|
[1] P. Jeffrey, S. Summerfield, 2010, “Assessment of the blood–brain barrier in CNS drug discovery,” Neurobiol. dis., 37, 33-37. [2] M. A. Petty, E. H. Lo, 2002, “Junctional complexes of the blood–brain barrier: permeability changes in neuroinflammation,”Prog. Neurobiol., 68, 311-323. [3] F. L. Cardoso, D. Brites, M. A. Brito, 2010, “Looking at the blood–brain barrier: molecular anatomy and possible investigation approaches,” Brain Res. Rev., 64, 328-363. [4] B. T. Hawkins, T. P. Davis, 2005,“The blood-brain barrier/neurovascular unit in health and disease,” Pharmacol. Rev., 57, 173-185. [5] E. Khan, 2005, “An examination of the blood-brain barrier in health and disease,” Br. J. Nurs., 14, 509-513. [6] P. ballabh, A. Braun, M. Nedergaard, 2004,“The blood-brain barrier: an overciew: structure, regulation, and clinical implications,” Neurobiol. Dis., 16, 1-13. [7] Y. Persidsky, S. H. Ramirez, J. Haorah, G. D. Kanmogne, 2006, “Blood-brain barrier : structural components and function under physiologic and pathologic condition,” J. Neuroimmune. Pharmacol., 1, 223-236. [8] H. Wolburg, S. Noell, A. Mack, K. Wolburg-Buchholz, H. P. Fallier-Becker, 2009, “Brain endothelial cells and the glio-vascular complex,” Cell Tissue Res., 335, 75-96. [9] L. González-Mariscal, R. Tapia, D. Chamorro, 2008. “Crosstalk of tight junction components with signaling pathways,” Biochim. Biophys. Acta, 1778, 729-756. [10] N. Weiss, F. Miller, S. Cazaubon, P. O. Couraud, 2009, “The blood-brain barrier in brain homeostasis and neurological diseases,” Biochim. Biophys. Acta, 1788, 842-857. [11] S. Terry, M. Nie, K. Matter, M. S. Balda, 2010, “ Rho signaling and tight junction functions,” Physiology, 25, 16-26. [12] S. W. Lee, W. J. Kim, J. A. Park, Y. K. Choi, Y. W. Kwon, K. W. Kim, 2006, “Blood-brain barrier interfaces and brain tumors,” Arch. Pharm. Res., 29, 265-275. [13] N. Marchi, M. Cavaglia, V. Fazio, S. Bhudia, K. Hallene, D. Janigro, 2004, “Peripheral markers of blood-brain barrier damage,” Clin. Chim. Acta 342, 1-12. [14] B. V. Zlokovic, 2008, “The blood-brain barrier in health and chronic neurodegenerative disorders, ” Neuron, 57, 178-201. [15] A. Zozulay, C. Weidenfeller, H. J. Galla, 2008, “Pericyte-endothelial cell interaction increases MMP-9 secretion at the blood-brain barrier in vitro,” Brain Res., 1189, 1-11. [16] Y. K. Choi, K. W. Kim, 2008, “Blood-neural barrier : its diversity and coordinated cell-to-cell communication,” BMB. Rep., 41, 345-352. [17] A. R. Calabria, E. V. Shusta, 2008, “A genomic comparison of in vivo and in vitro brain microvascular endothelial cells,” J. Cereb. Blood Flow Metab., 28, 135-148. [18] M. Ueno, 2007, “Molecular anatomy of the brain endothelial barrier: an overview of the distributional features,” Curr. Med. Chem., 14, 1199-1206. [19] B. B. Weksler, E. A. Subileau, N. Perriere, P. Charneau, K. Holloway, M. Leveque, H. Tricoire-Leignel, A. Nicotra, S. Bourdoulous, P. Turowski, D. K. Male, F. Roux, J. Greenwood, I. A. Romero, P. O. Couraud, 2005, “Blood-brain barrier-specific properties of a human adult brain endothelial cell line,” FASEB. J., 19, 1872-1874. [20] N. J. Abbott, 2002, “Astrocyte-endothelial interactions and blood-brain barrier permeability,” J. Anat., 200, 629-638. [21] A. G. de Boer, P. J. Gaillard, 2006, “Blood-brain barrier dysfunction and recovery, ” J. Neural. Transm., 113, 455-462. [22] V. V. Jeliazkova-Mecheva, D. J. Bobily, 2003, “A porcine astrocyte/endothelia cell co-culture model of the blood-brain barrier,” Brain Res. Protoc., 12, 91-98. [23] N. J. Abbott, L. Ronnback, E. Hansson, 2006, “Astrocyte-endothelial interactions at the blood–brain barrier,” Nat. Rev. Neurosci., 7, 41-53. [24] V. Siddharthan, Y. V. Kim, S. Liu, K. S. Kim, 2007, “Human astrocytes/astrocyte-conditioned medium and shear stress enhance the barrier properties of human brain microvascular endothelial cell,” Brain Res., 1147, 39-50. [25] C. H. Lai, K. H. Kuo, 2005, “The critical component to establish in vitro BBB model: pericyte,” Brain Res. Rev., 50, 258-265. [26] A. Braun, H. Xu, F. Hu, P. Kocherlakota, D. Siegel, P. Chander, Z. Ungvari, A. Csiszar, M. Nedergaard, P. Ballabh, 2007, “Paucity of pericytes in germinal matrix vasculature of premature infants,” J. Neurosci., 27, 12012-12024. [27] R. G. Bagley, W. Weber, C. Rouleau, B. A. Teicher, 2005, “Pericytes and endothelial precursor cells: cellular interactions and contributions to malignancy,” Cancer Res., 65, 9741-9750. [28] S. Anatomie, 2010, “CNS pericytes: concepts, misconceptions, and a way out,” Glia, 58, 1-10. [29] H. Gerhardt, C. Betsholtz, 2003, “Endothelial-pericyte interactions in angiogenesis,” Cell Tissue Res., 314, 15-23. [30] P. D. Duffy, C. Owen, R. Balabanov, S. Murphy, T. Beaumont, J. A. Rafols, 2000, “Pericyte migration from the vascular wall in response to traumatic brain injury,” Microvasc. Res., 60, 55-69. [31] E. Gunel, B. Duz, S. Kahraman, H. Kayaly, A. Kubar, E. Timurkaynak, 2002, “Early pericyte response to brain hypoxia in cats: an ultrastructural study,” Microvasc. Res., 64, 116-119. [32] T. Nishioku, S. Dohgu, F. Takata, T. Eto, N. Ishikawa, K. B. Kodama, S. Nakagawa, A. Yamauchi, Y. Kataoka, 2009, “Detachment of brain pericytes from the basal lamina is involved in disruption of the blood–brain barrier caused by lipopolysaccharide-induced sepsis in mice,” Cell. Mol. Neurobiol., 29, 309-316. [33] M. Gumbleton, K. L. Audus, 2001, “Progress and limitations in the use of in vitro cel cultures to serve as a permeability screen for the blood-brain barrier,” J. Pharm. Sci., 90, 1681-1698. [34] L. L. Rubin, J. M. Staddon, 1999, “The cell biology of blood-brain barrier,” Annu. Rev. Neurosci., 22, 11-28. [35] A. H. Schinkel, 1999, “P-Glycoprotein, a gatekeeper in the blood-brain barrier,” Adv. Drug Deliv. Rev., 36, 179-194. [36] H. Sun, H. Dai, N. Shaik, W. F. Elmquist, 2003, “Drug efflux transporters in the CNS,” Adv. Drug Deliv. Rev., 55, 83-105. [37] N. Perriere, S. Yousif, S. Cazaubon, N. Chaverot, F. Bourasset, S. Cisternino, X. Decleves, S. Hori, T. Terasaki, M. Deli, J. M. Scherrmann, J. Temsamani, F. Roux, P. O. Couraud, 2007, “A functional in vitro model of rat blood-brain barrier for molecular analysis of effux transporters,” Brain Res., 1150, 1-13. [38] C. Coisne, L. Dehouck, C. Faveeuw, Y. Delplace, F. Miller, C. Morissette, L. Fenart, R. Cecchelli, P. Tremblay, B. Dehouck, 2005, “Mouse syngenic in vitro bolld-brain barrier model: a new tool to examine inflammatory events in cerebral endothelium,” Lab. Invest., 85, 734-746. [39] N. F. Fletcher, M. G. Bexiga, D. J. Brayden, B. Brankin, B. J. Willett, M. J. Hosie, J. M. Jacque, J. J. Callanan, 2009, “Lymphocyte migration through the blood brain barrier (BBB) in feline immunodeficiency virus infection is significantly influenced by the pre-existence of virus and tumor necrosis factor (TNF)-α within the central nerbous system (CNS): studies using an in vitro feline BBB model,” Neuropathol. Appl. Neurobiol., 35, 592-602. [40] Y. Zhang, C. S. Li, Y. Ye, K. Johnson, J. Poe, S. Johnson, W. Bobrowski, R. Garrido, C. Madhu, 2006, “Porcine brain microvessel endothelial cells as an in vitro model to predict in vivo blood-brain barrier permeability,” Drug Metb. Dispos., 34, 1935-1943. [41] Y. C. Kuo, H. H. Chen, 2006, “Effect of nanoparticulate polybutylcyanoacrylate and methylmethacrylate– sulfopropylmethacrylate on the permeability of zidovudine and lamivudine across the in vitro blood–brain barrier,” Int. J. Pharmaceut., 327, 160-169. [42] X. Zhang, D. Y. Alakhova, E. V. Batrakova, S. Li, Z. Yang, Y. Li, A. V. Kabanov, 2009, “Effect of pluronic p85 on amino acid transport in bovine brain microvessel endothelial cells,” J. Neuroimmume Pharmacol., 4, 35-46. [43] R. Cecchelli, V. Berezowski, S. Lundquist, M. Culot, M. Renftel, M. P. Dehouck, L. Fenart, 2007, “Modelling of the blood-brain barrier in drug discovery and development,” Nat. Rev. Drug Discov., 6, 650-661. [44] M. Smith, Y. Omidi, M. Gumbleton, 2007, “Primary porcine brain microvascular endothelial cells: biochemical and functional characterization as a model for drug transport and targeting,” J. Drug Target., 15, 253-268. [45] D. Zenker, D. Begley, H. Bratzke, H. Rubsamen-Waigmann, H. von Briesen, 2003, “Human blood-derived macrophages engance barrier function of cultured primary bovine and human brain capillary endothelial cells,” J. Physiol., 551, 1023-1032. [46] M. J. Bernas, F. L. Cardoso, S. K. Daley, M. E. Weinand, A. R. Campos, A. J. G. Ferreira, J. B. Hoying, M. H. Witte, D. Brites, Y. Persidsky, S. H. Ramirez, M. A. Brito, 2010, “Establishment of primary cultures of human brain microvascular endothelial cells to provide an in vitro cellular model of the blood-brain barrier,” Nat. Protoc., 5, 1247-1254. [47] D. W. Beck, R. L. Roberts, J. J. Olson, 1986, “Glial cells influence membrane-associated enzyme activity at the blood-brain barrier,” Brain Res., 381, 131-137. [48] M. Ramsauer, D. Krause, R. Dermietzel, 2002, “Angiogenesis of the blood-brain barrier in vitro and the function of cerebral pericytes,” FASEB J., 16, 1274-1276. [49] S. Nakagawa, M. A. Deli, S. Nakao, M. Honda, K. Hayashi, R. Nakaoke, Y. Kataoka, M. Niwa, 2007, “Pericytes from brain microvessels strengthen the barrier integrity in primary cultures of rat brain endothelial cells,” Cell. Mol. Neurobiol., 27, 687-694. [50] I. Megard, A. Garrigues, S. Orlowski, S. Jorajuria, P. Clayette, E. Ezan, A. Mabondzo, 2002, “A co-culture-based model of human blood-brain barrier: application to active transport of indinavir and in vivo-in vitro correlation,” Brain Res., 927, 153-167. [51] A. Al Almad, M. Gassman, O. O. Ogunshola, 2009, “Maintaining blood-brain barrier integrity: pericytes perform better than astrocytes during prolonged oxygen deprivation,” J. Cell. Physiol., 218, 612-622. [52] F. A. Ghazanfari, R. R. Stewart, 2001, “Characteristics of endothelial cells derived from the blood–brain barrier and of astrocytes in culture,” Brain Res., 890, 49-65. [53] P. J. Gaillard, L. H. Voorwinden, J. L. Nielsen, A. Ivanov, R. Atsumi, H. Engman, C. Ringbom, A. G. de Boer, D. D. Breimer, 2001, “Establishment and functional characterization of an in vitro model of the blood–brain barrier, comprising a co-culture of brain capillary endothelial cells and astrocytes,” Eur. J. Pharm. Sci., 12, 215-222. [54] Y. C. Kuo, C. H. Lu, 2011, “Effect of human astrocytes on the characteristics of human brain-microvascular endothelial cells in the blood–brain barrier,” Colloid Surf. B-Biointerfaces, 86. 225-231. [55] J. A. Kim, N. D. Tran, Z. Li, F. Yang, W. Zhou, M. J. Fisher, 2006, “Brain endothelial hemostasis regulation by pericytes,” J. Cereb. Blood Flow Metab.,26, 209-217. [56] A. Cestelli, C. Catania, S. D'Agostino, I. Di Liegro, L. Licata, G. Schiera, G. L. Pitarresi, G. Savettieri, V. De Caro, G. Giandalia, L. I. Giannola, 2001, “Functional feature of a novel model of blood brain barrier: studies on permeation of test compounds,” J. Control. Release, 76, 139-147. [57] N. Sumi, T. Nishioku, F. Takata, J. Matsumoto, T. Watanabe, H. Shuto, A. Yamauchi, S. Dohgu, Y. Kataoka, 2010, “Lipopolysaccharide-activated microglia induce dysfunction of the blood–brain barrier in rat microvascular endothelial cells co-cultured with microglia,” Cell. Mol. Neurobiol., 30, 247-253. [58] S. Nakagawa, M. A. Deli, H. Kawaguchi, T. Shimizudani, T. Shimono, A. Kittel, K. Tanaka, M. Niwa, 2009, “A new blood–brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes,” Neurochem. Int., 54, 253-263. [59] G. Schiera, S. Sala, A. Gallo, M. P. Raffa, G. L. Pitarresi, G. Savettieri, I. Di Liegro, 2005, “Permeability properties of a three-cell type in vitro model of blood-brain barrier,” J. Cell. Mol. Med., 9, 373-379. [60] J. Liu, T. V. Johnson, J. Lin, S. H. Ramirez, T. K. Bronich, S. Caplan, Y. Persidsky, H. E. Gendelman, J. Kipnis, 2007, “T cell independent mechanism for copolymer-1-induced neuroprotection,” Eur. J. Immunol., 37, 3143-3154. [61] J. Haorah, K. Schall, S. H. Ramirez, Y. Persidsky, 2008, “Activation of protein tyrosine kinases and matrix metalloproteinases causes blood-brain barrier injury: novel mechanism for neurodegeneration associatedwith alcohol abuse,” Glia , 56, 78–88. [62] S. H. Ramirez, D. Heilman, B. Morsey, R. Potula, J. Haorah, Y. Persidsky, 2008, “Activation of peroxisome proliferator-activated receptor gamma (PPARgamma) suppresses Rho GTPases in human brain microvascular endothelial cells and inhibits adhesion and transendothelial migration of HIV-1 infected monocytes,” J. Immunol., 180, 1854-1865. [63] S. H. Ramirez, R. Potula, S. Fan, T. Eidem, A. Papugani, N. Reichenbach, H. Dykstra, B. B. Weksler, I. A. Romero, P. O. Couraud, Y. Persidsky, 2009, “Methamphetamine disrupts blood-brain barrier function by induction of oxidative stress in brain endothelial cells,” J. Cereb. Blood Flow Metab., 29, 1933-1945. [64] J. Zaghi, B. Goldenson, M. Inayathullah, A. S. Lossinsky, A. Masoumi, H. Avagyan, M. Mahanian, M. Bernas, M. Weinand, M. J. Rosenthal, A. Espinosa-Jeffrey, J. de Vellis, D. B. Teplow, M. Fiala, 2009, “Alzheimer disease macrophages shuttle amyloid-beta from neurons to vessels, contributing to amyloid angiopathy,” Acta Neuropathol., 117, 111-124. [65] W. Loscher, H, Potschka, 2005, “Blood-brain barrier active efflux transporters: ATP-binding cassette gene family,” Neurotherapeutics, 2005, 2, 86-98. [66] J. H. Lin, 2004, “How significant is the role of P-glycoprotein in drug absorption and brain uptake?” Drugs Today, 40, 5-22. [67] M. F. Fromm, 2003, “Importance of P-glycoprotein for drug disposition in humans,” Eur J Clin Invest., 33, 6-9. [68] A. H. Schinkel, J. W. Jonker, 2003, “Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview,” Adv. Drug. Deliv. Rev., 55, 3-29. [69] W. Loscher, H. Potschka, 2002, “Role of multidrug transporters in phar-macoresistance to antiepileptic drugs,” J. Pharmacol. Exp. Ther., 301, 7-14. [70] R. Derynck, Y. E. Zhang, 2003, “Smad-dependent and Smad-independent pathways in TGF-h family signaling,” Nature, 425, 577-584. [71] K. C. Flanders, R. F. Ren, C. P. Lippa, 1998, “Transforming growth factor-hs in neurodegenerative disease,” Prog. Neurobiol., 54, 71-85. [72] S. Dohgu, F. Takata, A. Yamauchi, S. Nakagawa, T. Egawa, M. Naito, T. Tsuruo, Y. Sawada, M. Niwa, Y. Kataoka, 2005, “Brain pericytes contribute to the induction and up-regulation of blood–brain barrier functions through transforming growth factor-β production,” Brain Res., 1038, 208-215. [73] S. C. Shih, M. Ju, N. Liu, J. R. Mo, J. J. Ney, L. E. H. Smith, 2003, “Transforming growth factor β1 induction of vascular endothelial growth factor receptor 1: Mechanism of pericyte-induced vascular survival in vivo,” P. Natl. Acad. Sci. USA, 100, 15859-15864. [74] W. Y. Kim, H. Y. Lee, 2009, “Brain angiogenesis in developmental and pathological processes: mechanism and therapeutic intervention in brain tumors,” FEBS J., 276, 4653-4664. [75] M. R. Machein, K. H. Plate, 2000, “VEGF in brain tumors,” J. Neurooncol., 50, 109-120. [76] M. Shibuya, 2009, “Brain angiogenesis in developmental and pathological processes: therapeutic aspects of vascular endothelial growth factor,” FEBS J., 276, 4636-4643. [77] L. P. Aiello, S. E. Bursell, A. Clermont, E. Duh, H. Ishii, C. Takagi, F. Mori, T. A. Ciulla, K. Ways, M. Jirousek, L. E. Smith, G. L. King, 1997, “Vascular endothelial growth factor-induced retinal permeability is mediated by protein kinase C in vivo and suppressed by an orally effective beta-isoform-selective in-hibitor,” Diabetes, 46, 1473-1480. [78] M. J. Merrill, E. H. Oldfield , 2005, “A reassessment of vascular endothelial growth factor in central nervous system pathology,” J. Neurosurg., 103, 853-868. [79] G. Bergers, R. Brekken, G. McMahon, T. H. Vu, T. Itoh, K. Tamaki, K. Tanzawa, P. Thorpe, S. Itohara, Z. Werb, D. Hanahan, 2000, “Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis,” Nat. Cell Biol., 2, 737-744. [80] B. Davis, J. Tang, L. Zhang, D. Mu, X. Jiang, V. Biran, Z. Vexler, D. M. Ferriero, 2010, “Role of vasodilator stimulated phosphoprotein in VEGF induced blood–brain barrier permeability in endothelial cell monolayers,” Int. J. Dev. Neurosci., 28, 423-428. [81] B. T. Hawkins, D. B. Sykes, D. S. Miller, 2011, “Rapid, reversible modulation of blood–brain barrier p-glycoprotein transport activity by vascular endothelial growth factor,” J. Neurosci., 30(4), 1417-1425. [82] E. Candelario-Jalil, Y. Yang, G. A. Rosenberg, 2009, “Diverse roles of matrix metalloproteinases and tissue inhibitors of metalloproteinases in neuroinflammation and cerebral ischemia,” Neuroscience, 158, 983-994. [83] C. Lohmann, M. Krischke, J. Wegener, H. J. Galla, 2004, “Tyrosine phosphatase inhibition induces loss of blood–brain barrier integrity by matrix metalloproteinase-dependent and-independent pathways,” Brain Res., 995, 184-196. [84] M. Asahi, X. Wang, T. Mori, T. Sumii, J. C. Jung, M. A. Moskowitz, M. E. Fini, E. H. Lo, 2001, “Effects of matrix metalloproteinase-9 gene knock-out on the proteolysis of blood–brain barrier and white matter components after cerebral ischemia,” J. Neurosci., 21, 7724-7732. [85] R. R. Sood, T. Taheri, E. Candelario-Jalil, E. Y. Estrada, G. A. Rosenberg, 2008, “Early beneficial effect of matrix metalloproteinase inhibition on blood–brain barrier permeability as measured by magnetic resonance imaging countered by impaired long-term recovery after stroke in rat brain,” J. Cerebr. Blood. F. Met., 28, 431-438. [86] E. E. Schneeberger, R. D. Lynch, 1992, “Structure, function, and regulation of cellular thght junctions,” Am. J. Physiol., 262, 647-661. [87] S. Tsukita, M. Furuse, M. Itoh, 1996, “Molecular dissection of tight junctions,” Cell Struct. Funct., 21, 381-385. [88] S. Hamm, B. Dehouck, J. Kraus, K. Wolburg-Buchholz, H. Wolburg, W. Risau, R. Cecchelli, B. Engelhardt, M. P. Dehouck, 2004, “Astrocyte mediated modulation of blood-brain barrier permeability does not correlate with a loss of tight junction proteins from the cellular contacts,” Cell Tissue Res., 315, 157-166. [89] A. A. Ahmad, M. Gassmann, O. O. Ogunshola, 2009, “Maintaining blood–brain barrier integrity: pericytes perform better than astrocytes during prolonged oxygen deprivation” J. Cell. Physiol., 218, 612-622. [90] G. Thanabalasundaram, C. Pieper, M, Lischper, H. J. Galla, 2010, “Regulation of the blood–brain barrier integrity by pericytes via matrix metalloproteinases mediated activation of vascular endothelial growth factor in vitro,” Brain Res., 1347, 1-10. [91] N. F. Flecher, D. J. Brayden, B. Brankin, S. Worrall, J. J. Callanan, 2006, “Growth and characterization of a cell culture model of the feline blood-brain barrier,” Vet. Immunol. Immunopathol., 109, 233-244. [92] J. Kraus, A. K. Ling, S. Hamm, K. Voigt, P. Oschmann, B. Engelhardt, 2004, “Interferon-beta stabilizes characteristics of brain endothelial cells in vitro,” Ann. Neurol., 56, 192-205. [93] Y. Hayashi, M. Nomura, S. Yamagishi, S. Harada, J. Yamashita, H. Yamamoto, 1997, “Induction of various blood-brain barrier properties in non-neural endothelial cells by close by close apposition to co-cultured astrocytes,” Glia, 19, 13-26. [94] A. Armulik, G. Genove´, M. Ma¨e, M. Nisancioglu, E. Wallgard, C. Niaudet, L. He, J. Norlin, P. Lindblom, K. Strittmatter, B. Johansson, C. Betsholtz, 2010, “Pericytes regulate the blood–brain barrier,” Nature, 468, 557-562. [95] T. Fujita, H. Yamada, M. Fukuzumi, A. Nishimaki, A. Yamamoto, S. Muranishi, 1997, “Calcein is excreted from the intestinal mucosal cell membrane by the active transport system,” Life Sci., 60, 307-313. [96] P. Limtrakul, W. Chearwae, S. Shukla, C. Phisalphong, S. V. Ambudkar, 2007, “Modulation of function of three ABC drug transporters, P-glycoprotein (ABCB1), mitoxantrone resistance protein (ABCG2) and multidrug resistance protein 1 (ABCC1) by tetrahydrocurcumin, a major metabolite of curcumin,” Mol. Cell Biochem., 296, 85-95. [97] V. Berezowski, C. Landry, M. P. Dehouck, R. Cecchelli, L. Fenart, 2004, “Contribution of glial cells and pericytes to the mRNA profiles of P-glycoprotein and multidrug resistance-associated proteins in an in vitro model of the blood–brain barrier,” Brain Res., 1018, 1-9. [98] S. Hori, S. Ohtsuki, K. Hosoya, E. Nakashima, T. Terasaki, 2004, “A pericyte-derived angiopoietin-1 multimeric complex induces occludin gene expression in brain capillary endothelial cells through Tie-2 activation in vitro,” J. Neurochem., 89, 503-513.
|