P. Dehouck, 2004, “Astrocyte mediated modulation of blood-brain barrier permeability does not correlate with a loss of tight junction proteins from the cellular contacts,” Cell Tissue Res., 315, 157-166.
[89] A. A. Ahmad, M. Gassmann, O. O. Ogunshola, 2009, “Maintaining blood–brain barrier integrity: pericytes perform better than astrocytes during prolonged oxygen deprivation” J. Cell. Physiol., 218, 612-622.
[90] G. Thanabalasundaram, C. Pieper, M, Lischper, H. J. Galla, 2010, “Regulation of the blood–brain barrier integrity by pericytes via matrix metalloproteinases mediated activation of vascular endothelial growth factor in vitro,” Brain Res., 1347, 1-10.
[91] N. F. Flecher, D. J. Brayden, B. Brankin, S. Worrall, J. J. Callanan, 2006, “Growth and characterization of a cell culture model of the feline blood-brain barrier,” Vet. Immunol. Immunopathol., 109, 233-244.
[92] J. Kraus, A. K. Ling, S. Hamm, K. Voigt, P. Oschmann, B. Engelhardt, 2004, “Interferon-beta stabilizes characteristics of brain endothelial cells in vitro,” Ann. Neurol., 56, 192-205.
[93] Y. Hayashi, M. Nomura, S. Yamagishi, S. Harada, J. Yamashita, H. Yamamoto, 1997, “Induction of various blood-brain barrier properties in non-neural endothelial cells by close by close apposition to co-cultured astrocytes,” Glia, 19, 13-26.
[94] A. Armulik, G. Genove´, M. Ma¨e, M. Nisancioglu, E. Wallgard, C. Niaudet, L. He, J. Norlin, P. Lindblom, K. Strittmatter, B. Johansson, C. Betsholtz, 2010, “Pericytes regulate the blood–brain barrier,” Nature, 468, 557-562.
[95] T. Fujita, H. Yamada, M. Fukuzumi, A. Nishimaki, A. Yamamoto, S. Muranishi, 1997, “Calcein is excreted from the intestinal mucosal cell membrane by the active transport system,” Life Sci., 60, 307-313.
[96] P. Limtrakul, W. Chearwae, S. Shukla, C. Phisalphong, S. V. Ambudkar, 2007, “Modulation of function of three ABC drug transporters, P-glycoprotein (ABCB1), mitoxantrone resistance protein (ABCG2) and multidrug resistance protein 1 (ABCC1) by tetrahydrocurcumin, a major metabolite of curcumin,” Mol. Cell Biochem., 296, 85-95.
[97] V. Berezowski, C. Landry, M. P. Dehouck, R. Cecchelli, L. Fenart,
2004, “Contribution of glial cells and pericytes to the mRNA profiles of P-glycoprotein and multidrug resistance-associated proteins in an in vitro model of the blood–brain barrier,” Brain Res., 1018, 1-9.
[98] S. Hori, S. Ohtsuki, K. Hosoya, E. Nakashima, T. Terasaki, 2004, “A pericyte-derived angiopoietin-1 multimeric complex induces occludin gene expression in brain capillary endothelial cells through Tie-2 activation in vitro,” J. Neurochem., 89, 503-513.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top