跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.88) 您好!臺灣時間:2026/02/15 16:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林俊棠
研究生(外文):Chun-Tang Lin
論文名稱:以電漿輔助化學氣相沉積系統研製非晶矽及矽鍺薄膜太陽能電池
論文名稱(外文):Amorphous Silicon and Silicon-Germanium Thin Film Solar Cell by Plasma Enhanced Chemical Vapor Deposition
指導教授:莊賦祥莊賦祥引用關係
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:光電與材料科技研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:65
中文關鍵詞:非晶矽非晶矽鍺堆疊型
外文關鍵詞:a-Si:Ha-SiGe:Htandem
相關次數:
  • 被引用被引用:0
  • 點閱點閱:371
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文以電漿輔助化學氣相沉積系統研製非晶矽及矽鍺太陽能電池之元件分析。本論文可分為二個部分,第一部分研究非晶矽薄膜太陽能電池之分析;第二部分研究矽鍺太陽能電池本質層矽鍺薄膜與元件之分析。
非晶矽薄膜太陽能電池研究中,使用超高頻電漿輔助化學氣相沉積系統(VHF-PECVD)以250 ℃研製非晶矽薄膜太陽能電池(ITO / a-SiC (p) / a-Si (i) / a-Si (n) / Al)於玻璃基板上,調變n層和本質層的厚度其太陽能電池轉換效率分別為4.69 %和5.11 %。再製作堆疊式(a-Si / a-Si)太陽能電池調變上層電池的p層厚度其推疊式太陽能電池轉換效率為4.17 %。
非晶矽鍺太陽能電池研究中,使用高頻電漿輔助化學氣相沉積系統(HF-PECVD)以200 ℃研製非晶矽鍺薄膜太陽能電池 (ITO / a-SiC (p) / a-SiGe (i) / a-Si (n) / AZO / Ag)於玻璃基板上,調變本質層不同氫稀釋比例和鍺濃度的矽鍺薄膜對太陽能電池效率之影響。製作的非晶矽鍺薄膜以AFM、FE-SEM、SIMS、FTIR、光暗電導比例值及霍爾效應量測系統等量測分析及非晶矽鍺薄膜太陽能電池以外部量子效率及轉換效率等量測分析。結果顯示調變本質層不同氫稀釋比例和鍺濃度的太陽能電池轉換效率分別為4.37 %和4.45 %。

In this study, application of high-frequency plasma enhanced chemical vapor deposition to characterize a-Si and a-SiGe:H thin film solar cells. The paper consists of two parts: the first part discusses characteristics of the intrinsic layer, n-layer and tandem of amorphous silicon solar cell; the second part discusses characteristics of the intrinsic layer of amorphous silicon germanium film as well as solar cell device.
In this study of the a-Si:H thin film solar cells. The structure a a-Si:H solar cells is (ITO/a-SiC(p)/a-Si(i)/a-Si(n)/AZO/Ag), and the temperature of device were 250 ℃. The a-Si:H thin film solar cells was deposited on the glass, and we analyzed by measuring solar simulator. The optimization conversion efficiency are 4.69 %, 5.11 % and 4.17%, respectively.
In this study of the a-SiGe:H thin film solar cells. The structure a a-SiGe:H solar cells is (ITO/a-SiC(p)/a-SiGe(i)/a-Si(n)/AZO/Ag), and the temperature of device were 200 ℃. The a-SiGe:H thin film solar cells was deposited on the glass, and we analyzed the thin film properties by measuring AFM, FE-SEM, SIMS, FTIR, Photo conductivity (σph) and dark conductivity (σd) and Hall effect. Mainly, processing parameters was adjusted to study and discuss the electrical and optical properties of the intrinsic layer of amorphous silicon germanium film solar cells. By optimizing the Si1-XGeX, adjusting the RH %, a-SiGe thin film characteristics was studied including deposition rate, optical properties, electrical properties. The optimization conversion efficiency is 4.45 %.

摘要.......................................................i
Abstract.................................................iii
致謝.......................................................v
目錄......................................................vi
表目錄.....................................................ix
圖目錄......................................................x
第一章 緒論.................................................1
1.1 前言...................................................1
1.2 研究動機................................................3
第二章 文獻探討..............................................4
2.1非晶矽太陽能電池之文獻回顧..................................4
2.2非晶矽鍺太陽能電池之文獻回顧.................................4
2.3堆疊型太陽能電池之文獻回顧..................................6
第三章 實驗製作流程與儀器分析..................................8
3.1實驗製作流程..............................................8
3.1.1氫化非晶矽及矽鍺薄膜的實驗製作流程..........................8
3.2製程設備.................................................9
3.2.1氫化非晶矽薄膜製程設備(NFU)...............................9
3.2.2氫化非晶矽鍺薄膜製程設備(MDU)............................11
3.3 基板的清洗.............................................15
3.4 薄膜的沉積.............................................16
3.4.1 氫化非晶矽薄膜的沉積(NFU)..............................16
3.4.2 氫化非晶矽鍺薄膜的沉積(MDU).............................18
3.5 儀器量測原理與分析方法....................................21
第四章 結果與討論...........................................29
4.1 非晶矽薄膜太陽能電池之研究(NFU)...........................29
4.1.1調變不同的N層薄膜厚度對元件效率之影響......................29
4.1.2調變不同的本質層薄膜厚度對元件效率之影響....................32
4.1.3調變不同的上層電池的P層薄膜厚度對堆疊型太陽能電池效率之影響....35
4.2 非晶矽鍺薄膜太陽能電池之研究(MDU)..........................38
4.2.1 調變本質層氫稀釋比對元件效率的影響........................38
4.2.2 調變本質層矽鍺濃度比例對元件效率的影響.....................48
第五章 結論...............................................57
參考文獻...................................................59
Extended Abstract.........................................61
簡歷(CV)..................................................65

[1]陳維新,能源概論,高立圖書有限公司,2011年。
[2]黃信雄,“氣候變化綱要公約”,太陽能學刊,第2卷第一期,1997年。
[3]羅運俊、何梓年、王長貴編著,太陽能發電技術與應用,新文京開發出版股份有限公司,2007年。
[4]翁敏航主編,太陽能電池之原理、元件、材料、製程與檢測技術,台灣東華書局股份有限公司,2010年。
[5]張佳文、松井卓矢、近藤道雄、陳頤承、葉芳耀、藍崇文,新穎的次世代微晶矽鍺薄膜太陽電池,工業材料雜誌,第268期,2009年。
[6]J. Ni, J. Zhang, Y. Cao, X. Wang, X. Chen, X. Geng, Y. Zhao, “Low temperature deposition of high open-circuit voltage(> 1.0 V) p–i–n type amorphous silicon solar cells”, Solar Energy Materials & Solar Cells, vol.95, pp.1922-1926, 2011.
[7]J. Y. Huang, C.Y. Lin, C. H Shen, J. M. Shieh, B. T. Dai, “Low cost high-efficiency amorphous silicon solar cells with improved light-soaking stability”, Solar Energy Materials & Solar Cells, vol.98, pp.277-282, 2012.
[8]K. Said, J. Poortmans, M. Caymax, J. F. Nijs, Senior Member, IEEE, Luc Debarge, Eric Christoffel, and Abdelilah Slaoui, “Design, Fabrication, and Analysis of Crystalline Si-SiGe Heterostructure Thin-Film Solar Cells”, IEEE Transactions on Electron Devices, vol.46, no.10, 1999.
[9]A. H. Mahan, Y. Xu, L. M. Gedvilas, R. C. Reedy, D. L. Williamson, S. Datta, J. D. Cohen, B. Yan, and H. M. Branz, “a-SiGe:H Materials and Devices Deposited by Hot Wire CVD Using a Tantalum Filament Operated at Low Temperature”, IEEE Photovoltaics Specialists Conference and Exhibition, February 2005.
[10]C. C. Wang, C. Y. Liu, S. Y. Lien, K. W. Weng, J. J. Huang, C. F. Chen and D. S. Wu, “Hydrogenated amorphous silicone-germanium thin films with a narrow band gap for silicon-based solar cells”, Current Applied Physics, vol.11, pp.50-53, 2011.
[11]D. Y. Kim, T. Yoshihara, S. Porponth and M. Konagai, “Effect of an inter-electrode distance in VHF-PECVD and gas flow ratios on a-SiGeC:H films and solar cells by using monomethyl germane as a germanium source”, Journal of Non-Crystalline Solids, Volume In Press, Corrected Proof, January 2012
[12]Y. H. Chen, J. C. Liu, Y. R. Chen, J. W. Lin, C. H. Chen, W. H. Lu, C. N. Li, “Enhancing performance of amorphous SiGe single junction solar cells by post-deposition thermal annealing”, Thin Solid Films, Available online 9 June 2012.
[13]T. Kinoshita, M. Shima, A. Terakawa, M. Isomura, H. Haku, K. Wakisaka, M. Tanaka, S. Kiyama, S. Tsuda, Proceedings of the 14th European Photovoltaic Solar Energy Conference, p.566, 1997.
[14]E. Maruyama, S. Okamoto, A. Terakawa, W. Shinohara, M. Tanaka, S. Kiyama, “Toward stabilized 10 % efficiency of large-area (> 5000 cm2) a-Si/a-SiGe tandem solar cells using high-rate deposition”, Solar Energy Materials & Solar Cells, vol.74, pp.339-349, 2002.
[15]F. J. Haug, “Development of micromorph tandem solar cells on flexible low-cost plastic substrates”, Solar Energy Materials & Solar Cells, vol.93, pp.884-887, 2009.
[16]Q. H. Fan, C. Chen, X. Liao, X. Xiang, S. Zhang, W. Ingler, N. Aiga, Z. Hu, X. Cao, W. Du, X. Deng, Solar Energy Materials & Solar Cells, vol. 94, pp.1300-1302, 2010.
[17]M. H. Brodsky, M. Cardona, J. J. Cuomo, “Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering”, Phys. Rev. B, vol.16, pp.3556-3571, 1997.
[18]G. Lucovsky, R. J. Nemanich, J. C. Knights, “Structural interpretation of the vibrational spectra of a-Si:H alloys”, Phys. Rev. B, vol.19, pp.2064-2073, 1979.
[19]A. A. Longford, M. L. Fleet, B. P. Nelson, “Infrared absorption strength and hydrogen content of hydrogenated amorphous silicon”, Phys. Rev B, vol.45, pp.13367-13377, 1992.
[20]U. Kroll, J. Meier, A. Shah, S. Mikhailov, J. Weber, “Hydrogen in amorphous and microcrystalline silicon films prepared by hydrogen dilution”, J. Appl. Phys, vol.80, pp.4791-4795, 1996.
[21]A.H. Mahan, P. Raboisson, D.L. Williamson, R. Tsu, “Evidence for microstructure in glow discharge hydrogenated amorphous Si-C alloys”, Solar Cells, vol.21, pp.117-126, 1987.
[22]J. Tauc, “Optical properties and electronic structure of amorphous Ge and Si”, Materials Research Bulletin, vol.3, pp.37-46, 1968.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top