|
1. Randolph, G.J., et al., The Lymphatic System: Integral Roles in Immunity. Annual review of immunology, 2017. 35: p. 31-52. 2. Kim, K.-W. and J.-H. Song, Emerging Roles of Lymphatic Vasculature in Immunity. Immune Network, 2017. 17(1): p. 68-76. 3. Cueni, L.N. and M. Detmar, The Lymphatic System in Health and Disease. Lymphatic research and biology, 2008. 6(3-4): p. 109-122. 4. Paduch, R., The role of lymphangiogenesis and angiogenesis in tumor metastasis. Cell Oncol (Dordr), 2016. 39(5): p. 397-410. 5. Lim, H.Y., et al., Hypercholesterolemic mice exhibit lymphatic vessel dysfunction and degeneration. Am J Pathol, 2009. 175(3): p. 1328-37. 6. Ran, S., et al., Lymphangiogenesis and Lymphatic Metastasis in Breast Cancer. Pathophysiology : the official journal of the International Society for Pathophysiology / ISP, 2010. 17(4): p. 229-251. 7. Mumprecht, V. and M. Detmar, Lymphangiogenesis and cancer metastasis. Journal of Cellular and Molecular Medicine, 2009. 13(8a): p. 1405-1416. 8. Munn, L.L. and T.P. Padera, Imaging the lymphatic system. Microvasc Res, 2014. 96: p. 55-63. 9. Eklund, L., M. Bry, and K. Alitalo, Mouse models for studying angiogenesis and lymphangiogenesis in cancer. Mol Oncol, 2013. 7(2): p. 259-82. 10. Fortuin, A., et al., Molecular and Functional Imaging for Detection of Lymph Node Metastases in Prostate Cancer. International Journal of Molecular Sciences, 2013. 14(7): p. 13842-13857. 11. Lu, Q., et al., MR Lymphography of Lymphatic Vessels in Lower Extremity with Gynecologic Oncology-Related Lymphedema. PLOS ONE, 2012. 7(11): p. e50319. 12. Rasmussen, J.C., et al., Lymphatic Imaging in Humans with Near-Infrared Fluorescence. Current opinion in biotechnology, 2009. 20(1): p. 74-82. 13. Takenaka, T., et al., Prediction of true-negative lymph node metastasis in clinical IA non-small cell lung cancer by measuring standardized uptake values on positron emission tomography. Surg Today, 2012. 42(10): p. 934-9. 14. Seo, M.J., et al., Detection of internal mammary lymph node metastasis with (18)F-fluorodeoxyglucose positron emission tomography/computed tomography in patients with stage III breast cancer. Eur J Nucl Med Mol Imaging, 2014. 41(3): p. 438-45. 15. Gashev, A.A., T. Nagai, and E.A. Bridenbaugh, Indocyanine green and lymphatic imaging: current problems. Lymphat Res Biol, 2010. 8(2): p. 127-30. 16. Vakoc, B.J., et al., Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging. Nat Med, 2009. 15(10): p. 1219-23. 17. Qin, W., U. Baran, and R. Wang, Lymphatic response to depilation-induced inflammation in mouse ear assessed with label-free optical lymphangiography. Lasers Surg Med, 2015. 47(8): p. 669-76. 18. Yousefi, S., Z. Zhi, and R.K. Wang, Label-free optical imaging of lymphatic vessels within tissue beds in vivo. IEEE J Sel Top Quantum Electron, 2014. 20(2): p. 6800510. 19. Leachman, S.A., et al., Methods of Melanoma Detection. Cancer Treat Res, 2016. 167: p. 51-105. 20. Cadili, A. and K. Dabbs, Predictors of sentinel lymph node metastasis in melanoma. Can J Surg, 2010. 53(1): p. 32-6. 21. Paek, S.C., et al., The impact of factors beyond Breslow depth on predicting sentinel lymph node positivity in melanoma. Cancer, 2007. 109(1): p. 100-8. 22. McMasters, K.M., et al., Factors that predict the presence of sentinel lymph node metastasis in patients with melanoma. Surgery, 2001. 130(2): p. 151-6. 23. Morton, D.L., et al., Lymphatic mapping and sentinel lymphadenectomy for early-stage melanoma: therapeutic utility and implications of nodal microanatomy and molecular staging for improving the accuracy of detection of nodal micrometastases. Ann Surg, 2003. 238(4): p. 538-49; discussion 549-50. 24. Streit, M. and M. Detmar, Angiogenesis, lymphangiogenesis and melanoma metastasis. Oncogene, 2003. 22(20): p. 3172-3179. 25. Doeden, K., et al., Lymphatic invasion in cutaneous melanoma is associated with sentinel lymph node metastasis. J Cutan Pathol, 2009. 36(7): p. 772-80. 26. Storr, S.J., et al., Objective assessment of blood and lymphatic vessel invasion and association with macrophage infiltration in cutaneous melanoma. Mod Pathol, 2012. 25(4): p. 493-504. 27. Dadras, S.S., et al., Tumor Lymphangiogenesis. The American Journal of Pathology, 2003. 162(6): p. 1951-1960. 28. Dadras, S.S., et al., Tumor lymphangiogenesis predicts melanoma metastasis to sentinel lymph nodes. Mod Pathol, 2005. 18(9): p. 1232-42. 29. Shayan, R., et al., Lymphatic vessel density in primary melanomas predicts sentinel lymph node status and risk of metastasis. Histopathology, 2012. 61(4): p. 702-10. 30. Emmett, M.S., et al., Prediction of melanoma metastasis by the Shields index based on lymphatic vessel density. BMC Cancer, 2010. 10(1): p. 208. 31. Massi, D., et al., Tumour lymphangiogenesis is a possible predictor of sentinel lymph node status in cutaneous melanoma: a case-control study. J Clin Pathol, 2006. 59(2): p. 166-73. 32. Moraes Pinto Blumetti, T.C., et al., Optical coherence tomography (OCT) features of nevi and melanomas and their association with intraepidermal or dermal involvement: A pilot study. J Am Acad Dermatol, 2015. 73(2): p. 315-7. 33. Gambichler, T., et al., Characterization of benign and malignant melanocytic skin lesions using optical coherence tomography in vivo. J Am Acad Dermatol, 2007. 57(4): p. 629-37. 34. Huang, D., et al., Optical Coherence Tomography. Science (New York, N.Y.), 1991. 254(5035): p. 1178-1181. 35. Wojtkowski, M., et al., In vivo human retinal imaging by Fourier domain optical coherence tomography. J Biomed Opt, 2002. 7(3): p. 457-63. 36. Fercher, A.F., et al., Optical coherence tomography - principles and applications. Reports on Progress in Physics, 2003. 66(2): p. 239-303. 37. Srinivasan, V., A. C. Chan, and E. Lam, Doppler OCT and OCT Angiography for In Vivo Imaging of Vascular Physiology. 2012. 38. Dankort, D., et al., Braf(V600E) cooperates with Pten loss to induce metastatic melanoma. Nat Genet, 2009. 41(5): p. 544-52. 39. Wojtkowski, M., et al., Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation. Optics Express, 2004. 12(11): p. 2404-2422. 40. Lee, J., et al., Motion correction for phase-resolved dynamic optical coherence tomography imaging of rodent cerebral cortex. Opt Express, 2011. 19(22): p. 21258-70. 41. Wang, R.K., Optical Microangiography: A Label Free 3D Imaging Technology to Visualize and Quantify Blood Circulations within Tissue Beds in vivo. IEEE J Sel Top Quantum Electron, 2010. 16(3): p. 545-54. 42. Chen, P.H., et al., Combination of structural and vascular optical coherence tomography for differentiating oral lesions of mice in different carcinogenesis stages. Biomed Opt Express, 2018. 9(4): p. 1461-1476. 43. Baran, U., et al., OCT-based label-free in vivo lymphangiography within human skin and areola. Sci Rep, 2016. 6: p. 21122. 44. Mumprecht, V., F. Roudnicky, and M. Detmar, Inflammation-induced lymph node lymphangiogenesis is reversible. Am J Pathol, 2012. 180(3): p. 874-9.
|