跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/11 08:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林芸筠
研究生(外文):LIN, YUN-YUN
論文名稱:探討溫濕度與綜合溫度熱指數對健康族群心跳速率變異性之影響
論文名稱(外文):Effects of temperature, humidity and wet bulb globe temperature on heart rate variability in healthy groups.
指導教授:唐進勝唐進勝引用關係張立德張立德引用關係
指導教授(外文):Tang, Chin-ShengCHANG, LI-TE
口試委員:張立德黃孝雲
口試委員(外文):Chang, Li-TeHuang, Hsiao-Yun
口試日期:2017-01-24
學位類別:碩士
校院名稱:輔仁大學
系所名稱:公共衛生學系碩士班
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:191
中文關鍵詞:健康族群心跳速率變異性熱環境指標綜合溫度熱指數廣義可加混合模型配適度比較
外文關鍵詞:healthy groupsheart rate variabilitythermal environment indexwet bulb globe temperatureGAMMVuong's closeness test.
相關次數:
  • 被引用被引用:2
  • 點閱點閱:631
  • 評分評分:
  • 下載下載:51
  • 收藏至我的研究室書目清單書目收藏:0
前言:
近年來因全球氣候的變遷,極端溫度事件頻傳,研究已經證實,空氣汙染物與環境溫度的顯著變化與心血管疾病發病率與死亡率增加有所關聯,此外心跳速率變異性(heart rate variability, HRV)的測量已成為評估心血管健康與自主神經系統調節功能常用的生理指標。目前許多政府及研究單位除了傳統溫溼度之外,也使用了綜合溫度熱指數(wet bulb globe temperature, WBGT)作為熱預警指標,因此本研究目的為探討健康族群在控制生活微環境暴露的汙染物後,溫濕度與WBGT對HRV變化之影響,並比較兩種指標評估HRV影響的差異。

材料與方法:
本研究使用各式直讀式儀器對健康成年人、老年人進行微環境空氣汙染物、溫濕度與WBGT暴露監測,並同步監測個案的心電圖資料以計算HRV。本研究選用廣義可加混合模型(generalized additive mixed model, GAMM)進行資料分析,在控制人口學變項及各種汙染物後,計算熱環境指標與HRV時間同步之前5分鐘、1、4、8、12、24小時移動平均,以評估溫濕度與WBGT對健康族群HRV變化之影響及累積效應,並使用Vuong's closeness test比較熱環境指標之間在評估HRV變化的模型配適度。

結果:
研究結果發現年齡、性別、季節及個案活動位置為影響HRV的重要因子,WBGT對心跳速率(heart rate, HR)及HRV的影響皆為非線性關係,且平滑函數圖多在15-20℃之間以及在20-25℃之間出現反曲點,而形成M形曲線,其中以頻率域指標LF的平滑函數圖變化最明顯。以GAMM分析溫度與HR及HRV的線性關係後發現溫度增加對HRV的改變量百分比有顯著下降的累積效應,最長可達24小時,溫度與HR及HRV的非線性關係多在28℃產生反曲點,且多出現在5分鐘及1小時時序中,相對濕度與HR及HRV的非線性關係則多出現於4小時時序。熱環境指標模型配適度比較中,不論時序為何,溫濕度及其交互作用項指標皆比WBGT適合評估頻率域指標HF的變化,此外,溫濕度及其交互作用項也較WBGT適合評估4-hr HR及1-hr LF的變化。而溫度及濕度指標較WBGT適合評估5min HR及1-hr LF的變化。

結論:
WBGT對HRV的即時效應皆呈現顯著非線性關係,溫濕度則對HRV會有線性與非線性影響,且具有累積效應,而整體比較熱環境指標配適度的結果發現溫濕度及其交互作用項於評估某些HRV指標變化時優於WBGT。

Background
In recent years, the changes in the frequency and intensity of extreme weather and climate events have been outgoing frequently. Numerous studies have indicated that exposure to air pollutants and variation in ambient temperature are associated with elevated risks in cardiovascular morbidity and mortality. In addition, the measurement of heart rate variability (HRV) indices has been a common physiological indicator to reflect the function of cardiac autonomic system. At present, many governmental and research units use not only the traditional temperature and relative humidity, but also wet bulb globe temperature (WBGT) as thermal environment indices. The purpose of this study is to explore the effects of temperature, humidity and WBGT on HRV changes in the healthy subjects by adjusting the microenvironment air pollutants exposures, and to compare the differences between these two thermal indices to evaluate the effects of HRV.
Methods
In this study, a variety of direct reading instruments were used for the monitoring of microenvironmental air pollutants, hygrothermal parameters and WBGT in healthy adults and the elderly, and for synchronous monitoring of heart rate(HR) and HRV indices. After adjusting the demographic variables and each kind of pollutant, we calculated the 5-minutes, 1, 4, 8, 12, and 24-hour moving average of thermal environment indices with the HR/HRV time synchronization. Generalized additive mixed model (GAMM) was applied to evaluate the effects of thermal indices on HRV. Vuong’s closeness test was used to compare the model fitness between the thermal environment indices and HRV change.

Results
The study found that age, gender, season and case activity were the important factors affecting HRV. The association between WBGT and HR/HRV had nonlinear relationship, and the inflection points appeared in mostly between 15-20℃ and 20-25℃ in the smooth function graph, forming M-shaped curve. The smooth function curve of the low-frequency (LF) and WBGT showed the most obvious variation. The GAMM analysis results of the linear relationship between temperature and HR/HRV founded that increases in temperature were associated with declines in the percentage change of HR/HRV, and the cumulative effect could last up to 24 hours. The inflection points appeared mostly at 28℃ in the non-linear relationship curve between temperature and HR/HRV, as well as in 5-minute and 1-hour time series. The non-linear relationship between relative humidity and HR/HRV appeared frequently in 4-hour time series. In the comparison of model fitness between the thermal environment indices, regardless of the timing, temperature/humidity and their interaction term were more appropriate than WBGT for evaluating the change of high-frequency (HF). Besides, temperature/humidity and their interaction term were also more suitable than WBGT for evaluating the changes of 4-hour HR and 1-hour LF. Moreover, temperature and humidity were appropriate than WBGT for evaluating 5-min HR and 1-hour LF changes.
Conclusion
The real time effects of WBGT on HRV showed the non-linear relations. The temperature and humidity had linear and non-linear influence to HRV along with cumulative effect. After overall evaluating the model fitness of thermal environment indices, it was found that temperature, humidity and their interaction term were better than WBGT for evaluating the changes of some HRV indices.

第一章 前言 1
第一節 研究背景 1
第二節 研究目的 3
第二章 文獻探討 4
第一節 心跳速率變異性 4
第二節 空氣汙染物的特性及其對心跳速率變異性的影響 8
2.1 懸浮微粒(particulate matter, PM) 8
2.2 多環芳香烴(polycyclic aromatic hydrocarbons, PAHs) 12
2.3 黑碳(black carbon, BC) 13
2.4 一氧化碳(carbon monoxide, CO) 15
第三節 熱環境評估指標 17
第四節 熱環境指標對心跳速率變異性的影響 20
第三章 材料與方法 30
第一節 研究設計與研究流程 30
第二節 研究對象與採樣時間 36
第三節 監測之儀器設備 37
3.1 微粒濃度光譜儀 37
3.2 微型擴散式微粒計數器 38
3.3 微粒多環芳香烴成分監測儀 39
3.4 微粒黑碳成分監測儀 40
3.5 室內空氣品質監測儀 41
3.6 綜合溫度熱指數監測儀 43
3.7 HOBO溫度濕度/照度紀錄器. 44
3.8 可攜式心電圖紀錄器 45
第四節 綜合溫度熱指數計算方法 46
第五節 儀器品保品管與同步比對 49
5.1 微粒濃度光譜儀 49
5.2 微型擴散式微粒計數器 50
5.3 微粒多環芳香烴成分監測儀 52
5.4 微粒黑碳成分監測儀 53
5.5 室內空氣品質監測儀 53
5.6 綜合溫度熱指數監測儀 53
5.7 可攜式心電圖紀錄器 54
5.8 儀器同步比對 54
第六節 統計分析 56
6.1 WBGT及溫濕度對HR及HRV之影響 56
6.2 比較不同熱環境指標的模型配適度 62
第四章 結果與討論 64
第一節 研究對象基本特徵 64
第二節 個案微環境汙染物及溫濕度與WBGT暴露情形 72
第三節 個案HRV生理指標監測情形 76
第四節 WBGT及溫濕度對HR及HRV之影響 78
4.1 人口學變項對HR及HRV之影響 93
4.2 空氣汙染物對HR及HRV之影響 98
4.3 WBGT在細粒徑模型中對HRV的影響 109
4.4 WBGT在粗粒徑模型中對HRV的影響 111
4.5 不同時序溫濕度在細粒徑模型中對HR及HRV的影響 113
4.6 不同時序溫濕度在粗粒徑模型中對HR及HRV的影響 120
4.7 不同時序溫濕度模型比較 130
第五節 比較不同熱環境指標的模型配適度 136
第五章 結論與建議 148
參考文獻 152
附錄一 個案同意書 160
附錄二 活動日誌 162
附錄三 儀器同步比對 163
附錄四 空氣汙染物與HRV影響之文獻整理表 170
附錄五 汙染物與HRV之平滑函數圖 180
(一)WBGT細粒徑模型中汙染物與HR及HRV之平滑函數圖 180
(二)WBGT粗粒徑模型中汙染物與HR及HRV之平滑函數圖 182
(三)不同時序溫濕度細粒徑模型中汙染物與HR及HRV之平滑函數圖 184
(四)不同時序溫濕度粗粒徑模型中汙染物與HR及HRV之平滑函數圖 187

參考文獻
一、英文部分

Adamopoulos, D., Vyssoulis, G., Karpanou, E., Kyvelou, S.M., Argacha, J.F., Cokkinos, D., Van De Borne, P. (2010). Environmental determinants of blood pressure, arterial stiffness, and central hemodynamics. Journal of hypertension, 28(5), 903-909.
Adar, S. D., Gold, D. R., Coull, B. A., Schwartz, J., Stone, P. H., & Suh, H. (2007). Focused exposures to airborne traffic particles and heart rate variability in the elderly. Epidemiology, 18(1), 95-103.
Aragón-Vargas, L. F., Wilk, B., Timmons, B. W., & Bar-Or, O. (2013). Body weight changes in child and adolescent athletes during a triathlon competition. European journal of applied physiology, 113(1), 233-239.
Baccini, M., Biggeri, A., Accetta, G., Kosatsky, T., Katsouyanni, K., Analitis, A., Danova, J. (2008). Heat effects on mortality in 15 European cities. Epidemiology, 19(5), 711-719.
Bashir, M. E. A., Lee, D. G., Li, M., Bae, J.W., Shon, H. S., Cho, M. C., & Ryu, K. H. (2012). Trigger learning and ECG parameter customization for remote cardiac clinical care information system. IEEE Transactions on Information Technology in Biomedicine, 16(4), 561-571.
Basu, R., & Samet, J. M. (2002). Relation between elevated ambient temperature and mortality: a review of the epidemiologic evidence. Epidemiologic reviews, 24(2), 190-202.
Benmarhnia, T., Deguen, S., Kaufman, J. S., & Smargiassi, A. (2015). Review article: Vulnerability to heat-related mortality: A systematic review, meta-analysis, and meta-regression analysis. Epidemiology, 26(6), 781-793.
Brook, R. D., Franklin, B., Cascio, W., Hong, Y., Howard, G., Lipsett, M., Smith, S. C. (2004). Air pollution and cardiovascular disease A statement for healthcare professionals from the expert panel on population and prevention science of the American Heart Association. Circulation, 109(21), 2655-2671.
Brook, R. D., Rajagopalan, S., Pope, C. A., Brook, J. R., Bhatnagar, A., Diez-Roux, A. V., Mittleman, M. A. (2010). Particulate matter air pollution and cardiovascular disease an update to the scientific statement from the American Heart Association. Circulation, 121(21), 2331-2378.
Bruce-Low, S. S., Cotterrell, D., & Jones, G. E. (2006). Heart rate variability during high ambient heat exposure. Aviation, space, and environmental medicine, 77(9), 915-920.
Brunekreef, B., & Forsberg, B. (2005). Epidemiological evidence of effects of coarse airborne particles on health. European Respiratory Journal, 26(2), 309-318.
Budd, G. M. (2008). Wet-bulb globe temperature (WBGT)—its history and its limitations. Journal of Science and Medicine in Sport, 11(1), 20-32.
Cardiology, T. F. o. t. E. S. o. (1996). Heart rate variability standards of measurement, physiological interpretation, and clinical use. Eur Heart J, 17, 354-381.
Chan, C.C., Chuang, K.J., Shiao, G.M., & Lin, L.Y. (2004). Personal exposure to submicrometer particles and heart rate variability in human subjects. Environmental health perspectives, 1063-1067.
Chang, L.T., Tang, C.S., Pan, Y.Z., & Chan, C.C. (2007). Association of heart rate variability of the elderly with personal exposure to PM1, PM1–2.5, and PM2. 5–10. Bulletin of environmental contamination and toxicology, 79(5), 552-556.
Chen, W. L., & Kuo, C. D. (2007). Characteristics of heart rate variability can predict impending septic shock in emergency department patients with sepsis. Academic emergency medicine, 14(5), 392-397.
Choi, I. S. (2001). Carbon monoxide poisoning: systemic manifestations and complications. Journal of Korean medical science, 16(3), 253-261.
Chuang, K.J., Chan, C.C., Su, T.C., Lee, C.T., & Tang, C.S. (2007). The effect of urban air pollution on inflammation, oxidative stress, coagulation, and autonomic dysfunction in young adults. American journal of respiratory and critical care medicine, 176(4), 370-376.
Chuang, K.J., Chuang, H.C., & Lin, L.Y. (2013). Indoor air pollution, nighttime heart rate variability and coffee consumption among convenient store workers. PLoS One, 8(8), e63320.
d’Ambrosio Alfano, F. R., Malchaire, J., Palella, B. I., & Riccio, G. (2014). WBGT index revisited after 60 years of use. Annals of occupational hygiene, 58(8), 955-970.
De Hartog, J., Hoek, G., Peters, A., Timonen, K., Ibald-Mulli, A., Brunekreef, B., Kreyling, W. (2003). Effects of fine and ultrafine particles on cardiorespiratory symptoms in elderly subjects with coronary heart disease The ULTRA Study. American journal of epidemiology, 157(7), 613-623.
Fierz, M., Houle, C., Steigmeier, P., & Burtscher, H. (2011). Design, calibration, and field performance of a miniature diffusion size classifier. Aerosol Science and Technology, 45(1), 1-10.
Genius, M., & Strazzera, E. (2002). A note about model selection and tests for non-nested contingent valuation models. Economics Letters, 74(3), 363-370.
Goldberg, M. S., Burnett, R. T., Yale, J.F., Valois, M.F., & Brook, J. R. (2006). Associations between ambient air pollution and daily mortality among persons with diabetes and cardiovascular disease. Environmental research, 100(2), 255-267.
Green, D. W., & Perry, R. H. (1973). Perry's Chemical Engineers' Handbook/edición Don W. Green y Robert H. Perry.
Guo, Y., Barnett, A. G., Pan, X., Yu, W., & Tong, S. (2011). The impact of temperature on mortality in Tianjin, China: a case-crossover design with a distributed lag nonlinear model. Environmental health perspectives, 119(12), 1719.
Holguín, F., Téllez-Rojo, M. M., Hernández, M., Cortez, M., Chow, J. C., Watson, J. G., Romieu, I. (2003). Air pollution and heart rate variability among the elderly in Mexico City. Epidemiology, 521-527.
Huang, W., Zhu, T., Pan, X., Hu, M., Lu, S.E., Lin, Y., Tang, X. (2012). Air pollution and autonomic and vascular dysfunction in patients with cardiovascular disease: interactions of systemic inflammation, overweight, and gender. American journal of epidemiology, kwr511.
IARC, List of classifications, Volumes 1–122. Retrieved from http://monographs.iarc.fr/ENG/Classification/latest_classif.php. Accessed March 7, 2018.
ISO, I. (1989). 7243, 1989, Hot environments-Estimation of heat stress on working man, based on the WBGT-index (wet bulb globe temperature). Geneva: International Standards Organization.
ISO, I. (2017). 7243, 2017, Ergonomics of the thermal environment -- Assessment of heat stress using the WBGT (wet bulb globe temperature) index. Geneva: International Standards Organization.
Ito, K., Mathes, R., Ross, Z., Nádas, A., Thurston, G., & Matte, T. (2011). Fine particulate matter constituents associated with cardiovascular hospitalizations and mortality in New York City. Environmental health perspectives, 119(4), 467.
Janssen, N. A., Gerlofs-Nijland, M. E., Lanki, T., Salonen, R. O., Cassee, F., Hoek, G., . Krzyzanowski, M. (2012). Health effects of black carbon: WHO Regional Office for Europe Copenhagen.
Jia, X., Song, X., Shima, M., Tamura, K., Deng, F., & Guo, X. (2012). Effects of fine particulate on heart rate variability in Beijing: a panel study of healthy elderly subjects. International archives of occupational and environmental health, 85(1), 97-107.
Kan, H., Chen, R., & Tong, S. (2012). Ambient air pollution, climate change, and population health in China. Environment international, 42, 10-19.
Kawase, M., Komatsu, T., Nishiwaki, K., Kimura, T., Fujiwara, Y., Takahashi, T., & Shimada, Y. (2000). Heart rate variability during massive hemorrhage and progressive hemorrhagic shock in dogs. Canadian Journal of Anesthesia, 47(8), 807-814.
Lee, M.S., Eum, K.D., Rodrigues, E. G., Magari, S. R., Fang, S. C., Modest, G. A., & Christiani, D. C. (2016). Effects of personal exposure to ambient fine particulate matter on acute change in nocturnal heart rate variability in subjects without overt heart disease. The American journal of cardiology, 117(1), 151-156.
Lee, M.-S., Magari, S., & Christiani, D. C. (2011). Cardiac autonomic dysfunction from occupational exposure to polycyclic aromatic hydrocarbons. Occupational and environmental medicine, 68(7), 474-478.
Lemke, B., & Kjellstrom, T. (2012). Calculating workplace WBGT from meteorological data: a tool for climate change assessment. Industrial Health, 50(4), 267-278.
Li, X., Feng, Y., Deng, H., Zhang, W., Kuang, D., Deng, Q., Xin, L. (2012). The dose–response decrease in heart rate variability: any association with the metabolites of polycyclic aromatic hydrocarbons in coke oven workers? PLoS One, 7(9), e44562.
Liljegren, J. C., Carhart, R. A., Lawday, P., Tschopp, S., & Sharp, R. (2008). Modeling the wet bulb globe temperature using standard meteorological measurements. Journal of occupational and environmental hygiene, 5(10), 645-655.
Lin, Y.K., Wang, Y.C., Ho, T.J., & Lu, C. A. (2013). Temperature effects on hospital admissions for kidney morbidity in Taiwan. Science of the total environment, 443, 812-820.
Liu, W.T., Ma, C.M., Liu, I.J., Han, B.C., Chuang, H.C., & Chuang, K.J. (2015). Effects of commuting mode on air pollution exposure and cardiovascular health among young adults in Taipei, Taiwan. International journal of hygiene and environmental health, 218(3), 319-323.
Magari, S. R., Hauser, R., Schwartz, J., Williams, P. L., Smith, T. J., & Christiani, D. C. (2001). Association of heart rate variability with occupational and environmental exposure to particulate air pollution. Circulation, 104(9), 986-991.
Magari, S. R., Schwartz, J., Williams, P. L., Hauser, R., Smith, T. J., & Christiani, D. C. (2002). The association between personal measurements of environmental exposure to particulates and heart rate variability. Epidemiology, 13(3), 305-310.
Maxwell, J. C., & Pesic, P. (2001). Theory of heat: Courier Corporation.
Mazloumi, A., Golbabaei, F., Khani, S. M., Kazemi, Z., Hosseini, M., Abbasinia, M., & Dehghan, S. F. (2014). Evaluating effects of heat stress on cognitive function among workers in a hot industry. Health promotion perspectives, 4(2), 240.
Militino, A. F. (2010). Mixed Effects Models and Extensions in Ecology with R. Journal of the Royal Statistical Society: Series A (Statistics in Society), 173(4), 938-939.
NIOSH (1972) Occupational exposure to hot environment. National Institute for Occupational Safety and Health, HSM 72-10269, Department Health, Education and Welfare, USA.
Oliveira, A. V. M., Gaspar, A. R., Raimundo, A. M., & Quintela, D. A. (2015). On the measurement of globe temperatures: analysis of the influence of different parameters. Paper presented at the Extreme physiology & medicine.
Palatini, P., & Julius, S. (2009). The role of cardiac autonomic function in hypertension and cardiovascular disease. Current hypertension reports, 11(3), 199-205.
Pan, W.H., Li, L.A., & Tsai, M.J. (1995). Temperature extremes and mortality from coronary heart disease and cerebral infarction in elderly Chinese. The Lancet, 345(8946), 353-355.
Patz, J. A., Engelberg, D., & Last, J. (2000). The effects of changing weather on public health. Annual review of public health, 21(1), 271-307.
Peretz, A., Kaufman, J. D., Trenga, C. A., Allen, J., Carlsten, C., Aulet, M. R., Sullivan, J. H. (2008). Effects of diesel exhaust inhalation on heart rate variability in human volunteers. Environmental research, 107(2), 178-184.
Pieters, N., Koppen, G., Van Poppel, M., De Prins, S., Cox, B., Dons, E., Schoeters, G. (2015). Blood pressure and same-day exposure to air pollution at school: associations with nano-sized to coarse PM in children. Environmental health perspectives, 123(7), 737.
Politano, L., Palladino, A., Nigro, G., Scutifero, M., & Cozza, V. (2008). Usefulness of heart rate variability as a predictor of sudden cardiac death in muscular dystrophies. Acta Myol, 27(1), 114-122.
Pope, C. A., Burnett, R. T., Thurston, G. D., Thun, M. J., Calle, E. E., Krewski, D., & Godleski, J. J. (2004). Cardiovascular mortality and long-term exposure to particulate air pollution: epidemiological evidence of general pathophysiological pathways of disease. Circulation, 109(1), 71-77.
Prockop, L. D., & Chichkova, R. I. (2007). Carbon monoxide intoxication: an updated review. Journal of the neurological sciences, 262(1), 122-130.
Quintela, D., Gaspar, A., Raimundo, A., Oliveira, A., & Cardoso, D. Assessment of the performance of globe thermometers under different environmental conditions. Paper presented at the Occupational Safety and Hygiene II. Selected Extended and Revises Contributions from the International Symposium Occupational Safety and Hygiene.
Ravindra, K., Sokhi, R., & Van Grieken, R. (2008). Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmospheric Environment, 42(13), 2895-2921.
Ren, C., O'Neill, M. S., Park, S. K., Sparrow, D., Vokonas, P., & Schwartz, J. (2011). Ambient temperature, air pollution, and heart rate variability in an aging population. American journal of epidemiology, 173(9), 1013-1021.
Ren, C., Williams, G. M., & Tong, S. (2006). Does particulate matter modify the association between temperature and cardiorespiratory diseases? Environmental health perspectives, 114(11), 1690.
Rich, D. Q., Schwartz, J., Mittleman, M. A., Link, M., Luttmann-Gibson, H., Catalano, P. J., Dockery, D. W. (2005). Association of short-term ambient air pollution concentrations and ventricular arrhythmias. American journal of epidemiology, 161(12), 1123-1132.
Riojas-Rodríguez, H., Escamilla-Cejudo, J. A., González-Hermosillo, J. A., Téllez-Rojo, M. M., Vallejo, M., Santos-Burgoa, C., & Rojas-Bracho, L. (2006). Personal PM2. 5 and CO exposures and heart rate variability in subjects with known ischemic heart disease in Mexico City. Journal of Exposure Science and Environmental Epidemiology, 16(2), 131-137.
Sager, T. M., & Castranova, V. (2009). Surface area of particle administered versus mass in determining the pulmonary toxicity of ultrafine and fine carbon black: comparison to ultrafine titanium dioxide. Particle and fibre toxicology, 6(1), 1.
Schwartz, J., Litonjua, A., Suh, H., Verrier, M., Zanobetti, A., Syring, M., MacCallum, G. (2005). Traffic related pollution and heart rate variability in a panel of elderly subjects. Thorax, 60(6), 455-461.
Sollers, J. J., Sanford, T. A., Nabors-Oberg, R., Anderson, C. A., & Thayer, J. F. (2002). Examining changes in HRV in response to varying ambient temperature. IEEE engineering in medicine and biology magazine, 21(4), 30-34.
Stafoggia, M., Schwartz, J., Forastiere, F., & Perucci, C. (2008). Does temperature modify the association between air pollution and mortality? A multicity case-crossover analysis in Italy. American journal of epidemiology, 167(12), 1476-1485.
Tarkiainen, T. H., Timonen, K. L., Vanninen, E. J., Alm, S., Hartikainen, J. E., & Pekkanen, J. (2003). Effect of acute carbon monoxide exposure on heart rate variability in patients with coronary artery disease. Clinical physiology and functional imaging, 23(2), 98-102.
Vuong, Q. H. (1989). Likelihood ratio tests for model selection and non-nested hypotheses. Econometrica: Journal of the Econometric Society, 307-333.
Waters, K. M., Masiello, L. M., Zangar, R. C., Tarasevich, B. J., Karin, N. J., Quesenberry, R. D., Thrall, B. D. (2009). Macrophage responses to silica nanoparticles are highly conserved across particle sizes. Toxicological Sciences, 107(2), 553-569.
Wilson, P. (2015). The misuse of the Vuong test for non-nested models to test for zero-inflation. Economics Letters, 127, 51-53.
Wood, S. (2006). Generalized additive models: an introduction with R: CRC press.
Wood, S. N. (2000). Modelling and smoothing parameter estimation with multiple quadratic penalties. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 62(2), 413-428.
Wood, S. N. (2003). Thin plate regression splines. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 65(1), 95-114.
Wood, S. N. (2004). Stable and efficient multiple smoothing parameter estimation for generalized additive models. Journal of the American Statistical Association, 99(467), 673-686.
Wood, S. N. (2011). Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73(1), 3-36.
Wu, C.f., Kuo, I.C., Su, T.C., Li, Y.R., Lin, L.Y., Chan, C.C., & Hsu, S.C. (2010). Effects of personal exposure to particulate matter and ozone on arterial stiffness and heart rate variability in healthy adults. American journal of epidemiology, kwq060.
Wu, P.C., Lin, C.Y., Lung, S.C., Guo, H.R., Chou, C.H., & Su, H.J. (2010). Cardiovascular mortality during heat and cold events: determinants of regional vulnerability in Taiwan. Occupational and environmental medicine, oem. 2010.056168.
Wu, S., Deng, F., Liu, Y., Shima, M., Niu, J., Huang, Q., & Guo, X. (2013). Temperature, traffic-related air pollution, and heart rate variability in a panel of healthy adults. Environmental research, 120, 82-89.
Wu, S., Deng, F., Niu, J., Huang, Q., Liu, Y., & Guo, X. (2010). Association of heart rate variability in taxi drivers with marked changes in particulate air pollution in Beijing in 2008. Environmental health perspectives, 87-91.
Yaglou, C., & Minaed, D. (1957). Control of heat casualties at military training centers. Arch. Indust. Health, 16(4), 302-316.
Yamamoto, S., Iwamoto, M., Inoue, M., & Harada, N. (2007). Evaluation of the effect of heat exposure on the autonomic nervous system by heart rate variability and urinary catecholamines. Journal of occupational health, 49(3), 199-204.
Zanobetti, A., & Schwartz, J. (2008). Temperature and mortality in nine US cities. Epidemiology (Cambridge, Mass.), 19(4), 563.
Zuur, A., Ieno, E., Walker, N., & Saveliev, A. SmithGM. 2009 Mixed effects models and extensions in ecology with R. Statistics. New York, NY: Springer. doi, 10, 978-970.

二、中文部分

Guyton, A., Hall, J.,&賴全亮等。(2001)。蓋統生理學:生理及疾病機轉。臺北市:華杏出版。
郭崇義、林隆晟、蔡清讚。(2005)。柴油車惰轉排氣中粒狀與氣狀汙染物之研究。中華民國環境保護學會學刊,28,174-184。
翁根本、何慈育、歐善福、林竹川、謝凱生。(2009)。心律變動性分析。臺灣醫界,52(6),290-293。
林于凱、林沛練、李明旭、黃鈴雅、宋鴻樟、王玉純。(2012)。極端高溫健康預警系統之國際文獻回顧。台灣公共衛生雜誌,31(6),512-522。
吳姿儀:不同大眾交通工具上懸浮微粒和一氧化碳暴露對健康成年人心跳速率變異性的影響。輔仁大學公共衛生研究所碩士論文,2010。
馬翊綺:不同粒徑懸浮微粒及微粒成分對健康成年人心跳速率變異性之影響。輔仁大學公共衛生研究所碩士論文,2016。
許愷芯:台北都會地區交通相關空氣汙染物對健康年輕族群心血管功能之影響。輔仁大學公共衛生研究所碩士論文,2010。
陳立歆:微粒濃度及其成分與一氧化碳對健康老年人心跳速率變異性之影響。輔仁大學公共衛生研究所碩士論文,2013。
黃柏鈞:不同季節之溫度變化對健康老年人心跳速率變異性之影響。輔仁大學公共衛生研究所碩士論文,2013。教育部(2016)。氣候變遷調適專業融入補充教材-健康領域2016年版。
日本生気象学会,上網日期:2016年01月19日,檢自:http://seikishou.jp/ 。
勞動部勞動及職業安全衛生研究所,上網日期:2017年11月7日,檢自:
https://www.ilosh.gov.tw/Law/LawPublish.aspx?LID=9 。
湯大同,勞工安全衛生簡訊,第50期,勞動部勞動及職業安全衛生研究所,上網日期:2017年11月7日,檢自:https://laws.ilosh.gov.tw/ioshcustom/Web/SafetyMessages/Detail2?id=480
行政院環境保護署,室內空氣品質資訊網,上網日期:2017年11月7日,檢自:
https://iaq.epa.gov.tw/indoorair/page/News_12_1.aspx

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊