|
1.Simon, P.; Gogotsi, Y., Materials for electrochemical capacitors. Nat Mater 2008, 7 (11), 845-854. 2.Chen, M.; Li, W.; Shen, X.; Diao, G., Fabrication of Core–Shell α-Fe2O3@ Li4Ti5O12 Composite and Its Application in the Lithium Ion Batteries. ACS Applied Materials & Interfaces 2014, 6 (6), 4514-4523. 3.Jang, H. W.; Felker, D. A.; Bark, C. W.; Wang, Y.; Niranjan, M. K.; Nelson, C. T.; Zhang, Y.; Su, D.; Folkman, C. M.; Baek, S. H.; Lee, S.; Janicka, K.; Zhu, Y.; Pan, X. Q.; Fong, D. D.; Tsymbal, E. Y.; Rzchowski, M. S.; Eom, C. B., Metallic and Insulating Oxide Interfaces Controlled by Electronic Correlations. Science 2011, 331, 886-889. 4.Dong, X.; Guo, Z.; Song, Y.; Hou, M.; Wang, J.; Wang, Y.; Xia, Y., Flexible and Wire-Shaped Micro-Supercapacitor Based on Ni(OH)2-Nanowire and Ordered Mesoporous Carbon Electrodes. Advanced Functional Materials 2014, 24 (22), 3405-3412. 5.Dunn, B.; Kamath, H.; Tarascon, J.-M., Electrical Energy Storage for the Grid: A Battery of Choices. Science 2011, 334, 928-935. 6.Jo, Y.; Cho, W.-J.; Inamdar, A. I.; Kim, B. C.; Kim, J.; Kim, H.; Im, H.; Yu, K.-H.; Kim, D.-Y., Electrochemical supercapacitor properties of polyaniline thin films in organic salt added electrolytes. Journal of Applied Polymer Science 2014, 131 (11), n/a-n/a. 7.Yan, J.; Wei, T.; Fan, Z.; Qian, W.; Zhang, M.; Shen, X.; Wei, F., Preparation of graphene nanosheet/carbon nanotube/polyaniline composite as electrode material for supercapacitors. Journal of Power Sources 2010, 195 (9), 3041-3045. 8.Snook, G. A.; Kao, P.; Best, A. S., Conducting-polymer-based supercapacitor devices and electrodes. Journal of Power Sources 2011, 196 (1), 1-12. 9.Geniès, E. M.; Boyle, A.; Lapkowski, M.; Tsintavis, C., Polyaniline: A historical survey. Synthetic Metals 1990, 36 (2), 139-182. 10.Zhang, H.; Cao, G.; Wang, Z.; Yang, Y.; Shi, Z.; Gu, Z., Tube-covering-tube nanostructured polyaniline/carbon nanotube array composite electrode with high capacitance and superior rate performance as well as good cycling stability. Electrochemistry Communications 2008, 10 (7), 1056-1059. 11.Wu, T.-M.; Lin, Y.-W., Doped polyaniline/multi-walled carbon nanotube composites: Preparation, characterization and properties. Polymer 2006, 47 (10), 3576-3582. 12.Lafuente, E.; Callejas, M. A.; Sainz, R.; Benito, A. M.; Maser, W. K.; Sanjuán, M. L.; Saurel, D.; de Teresa, J. M.; Martínez, M. T., The influence of single-walled carbon nanotube functionalization on the electronic properties of their polyaniline composites. Carbon 2008, 46 (14), 1909-1917. 13.Gao, Z.; Wang, F.; Chang, J.; Wu, D.; Wang, X.; Wang, X.; Xu, F.; Gao, S.; Jiang, K., Chemically grafted graphene-polyaniline composite for application in supercapacitor. Electrochimica Acta 2014, 133, 325-334. 14.Anthony, N. P.; Olena, M.; Luis, E.; Ilias, S.; Marta, E. P.-B., Electric properties of carbon nano-onion/polyaniline composites: a combined electric modulus and ac conductivity study. Journal of Physics D: Applied Physics 2016, 49 (28), 285305. 15.Dezfuli, A. S.; Ganjali, M. R.; Naderi, H. R.; Norouzi, P., A high performance supercapacitor based on a ceria/graphene nanocomposite synthesized by a facile sonochemical method. RSC Advances 2015, 5 (57), 46050-46058. 16.Yu, G.; Hu, L.; Liu, N.; Wang, H.; Vosgueritchian, M.; Yang, Y.; Cui, Y.; Bao, Z., Enhancing the Supercapacitor Performance of Graphene/MnO2 Nanostructured Electrodes by Conductive Wrapping. Nano Letters 2011, 11 (10), 4438-4442. 17.Patake, V. D.; Lokhande, C. D.; Joo, O. S., Electrodeposited ruthenium oxide thin films for supercapacitor: Effect of surface treatments. Applied Surface Science 2009, 255 (7), 4192-4196. 18.Yan, D.; Guo, Z.; Zhu, G.; Yu, Z.; Xu, H.; Yu, A., MnO2 film with three-dimensional structure prepared by hydrothermal process for supercapacitor. Journal of Power Sources 2012, 199, 409-412. 19.Patil, U. M.; Salunkhe, R. R.; Gurav, K. V.; Lokhande, C. D., Chemically deposited nanocrystalline NiO thin films for supercapacitor application. Applied Surface Science 2008, 255 (5), 2603-2607. 20.Lang, X.; Hirata, A.; Fujita, T.; Chen, M., Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat Nano 2011, 6 (4), 232-236. 21.Hassan, H. K.; Atta, N. F.; Hamed, M. M.; Galal, A.; Jacob, T., Ruthenium nanoparticles-modified reduced graphene prepared by a green method for high-performance supercapacitor application in neutral electrolyte. RSC Advances 2017, 7 (19), 11286-11296. 22.Zhi, M.; Xiang, C.; Li, J.; Li, M.; Wu, N., Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review. Nanoscale 2013, 5 (1), 72-88. 23.Hall, P. J.; Bain, E. J., Energy-storage technologies and electricity generation. Energy Policy 2008, 36 (12), 4352-4355. 24.Rakhi, R. B.; Chen, W.; Cha, D.; Alshareef, H. N., High performance supercapacitors using metal oxide anchored graphene nanosheet electrodes. Journal of Materials Chemistry 2011, 21 (40), 16197-16204. 25.Choi, H.-J.; Jung, S.-M.; Seo, J.-M.; Chang, D. W.; Dai, L.; Baek, J.-B., Graphene for energy conversion and storage in fuel cells and supercapacitors. Nano Energy 2012, 1 (4), 534-551. 26.Dubal, D. P. O. A. V. R. P. G.-R., Hybrid energy storage: the merging of battery and supercapacitor chemistries. Chem. Soc. Rev 2015, 44 (7), 1777-1790. 27.Chen, G. Z. K. C. N., ; J.H. Chae, Nanostructured materials for the construction of asymmetrical supercapacitors. Proceedings of the Institution of Mechanical Engineers. Part A: Journal of Power and Energy 2010, 244 (4), 479-503. 28.Halper, M. S. J. C. E., Supercapacitors: A brief overview. The MITRE Corporation, McLean, Virginia, USA, 2006, 1-34. 29.Namisnyk, A. M., A survey of electrochemical supercapacitor technology. University of Technology, Sydney 2003. 30.Fan, L.-Z.; Maier, J., High-performance polypyrrole electrode materials for redox supercapacitors. Electrochemistry Communications 2006, 8 (6), 937-940. 31.http : //www:powercapbattery:com=?page id = 4. 32.Vassal, N.; Salmon, E.; Fauvarque, J. F., Electrochemical properties of an alkaline solid polymer electrolyte based on P(ECH-co-EO). Electrochimica Acta 2000, 45 (8), 1527-1532. 33.Lewandowski, A.; Skorupska, K.; Malinska, J., Novel poly(vinyl alcohol)–KOH–H2O alkaline polymer electrolyte. Solid State Ionics 2000, 133 (3), 265-271. 34.Nohara, S.; Wada, H.; Furukawa, N.; Inoue, H.; Morita, M.; Iwakura, C., Electrochemical characterization of new electric double layer capacitor with polymer hydrogel electrolyte. Electrochimica Acta 2003, 48 (6), 749-753. 35.Zhu, X.; Yang, H.; Cao, Y.; Ai, X., Preparation and electrochemical characterization of the alkaline polymer gel electrolyte polymerized from acrylic acid and KOH solution. Electrochimica Acta 2004, 49 (16), 2533-2539. 36.Lake, J. R.; Cheng, A.; Selverston, S.; Tanaka, Z.; Koehne, J.; Meyyappan, M.; Chen, B., Graphene metal oxide composite supercapacitor electrodes. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 2012, 30 (3), 03D118. 37.Raji George, A. R., ; Bhargava,; Raj Jung Mahat,; Santosh Yadav, A REVIEW- SUPER CAPACITOR SYSTEMS AND ITS PERFORMANCE. International Journal of Research in Engineering and Technology 2016, 5 (13). 38.Conway, B. E., Behavior of Dielectrics in Capacitors and theories of Dielectric Polarization. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications. KLUWER ACADEMICS/ PLENUM PUBLISHERS 1999, Chapter 5. 39.Zhang, S.; Pan, N., Supercapacitors Performance Evaluation. Advanced Energy Materials 2015, 5 (6), 1401401-n/a. 40.Jeong, H. T., Fabrication of stretchable and flexible supercapacitor using nanocarbon based materials. University of Wollongong Thesis Collection 2015, 1-177. 41.Subramanian, V.; Zhu, H.; Wei, B., Synthesis and electrochemical characterizations of amorphous manganese oxide and single walled carbon nanotube composites as supercapacitor electrode materials. Electrochemistry Communications 2006, 8 (5), 827-832. 42.Su, P.-H., Preparation and Properties of polyaniline/GQD nanocomposites and their applications on gel type supercapacitor. National Taiwan University 2015, 1-141. 43.Shimano, J. Y.; MacDiarmid, A. G., Polyaniline, a dynamic block copolymer: key to attaining its intrinsic conductivity? Synthetic Metals 2001, 123 (2), 251-262. 44.Green, A. G.; Woodhead, A. E., CXVII.-Aniline-black and allied compounds. Part II. Journal of the Chemical Society, Transactions 1912, 101 (0), 1117-1123. 45.Masdarolomoor, F., Novel nanostructured conducting polymer systems based on sulfonated polyaniline. University of Wollongong Thesis Collection 2006. 46.Heinze, J.; Frontana-Uribe, B. A.; Ludwigs, S., Electrochemistry of Conducting Polymers—Persistent Models and New Concepts. Chemical Reviews 2010, 110 (8), 4724-4771. 47.Inzelt, G.; Pineri, M.; Schultze, J. W.; Vorotyntsev, M. A., Electron and proton conducting polymers: recent developments and prospects. Electrochimica Acta 2000, 45 (15), 2403-2421. 48.G.G. Wallace, G. M. S., L.A.P. Kane-Maguire, P.R. Teasdale, Conductive Electroactive Polymers. Intelligent Polymer Systems,CRC Press ,London 2009. 49.Kerileng M. Molapo, P. M. N., Rachel F. Ajayi, Gcineka Mbambisa, Stephen M. Mailu, Njagi Njomo, Milua Masikini, Priscilla Baker , Emmanuel I. Iwuoha, Electronics of Conjugated Polymers (I): Polyaniline. Int. J. Electrochem. Sci 2012, 7. 50.Sapurina, I.; Stejskal, J., The mechanism of the oxidative polymerization of aniline and the formation of supramolecular polyaniline structures. Polymer International 2008, 57 (12), 1295-1325. 51.G.G. Wallace, G. M. S. a. P. R. T., Conductive Electroactive Polymers. CRC Press,London 2002. 52.Park, B.-O.; Lokhande, C. D.; Park, H.-S.; Jung, K.-D.; Joo, O.-S., Cathodic electrodeposition of RuO2 thin films from Ru(III)Cl3 solution. Materials Chemistry and Physics 2004, 87 (1), 59-66. 53.Subramanian, V.; Hall, S. C.; Smith, P. H.; Rambabu, B., Mesoporous anhydrous RuO2 as a supercapacitor electrode material. Solid State Ionics 2004, 175 (1), 511-515. 54.Yan, Y.; Wang, T.; Li, X.; Pang, H.; Xue, H., Noble metal-based materials in high-performance supercapacitors. Inorganic Chemistry Frontiers 2017, 4 (1), 33-51. 55.Xie, X.; Gao, L., Characterization of a manganese dioxide/carbon nanotube composite fabricated using an in situ coating method. Carbon 2007, 45 (12), 2365-2373. 56.Ma, S.-B.; Nam, K.-W.; Yoon, W.-S.; Yang, X.-Q.; Ahn, K.-Y.; Oh, K.-H.; Kim, K.-B., A novel concept of hybrid capacitor based on manganese oxide materials. Electrochemistry Communications 2007, 9 (12), 2807-2811. 57.Zhao, B.; Song, J.; Liu, P.; Xu, W.; Fang, T.; Jiao, Z.; Zhang, H.; Jiang, Y., Monolayer graphene/NiO nanosheets with two-dimension structure for supercapacitors. Journal of Materials Chemistry 2011, 21 (46), 18792-18798. 58.Ji, J.; Zhang, L. L.; Ji, H.; Li, Y.; Zhao, X.; Bai, X.; Fan, X.; Zhang, F.; Ruoff, R. S., Nanoporous Ni(OH)2 Thin Film on 3D Ultrathin-Graphite Foam for Asymmetric Supercapacitor. ACS Nano 2013, 7 (7), 6237-6243. 59.Luan, F.; Wang, G.; Ling, Y.; Lu, X.; Wang, H.; Tong, Y.; Liu, X.-X.; Li, Y., High energy density asymmetric supercapacitors with a nickel oxide nanoflake cathode and a 3D reduced graphene oxide anode. Nanoscale 2013, 5 (17), 7984-7990. 60.Lu, Q.; Lattanzi, M. W.; Chen, Y.; Kou, X.; Li, W.; Fan, X.; Unruh, K. M.; Chen, J. G.; Xiao, J. Q., Supercapacitor Electrodes with High-Energy and Power Densities Prepared from Monolithic NiO/Ni Nanocomposites. Angewandte Chemie International Edition 2011, 50 (30), 6847-6850. 61.Kim, J. Y.; Lee, S.-H.; Yan, Y.; Oh, J.; Zhu, K., Controlled synthesis of aligned Ni-NiO core-shell nanowire arrays on glass substrates as a new supercapacitor electrode. RSC Advances 2012, 2 (22), 8281-8285. 62.Liu, M.; Chang, J.; Sun, J.; Gao, L., A facile preparation of NiO/Ni composites as high-performance pseudocapacitor materials. RSC Advances 2013, 3 (21), 8003-8008. 63.Wang, H.; Yi, H.; Chen, X.; Wang, X., Facile synthesis of a nano-structured nickel oxide electrode with outstanding pseudocapacitive properties. Electrochimica Acta 2013, 105, 353-361. 64.Geim, A. K.; Novoselov, K. S., The rise of graphene. Nat Mater 2007, 6 (3), 183-191. 65.Qiu, L.; Yang, X.; Gou, X.; Yang, W.; Ma, Z.-F.; Wallace, G. G.; Li, D., Dispersing Carbon Nanotubes with Graphene Oxide in Water and Synergistic Effects between Graphene Derivatives. Chemistry – A European Journal 2010, 16 (35), 10653-10658. 66.Huang, L.; Li, C.; Shi, G., High-performance and flexible electrochemical capacitors based on graphene/polymer composite films. Journal of Materials Chemistry A 2014, 2 (4), 968-974. 67.Zhou, M.; Wang, Y.; Zhai, Y.; Zhai, J.; Ren, W.; Wang, F.; Dong, S., Controlled Synthesis of Large-Area and Patterned Electrochemically Reduced Graphene Oxide Films. Chemistry – A European Journal 2009, 15 (25), 6116-6120. 68.Yu, P.; Lin, Y.; Xiang, L.; Su, L.; Zhang, J.; Mao, L., Molecular Films of Water-Miscible Ionic Liquids Formed on Glassy Carbon Electrodes: Characterization and Electrochemical Applications. Langmuir 2005, 21 (20), 9000-9006. 69.Iijima, S., Helical microtubules of graphitic carbon. Nature 1991, 354 (6348), 56-58. 70.Bethune, D. S.; Klang, C. H.; de Vries, M. S.; Gorman, G.; Savoy, R.; Vazquez, J.; Beyers, R., Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 1993, 363 (6430), 605-607. 71.Monthioux, M., Introduction to Carbon Nanotubes. CEMES, CNRS, University of Toulouse, France 2012, Chapter 1, 8-39. 72.https://www.wikiwand.com/en/Carbon_nanotube#/Multi-walled. 73.M.S. Dresselhaus, G. D., P.C. Eklund, Science of Fullerenes and Carbon Nanotubes. Academic,San Diego 1995. 74.Monthioux, M.; Noe, L.; Dussault, L.; Dupin, J. C.; Latorre, N.; Ubieto, T.; Romeo, E.; Royo, C.; Monzon, A.; Guimon, C., Texturising and structurising mechanisms of carbon nanofilaments during growth. Journal of Materials Chemistry 2007, 17 (43), 4611-4618. 75.M. Monthioux, P. S., E. Flahaut, M. Razafinimanana, C. Laurent, A. Peigney, W. Bacsa, J.-M. Broto, Introduction to Carbon Nanotubes. In Nanotechnology Handbook (ed. B. Bhushan). 2010, 3rd Edition (revised) (Springer-Verlag, Heidelberg, Germany), 47–118. 76.Kuo-Hsin Chang, C.-C. H., Hydrothermal Synthesis of Hydrous Crystalline RuO2 Nanoparticles for Supercapacitors. Electrochemical and Solid-State Letters 2004, 7 (12), A466-A469. 77.Chang, K.-H.; Hu, C.-C.; Chou, C.-Y., Textural and Capacitive Characteristics of Hydrothermally Derived RuO2·xH2O Nanocrystallites: Independent Control of Crystal Size and Water Content. Chemistry of Materials 2007, 19 (8), 2112-2119. 78.Chang, K.-H.; Hu, C.-C., Hydrothermal Synthesis of Hydrous Crystalline RuO2 Nanoparticles for Supercapacitors. Electrochemical and Solid-State Letters 2004, 7 (12), A466-A469. 79.Hosseini, M. G.; Shahryari, E., Synthesis, Characterization and Electrochemical Study of Graphene Oxide-Multi Walled Carbon Nanotube-Manganese Oxide-Polyaniline Electrode as Supercapacitor. Journal of Materials Science & Technology 2016, 32 (8), 763-773. 80.Hu, Z.; Zu, L.; Jiang, Y.; Lian, H.; Liu, Y.; Li, Z.; Chen, F.; Wang, X.; Cui, X., High Specific Capacitance of Polyaniline/Mesoporous Manganese Dioxide Composite Using KI-H2SO4 Electrolyte. Polymers 2015, 7 (10), 1491. 81.Das, D.; Borthakur, L. J.; Nath, B. C.; Saikia, B. J.; Mohan, K. J.; Dolui, S. K., Designing hierarchical NiO/PAni-MWCNT core-shell nanocomposites for high performance super capacitor electrodes. RSC Advances 2016, 6 (50), 44878-44887. 82.Maciejewska, B. M.; Jasiurkowska-Delaporte, M.; Vasylenko, A. I.; Koziol, K. K.; Jurga, S., Experimental and theoretical studies on the mechanism for chemical oxidation of multiwalled carbon nanotubes. RSC Advances 2014, 4 (55), 28826-28831. 83.Datsyuk, V.; Kalyva, M.; Papagelis, K.; Parthenios, J.; Tasis, D.; Siokou, A.; Kallitsis, I.; Galiotis, C., Chemical oxidation of multiwalled carbon nanotubes. Carbon 2008, 46 (6), 833-840. 84.Lin, H.-L., Processing and Performance of Polyaniline / Multi-walled Carbon Nanotubes / Graphene Composites as Counter Electrode for Dye-sensitized Solar Cells. National Taiwan University 2013. 85.Yu-Chuan, L., Application of Polyaniline Composites on Flexible Counter Electrode of Dye Sensitized Solar Cell. 2015, 1-148. 86.Hummers, W. S.; Offeman, R. E., Preparation of Graphitic Oxide. Journal of the American Chemical Society 1958, 80 (6), 1339-1339. 87.Yelil Arasi, A.; Juliet Latha Jeyakumari, J.; Sundaresan, B.; Dhanalakshmi, V.; Anbarasan, R., The structural properties of Poly(aniline)—Analysis via FTIR spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2009, 74 (5), 1229-1234. 88.Zhu, H.; Peng, S.; Jiang, W., Electrochemical Properties of PANI as Single Electrode of Electrochemical Capacitors in Acid Electrolytes. 2013; Vol. 2013, p 8. 89.Stejskal, M. T. a. J., Polyaniline: The infrared spectroscopy of conducting polymer nanotubes (IUPAC Technical Report). Pure Appl. Chem. 2011, 83 (10), 1803-1817. 90.Ibrahim, K. A., Synthesis and characterization of polyaniline and poly(aniline-co-o-nitroaniline) using vibrational spectroscopy. Arabian Journal of Chemistry 2017, 10, S2668-S2674. 91.Huang, W.-S.; Humphrey, B. D.; MacDiarmid, A. G., Polyaniline, a novel conducting polymer. Morphology and chemistry of its oxidation and reduction in aqueous electrolytes. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases 1986, 82 (8), 2385-2400. 92.Wei, Y.; Sun, Y.; Jang, G.-W.; Tang, X., Effects of p-aminodiphenylamine on electrochemical polymerization of aniline. Journal of Polymer Science Part C: Polymer Letters 1990, 28 (3), 81-87. 93.Mantovani, J. G.; Warmack, R. J.; Annis, B. K.; Macdiarmid, A. G.; Scherr, E., Investigation of surface morphology of emeraldine hydrochloride by scanning tunneling microscopy. Journal of Applied Polymer Science 1990, 40 (9-10), 1693-1702. 94.Fathi, M.; Saghafi, M.; Mahboubi, F.; Mohajerzadeh, S., Synthesis and electrochemical investigation of polyaniline/unzipped carbon nanotube composites as electrode material in supercapacitors. Synthetic Metals 2014, 198, 345-356. 95.Dharmaraj, N.; Prabu, P.; Nagarajan, S.; Kim, C. H.; Park, J. H.; Kim, H. Y., Synthesis of nickel oxide nanoparticles using nickel acetate and poly(vinyl acetate) precursor. Materials Science and Engineering: B 2006, 128 (1), 111-114. 96.El-Kemary, M.; Nagy, N.; El-Mehasseb, I., Nickel oxide nanoparticles: Synthesis and spectral studies of interactions with glucose. Materials Science in Semiconductor Processing 2013, 16 (6), 1747-1752. 97.Huang, M.; Zhang, Y.; Li, F.; Zhang, L.; Ruoff, R. S.; Wen, Z.; Liu, Q., Self-Assembly of Mesoporous Nanotubes Assembled from Interwoven Ultrathin Birnessite-type MnO2 Nanosheets for Asymmetric Supercapacitors. 2014, 4, 3878. 98.Chen, L.; Yuan, C.; Gao, B.; Chen, S.; Zhang, X., Microwave-assisted synthesis of organic–inorganic poly(3,4-ethylenedioxythiophene)/RuO2·xH2O nanocomposite for supercapacitor. Journal of Solid State Electrochemistry 2009, 13 (12), 1925. 99.Wang, Y.; Herron, N., Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties. The Journal of Physical Chemistry 1991, 95 (2), 525-532. 100.Karuppuchamy, S.; Jeong, J. M., Synthesis of Nano-particles of TiO2 by Simple Aqueous Route. Journal of Oleo Science 2006, 55 (5), 263-266. 101.Sugimoto, W.; Iwata, H.; Murakami, Y.; Takasu, Y., Electrochemical Capacitor Behavior of Layered Ruthenic Acid Hydrate. Journal of The Electrochemical Society 2004, 151 (8), A1181-A1187. 102.Das, D.; Nath, B. C.; Phukon, P.; Saikia, B. J.; Kamrupi, I. R.; Dolui, S. K., Nickel oxide/polypyrrole/silver nanocomposites with core/shell/shell structure: Synthesis, characterization and their electrochemical behaviour with antimicrobial activities. Materials Chemistry and Physics 2013, 142 (1), 61-69. 103.Deshmukh, P. R.; Bulakhe, R. N.; Pusawale, S. N.; Sartale, S. D.; Lokhande, C. D., Polyaniline-RuO2 composite for high performance supercapacitors: chemical synthesis and properties. RSC Advances 2015, 5 (36), 28687-28695. 104.Toupin, M.; Brousse, T.; Bélanger, D., Charge Storage Mechanism of MnO2 Electrode Used in Aqueous Electrochemical Capacitor. Chemistry of Materials 2004, 16 (16), 3184-3190. 105.Kong, D.-S.; Wang, J.-M.; Shao, H.-B.; Zhang, J.-Q.; Cao, C.-n., Electrochemical fabrication of a porous nanostructured nickel hydroxide film electrode with superior pseudocapacitive performance. Journal of Alloys and Compounds 2011, 509 (18), 5611-5616. 106.Nandy, S.; Maiti, U. N.; Ghosh, C. K.; Chattopadhyay, K. K., Enhanced p-type conductivity and band gap narrowing in heavily Al doped NiO thin films deposited by. Journal of Physics: Condensed Matter 2009, 21 (11), 115804. 107.Hu, C.-C.; Chen, W.-C.; Chang , K.-H., How to Achieve Maximum Utilization of Hydrous Ruthenium Oxide for Supercapacitors. Journal of The Electrochemical Society 2004, 151 (2), A281-A290. 108.Adeyemo, A.; Hunter, G.; Dutta, P. K., Interaction of CO with hydrous ruthenium oxide and development of a chemoresistive ambient CO sensor. Sensors and Actuators B: Chemical 2011, 152 (2), 307-315. 109.Wang, H.; Yi, H.; Chen, X.; Wang, X., Asymmetric supercapacitors based on nano-architectured nickel oxide/graphene foam and hierarchical porous nitrogen-doped carbon nanotubes with ultrahigh-rate performance. Journal of Materials Chemistry A 2014, 2 (9), 3223-3230. 110.Cong, H.-P.; Ren, X.-C.; Wang, P.; Yu, S.-H., Flexible graphene-polyaniline composite paper for high-performance supercapacitor. Energy & Environmental Science 2013, 6 (4), 1185-1191. 111.Liu, S.; Liu, X.; Li, Z.; Yang, S.; Wang, J., Fabrication of free-standing graphene/polyaniline nanofibers composite paper via electrostatic adsorption for electrochemical supercapacitors. New Journal of Chemistry 2011, 35 (2), 369-374. 112.Luo, Y.; Jiang, J.; Zhou, W.; Yang, H.; Luo, J.; Qi, X.; Zhang, H.; Yu, D. Y. W.; Li, C. M.; Yu, T., Self-assembly of well-ordered whisker-like manganese oxide arrays on carbon fiber paper and its application as electrode material for supercapacitors. Journal of Materials Chemistry 2012, 22 (17), 8634-8640. 113.Chen, X. a.; Chen, X.; Zhang, F.; Yang, Z.; Huang, S., One-pot hydrothermal synthesis of reduced graphene oxide/carbon nanotube/α-Ni(OH)2 composites for high performance electrochemical supercapacitor. Journal of Power Sources 2013, 243, 555-561. 114.Wang, Y.; Tang, S.; Vongehr, S.; Ali Syed, J.; Wang, X.; Meng, X., High-Performance Flexible Solid-State Carbon Cloth Supercapacitors Based on Highly Processible N-Graphene Doped Polyacrylic Acid/Polyaniline Composites. 2016, 6, 12883.
|