跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/09/28 17:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王則明
研究生(外文):Tse Ming Wang
論文名稱:注意力缺失過動症兒童在基礎數值處理能力與計算能力之探討:事件相關腦電位研究
論文名稱(外文):Exploration of Basic Numerical Processing and Calculation in Children with Attention Deficit Hyperactivity Disorder: An Event-Related Potential Study
指導教授:沈宜璇沈宜璇引用關係
指導教授(外文):I. H. Shen
學位類別:碩士
校院名稱:長庚大學
系所名稱:職能治療學系
學門:醫藥衛生學門
學類:復健醫學學類
論文種類:學術論文
論文出版年:2018
畢業學年度:107
語文別:中文
論文頁數:163
中文關鍵詞:注意力缺失過動症基礎數值處理計算事件相關腦電位
外文關鍵詞:ADHDBasic Numerical ProcessingCalculationEvent-Related Proential
相關次數:
  • 被引用被引用:0
  • 點閱點閱:274
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
基礎數值處理能力為兩個生物與生俱來的次系統所組成,個體能針對少量目標物進行精確計算,亦可對大量目標物進行粗略估算。若基礎數值處理能力受損,可能使個體難以發展出成熟之數學技巧,並導致數學成就低落以及與數學相關之表現不佳。近期研究指出,注意力缺失過動症(以下簡稱ADHD)兒童通常也有較差數學表現,但多數研究仍聚焦在兒童之注意力與工作記憶及數學表現之間的關聯,較少探討基礎數值處理能力方面,因此本研究目的在探討ADHD與一般兒童在基礎數值處理能力上之差異以及基礎數值處理能力與計算能力之相關性。
研究招募國小二至四年級兒童受試者,並依診斷分為ADHD組(8.9±1歲)和及控制組(8.8±0.8歲),每組各20人,在智力、性別與年齡都有控制,兩組皆進行一系列測驗(神經心理測驗、數學成就測驗、電腦化基礎數值處理任務與計算任務)。此外,並使用事件相關腦電位來觀察受試者在進行電腦化基礎數值處理任務與計算任務時的認知處理歷程。
結果顯示,在所有基礎數值處理任務中,ADHD兒童反應時間較長且正確率較低,顯示ADHD兒童的確具有較差的基礎數值處理表現。同時,ADHD兒童在計算任務中也呈現出較差的表現。基礎數值處理任務之行為表現也與計算任務之行為表現有相關,顯示個體在基礎數值處理的表現確實會對數學之計算產生一定影響。事件相關腦電位結果顯示,ADHD兒童在基礎數值處理的視算與估算任務中,具有較小的P3平均振幅(p=.03 ; p=.028),顯示ADHD兒童可能有數值處理能力上的受損。在數數任務中,ADHD兒童具有較小的CDA平均振幅(p=.013),顯示除了數值處理能力外,工作記憶能力亦可能影響其數數表現。在計算任務(分裂效應中),ADHD兒童同樣具有較小的P3平均振幅(p=.015),顯示ADHD兒童判斷答案正確性的能力較差。
透過任務中所得到的外在行為表現與事件相關腦電位資料,可得知,ADHD兒童具有較差的基礎數值處理表現,並且關鍵原因可能是由於ADHD兒童之處理數值的潛在神經認知系統受損所導致。本研究呈現之結果使我們了解,ADHD兒童的數學表現較差,除了與一般認知能力上的受損有關外,基礎數值處理能力的受損亦可能是導致數學表現差的關鍵因素。未來應提早篩檢兒童之基礎數值處理能力,並加以擬定適合的介入計畫,以利兒童日後之數學表現。
Basic numerical processing is achieved through two systems that represent numerical information. One system represent small numerosities precisely, where as the other system represents large numerosities approximately. Basic numerical processing could serve as a basis for formal mathematics. Non–symbolic magnitude estimation skills are associated with mathematics. Recent studies have investigated the relationship between ADHD and mathematical ability. Several studies have observed a negative association between ADHD symptoms and mathematical ability. Few studies have investigated basic numerical processing in children with ADHD. The aim of this study was to compare basic numerical processing between children with ADHD and typically developed children (TD) and to investigate the relationship between basic numerical processing and calculation.
Twenty children with ADHD (aged 8.9±1 years) and 20 TD (aged 8.9±1 years) were recruited. All participants carried out neuropsychological assessments, mathematical achievement test and computerized numerical processing tasks and calculation. At the same time, the underlying cognitive processes of basic numerical processing was measured by using event-related potential (ERPs) technique while participants performed non–symbolic numerical comparison and calculation tasks.
Results indicated that children with ADHD had lower accuracy and responded more slowly than TD in all computerized tasks. Behavior data of the basic numerical processing were correlated with the calculation. It seems that calculation was influenced by the basic numerical processing. ERPs measures indicated that children with ADHD have smaller P3 amplitude in subtizing (p=.03) and approximating (p=.028) tasks. It seems plausible that children with ADHD have deficits of basic numerical processing. In addition, children with ADHD have smaller CDA amplitude (p=.013) in counting task, showing that less working memory capacity is related to poor counting skills. Smaller P3 amplitude for split effect in calculation task (p=.015) was observed in children with ADHD. Therefore, it indicated that children with ADHD were less inefficient to respond correctly.
Our findings indicated that children with ADHD have shown impaired basic numerical processing by the behavioral and neural correlates of non–symbolic comparison tasks. Besides the domain-general cognitive deficits, domain-specitic deficits in numerical processing contributed to the poor mathematic in children with ADHD. It might be helpful for mathematical learning in children with ADHD if we identify the domain-specitic deficits and provide intervention to improve the basic numerical processing.
目錄
指導教授推薦書
論文口試委員審定書
致謝………………………………………………………………………………....-iii-
中文摘要………………………………………………………….…...….....……..-iv-
Abstract ……………………………………………….………….….…....………....-vi-
目錄………………………………………………………………………………..-viii-
圖目錄……………………………………………………………………………..-xiii-
表目錄……………………………………………………………………………...-xv-
第一章 緒論……………...…………………………………….…….…….……...- 1 -
第一節 研究背景………………………………………….……….……...…- 1 -
第二節 研究動機與目的………………………………….………....……....- 1 -
第三節 名詞解釋……………………………………….….………….……..- 2 -
第一項 注意力缺失過動疾患…………………….….………………...- 2 -
第二項 基礎數值處理…………………………….….………………...- 3 -
第三項 非符號數值大小比較任務…………………………………….- 3 -
第四項 事件相關腦電位……………………….…….………………...- 3 -
第二章 文獻回顧………………………………………….….…………………...- 4 -
第一節 與數學表現有關的相關因素……………….….…………………...- 4 -
第二節 基礎數值處理系統與其核心要素………….…….………………...- 5 -
第三節 數學障礙之簡介與主要核心缺陷………….…….……………..….- 7 -
第四節 ADHD兒童於數學能力上之困難………….…….………..……… - 9 -
第五節 基礎數值處理與計算能力於腦部影像學之發現….……….....…. - 11 -
第六節 基礎數值處理及計算之事件相關腦電位研究……...…………… - 12 -
第一項 視算與估算的事件相關腦電位……….…………………….. - 12 -
第二項 數數的事件相關腦電位……………….……………………..- 13 -
第三項 計算的事件相關腦電位…………….………………………..- 14 -
第七節 研究問題與研究假設………………….…………………………..- 16 -
第一項 研究提問………………………….…………………………..- 16 -
第二項 研究假設………………………….…………………………..- 17 -
第三章 研究方法…………………………………….…………………………..- 18 -
第一節 研究設計……………………………….…………………………- 18 -
第一項 研究法…………………………………….…………………..- 18 -
第二項 研究架構……………………………………………………...- 18 -
第三項 變項定義……………………………………………………...- 19 -
第二節 研究對象…………………..……………………………………….- 20 -
第一項 注意力缺失過動症兒童之收案標準與排案標準…………...- 20 -
第二項 受試者來源…………………………………………………...- 20 -
第三節 研究工具………………………………………………………….- 21 -
第一項 控制變項評估工具…………………………………………...- 21 -
第二項 閱讀理解測驗評估工具……………………………………...- 22 -
第三項 數學測驗評估工具…………………………………………...- 22 -
第四項 神經心理測驗評估工具……………………………………...- 23 -
第五項 電腦化數學任務設計………………………………………...- 25 -
第四節 研究過程…………………………………………………………...- 29 -
第一項 實驗整體流程………………………………………………...- 29 -
第二項 事件相關腦電位訊號………………………………………...- 30 -
第五節 資料分析…………………………………………………………...- 32 -
第一項 控制變項……………………………………………………...- 32 -
第二項 閱讀理解測驗、神經心理測驗與數學成就測驗..............- 32 -
第三項 電腦化數學任務(行為資料)………………………………… - 33 -
第四項 電腦化數學任務(事件相關腦電位資料)…………………… - 34 -
第五項 特定任務表現之相關性探討……………………………….. - 35 -
第六項 事件相關腦電位(差異波之分析與處理)……………..…….. - 35 -
第四章 研究結果………………………………………………………………...- 36 -
第一節 基本資料…………………………………………………………...- 36 -
第二節 閱讀理解篩選測驗………………………………………………...- 37 -
第三節 數學成就測驗……………………………………………………...- 37 -
第四節 神經心理測驗……………………………………………………...- 38 -
第一項 口語工作記憶………………………………………………...- 38 -
第二項 視覺空間工作記憶…………………………………………...- 38 -
第五節 電腦化數學任務-行為資料……………………………………….- 39 -
第一項 視算任務……………………………………………………...- 39 -
第二項 估算任務……………………………………………………...- 42 -
第三項 數數任務……………………………………………………...- 46 -
第四項 計算任務(答案以分裂大小分類)…………………………...- 53 -
第五項 計算任務(答案以一致性分類)……………………………...- 59 -
第六節 電腦化數學任務-事件相關腦電位資料………………………….- 67 -
第一項 視算任務…………………………………………………….- 67 -
第二項 估算任務…………………………………………………….- 75 -
第三項 數數任務…………………………………………………….- 84 -
第四項 計算任務(問題大小效應)………………………………..… - 87 -
第五項 計算任務(分裂效應)…………………………………….…. - 92 -
第七節 注意力缺失、過動易衝動與數學成就之相關………………….- 104 -
第一項 注意力缺失與數學之相關………………………….……..- 104 -
第二項 過動易衝動與數學成就之相關…………………………...- 104 -
第八節 工作記憶與數學成就之相關……………………………….……- 104 -
第一項 口語工作記憶與數學之相關……………………………….- 105 -
第二項 視覺空間工作記憶與數學之相關………………………….- 105 -
第九節 基礎數值處理能力與數學成就之相關………………………….- 106 -
第一項 視算能力與數學成就之相關……………………………….- 106 -
第二項 估算能力與數學成就之相關……………………………….- 107 -
第三項 數數能力(高數量)與數學成就之相關…………………….. - 108 -
第四項 視算與估算任務之事件相關腦電位與計算之相關……….- 109 -
第五項 數數任務之事件相關腦電位與計算之相關……………….- 110 -
第六項 計算任務之事件相關腦電位與計算之相關…….............- 110 -
第五章 討論……………………………………………………………………. - 111 -
第一節 兩組受試者基本資料……………………………………………. - 111 -
第一項 人口學基本資料……………………………………………. - 111 -
第二項 數學成就測驗………………………………………………. - 113 -
第三項 工作記憶測驗………………………………………………. - 112 -
第二節 基礎數值處理任務(視算任務)………………………………….. - 114 -
第一項 視算任務(行為資料)……………………………………….. - 114 -
第二項 視算任務與數學之相關……………………………………. - 118 -
第三項 視算任務(事件相關腦電位)……………………………….. - 118 -
第四項 視算任務(P3)與計算之相關……………………………….. - 118 -
第三節 基礎數值處理任務(估算任務)………………………………….. - 118 -
第一項 估算任務(行為資料)………………………………………...- 119 -
第二項 估算任務與數學之相關……………………………………. - 119 -
第三項 估算任務(事件相關腦電位)……………………………….. - 119 -
第四項 估算任務(P3)與計算之相關……………………………….. - 126 -
第四節 基礎數值處理任務(數數任務)……….…………………………. - 121 -
第一項 數數任務(行為資料)………………….……………………. - 115 -
第二項 數數任務與數學之相關………………………….………… - 119 -
第三項 數數任務(事件相關腦電位)……………………….………. - 122 -
第四項 數數任務(CDA)與計算之相關………………….…………. - 122 -
第五節 計算任務…………………………………………………………. - 129 -
第一項 計算任務(行為資料)……………………………………...... - 121 -
第二項 計算任務(事件相關腦電位)(問題大小效應)…………….. - 126 -
第三項 計算任務(事件相關腦電位)(分裂效應)…………………. - 129 -
第四項 計算任務之問題大小效應與分裂效應(P3)與計算之相關.. - 129 -
第六章 結論……………………………………………………………………. - 130 -
第一節 研究限制與未來建議…………………………………………….- 131 -
第一項 施測所花費時間偏長……………………………………….- 131 -
第二項 國外評估工具之題目與常模未必完全適用我國兒童…….- 131 -
第三項 注意力缺失與過動衝動症狀對計算之影響……………….- 131 -
第四項 兩組兒童在工作記憶之差異……………………………….- 131 -
第二節 臨床應用………………………………………………………….- 132 -
附錄一…………………………………………………………………………...- 133 -
參考文獻………………………………………………………………………...- 135 -


圖目錄
圖2-3-1四階段發展模式(摘自Von Aster & Shalev., 2007)………….……...- 9 -
圖3-1-1研究架構圖…………………………………………………………...- 18 -
圖3-3-1視算任務之示意圖…………………………………………….……..- 26 -
圖3-3-2視算任務之示意圖…………………………………………………...- 26 -
圖3-3-3數數任務之目標物為紅色示意圖…………………………...………- 27 -
圖3-3-4數數任務之目標物為綠色示意圖……………………..………...…..- 27 -
圖3-3-5計算任務之小問題題目示意圖………………………...……………- 28 -
圖3-3-6計算任務之小問題題目示意圖…………………………...…………- 28 -
圖3-4-1整體實驗流程…………………………………………..…………….- 29 -
圖3-4-2電極位置分布圖…………………………………………..………….- 31 -
圖3-5-1三因子及二因子分析流程圖………………………………………...- 34 -
圖4-5-1估算任務之反應時間交互作用……………………………………...- 43 -
圖4-5-2數數任務之反應時間交互作用……………………………………...- 48 -
圖4-5-3數數任務之正確率交互作用………………………………………...- 49 -
圖4-5-4數數任務之錯誤率交互作用………………………………………...- 51 -
圖4-5-5數數任務之遺漏率交互作用………………………………………...- 53 -
圖4-5-6計算任務(答案以分裂大小分類)之正確率交互作用……………… - 56 -
圖4-5-7計算任務(答案以分裂大小分類)之遺漏率交互作用……………… - 58 -
圖4-5-8計算任務(答案以一致性分類)之反應時間交互作用……………… - 60 -
圖4-5-9計算任務(答案以一致性分類)之正確率交互作用………………… - 62 -
圖4-5-10計算任務(答案以一致性分類)之錯誤率交互作用……..………… - 63 -
圖4-5-11計算任務(答案以一致性分類)之正確率交互作用……………..… - 65 -
圖4-6-1視算任務:兩組在N1、P2、P2P之總平均電位圖………………… - 73 -
圖4-6-2視算任務:兩組在N2、P3之總平均電位圖………………….……. - 74 -
圖4-6-3估算任務之N1尖峰潛伏期交互作用………………..…….……….. - 76 -
圖4-6-4估算任務:兩組在N1、P2、P2P之總平均電位圖……….………… - 82 -
圖4-6-5估算任務:兩組在N2、P3之總平均電位圖…………...…………… - 83 -
圖4-6-6數數任務O1與O2差異波總平均電位圖(ADHD組)……….….….- 86 -
圖4-6-7數數任務O1與O2差異波總平均電位圖(控制組)……………..…. - 86 -
圖4-6-8計算任務(問題大小效應):兩組在P1、P2、N2、P3
之總平均電位圖……………………………………………………....- 91 -
圖4-6-9計算任務(分裂效應)之N2尖峰潛伏期交互作用……………...…... - 93 -
圖4-6-10計算任務(分裂效應)之P3平均振幅交互作用………………..…... - 97 -
圖4-6-11計算任務(分裂效應):兩組在P1、N2、P3之總平均電位圖……...- 98 -


表目錄
表3-1-3各變項之概念型定義與操作型定義…………………...…………..…..- 19 -
表3-5-1閱讀理解、神經心理與數學成就測驗之行為參數定義及統計分析方法-32 -
表3-5-2基礎數值處理任務與計算任務之行為參數定義及統計分析方法……………- 33 -
表3-5-3基礎數值處理任務與計算任務之腦電位行為參數定義及統計分析方法-34 -
表4-1-1人口基本學資料……………………………………………………...…- 36 -
表4-2-1閱讀理解篩選測驗之敘述性結果……………………………………...- 37 -
表4-3-1 數學成就測驗之敘述性結果……………………………………...……- 37 -
表4-4-1口語工作記憶之敘述性結果…………………………………………...- 38 -
表4-4-2視覺空間工作記憶之敘述性結果……………………………………...- 38 -
表4-5-1 視算之各觀察變項平均值及標準差之敘述性統計…………...……... - 39 -
表4-5-2視算之反應時間變異數分析摘要表…………………………………...- 40 -
表4-5-3 視算之正確率變異數分析摘要表………………………………...……- 40 -
表4-5-4視算之錯誤率變異數分析摘要表……………………………………...- 41 -
表4-5-5視算之遺漏率變異數分析摘要表……………………………………...- 42 -
表4-5-6估算之各觀察變項平均值及標準差之敘述性統計………...…………- 42 -
表4-5-7估算之反應時間變異數分析摘要表…………………………………...- 43 -
表4-5-8 估算之正確率變異數分析摘要表……………………………………...- 44 -
表4-5-9 估算之錯誤率變異數分析摘要表……………………………………...- 45 -
表4-5-10 估算之遺漏率變異數分析摘要表…………………………………….- 45 -
表4-5-11 數數之各觀察變項平均值及標準差之敘述性統計…………….…… - 46 -
表4-5-12 數數之反應時間變異數分析摘要表…………………………….……- 47 -
表4-5-13 數數反應時間之Bonferroni多重比較………………………………...- 47 -
表4-5-14 數數之正確率變異數分析摘要表…………………………………… - 49 -
表4-5-15 數數正確率之Bonferroni多重比較…………………………………...- 49 -
表4-5-16 數數之錯誤率變異數分析摘要表………………………….………... - 50 -
表4-5-17 數數錯誤率之Bonferroni多重比較…………………………………...- 51 -
表4-5-18 數數之遺漏率變異數分析摘要表………………………….………... - 52 -
表4-5-19 數數遺漏率之Bonferroni多重比較…………………………………...- 52 -
表4-5-20 計算任務(答案以分裂大小分類)各變項之平均值及標準差敘述性統
計-53-
表4-5-21 計算任務(答案以分裂大小分類)之反應時間變異數分析摘要表…. - 54 -
表4-5-22 計算任務(答案以分裂大小分類)之正確率變異數分析摘要表……. - 55 -
表4-5-23 計算任務(答案以分裂大小分類)之錯誤率變異數分析摘要表……. - 57 -
表4-5-24 計算任務(答案以分裂大小分類)之遺漏率變異數分析摘要表……. - 58 -
表4-5-25 計算任務(答案以一致性分類)各變項之平均值及標準差敘述性統計-59 -
表4-5-26 計算任務(答案以一致性分類)之反應時間變異數分析摘要表…… - 60 -
表4-5-27 計算任務(答案以一致性分類)之正確率變異數分析摘要表……… - 61 -
表4-5-28 計算任務(答案以一致性分類)之錯誤率變異數分析摘要表……… - 63 -
表4-5-29 計算任務(答案以一致性分類)之遺漏率變異數分析摘要表…... - 64 -
表4-5-30 各任務行為表現之結果統整………………………...………………. - 65 -
表4-6-1 視算任務之N1尖峰潛伏期與平均振幅敘述性統計………………..... - 67 -
表4-6-2 視算任務之N1尖峰潛伏期變異數分析摘要表……………..…...…… - 67 -
表4-6-3 視算任務之N1平均振幅變異數分析摘要表………………….……… - 68 -
表4-6-4 視算任務之P2尖峰潛伏期與平均振幅敘述性統計………………...... - 68 -
表4-6-5 視算任務之P2平均振幅變異數分析摘要表………………………….. - 69 -
表4-6-6視算任務之P2P尖峰潛伏期與平均振幅敘述性統計……….…….….- 69 -
表4-6-7 視算任務之P2P平均振幅變異數分析摘要表……………..………….. - 70 -
表4-6-8視算任務之N2尖峰潛伏期與平均振幅敘述性統計…………………. - 70 -
表4-6-9視算任務之N2平均振幅變異數分析摘要表…………………….…… - 71 -
表4-6-10視算任務之P3尖峰潛伏期與平均振幅敘述性統計…………......… - 72 -
表4-6-11 視算任務之P3平均振幅變異數分析摘要表……………………..….. - 72 -
表4-6-12 估算任務之N1尖峰潛伏期與平均振幅敘述性統計……………….. - 75 -
表4-6-13 估算任務之N1尖峰潛伏期變異數分析摘要表……………………… - 75 -
表4-6-14估算任務之P2尖峰潛伏期與平均振幅敘述性統計……………….. - 76 -
表4-6-15 估算任務之P2尖峰潛伏期變異數分析摘要表……………………… - 77 -
表4-6-16估算任務之P2P尖峰潛伏期與平均振幅敘述性統計………………. - 78 -
表4-6-17 估算任務之P2P尖峰潛伏期變異數分析摘要表……………..……… - 78 -
表4-6-18 估算任務之P2P平均振幅變異數分析摘要表………………….……. - 79 -
表4-6-19估算任務之N2尖峰潛伏期與平均振幅敘述性統計…………..…… - 79 -
表4-6-20 估算任務之N2平均振幅變異數分析摘要表……………..………….. - 80 -
表4-6-21估算任務之P3尖峰潛伏期與平均振幅敘述性統計…………………- 80 -
表4-6-22 估算任務之P3平均振幅變異數分析摘要表………………………… - 81 -
表4-6-23數數任務之N2pc平均振幅敘述性統計…………………………….. - 84 -
表4-6-24 數數任務之N2pc平均振幅變異數分析摘要表………….…………... - 84 -
表4-6-25 數數任務之N2pc平均振幅之t Test(LSD)多重比較………….……… - 85 -
表4-6-26數數任務之CDA平均振幅敘述性統計………………………...…... - 85 -
表4-6-27 數數任務之CDA平均振幅變異數分析摘要表……………………… - 86 -
表4-6-28計算任務(問題大小效應)之P1尖峰潛伏期
與平均振幅敘述性統計…………………………………………….... - 87 -

表4-6-29計算任務(問題大小效應)之P2尖峰潛伏期與平均振幅敘述性統計.- 88 -
表4-6-30計算任務(問題大小效應)之N2尖峰潛伏期與平均振幅敘述性統計.- 88 -
表4-6-31 計算任務(問題大小效應)之N2平均振幅變異數分析摘要表………- 89 -
表4-6-32計算任務(問題大小效應)之P3尖峰潛伏期與平均振幅敘述性統計- 90 -
表4-6-33 計算任務(問題大小效應)之P3平均振幅變異數分析摘要表…….. - 90 -
表4-6-34計算任務(分裂效應)之P2尖峰潛伏期與平均振幅敘述性統計……- 92 -
表4-6-35 計算任務(分裂效應)之P2平均振幅變異數分析摘要表……………..- 93 -
表4-6-36計算任務(分裂效應)之N2尖峰潛伏期與平均振幅敘述性統計…... - 93 -
表4-6-37 計算(分裂效應)之N2尖峰潛伏期變異數分析摘要表………………. - 94 -
表4-6-38 計算(分裂效應)之N2平均振幅變異數分析摘要表……………….… - 95 -
表4-6-39計算(分裂效應)之P3尖峰潛伏期與平均振幅敘述性統計…………- 96 -
表4-6-40 計算(分裂效應)之P3尖峰潛伏期變異數分析摘要表…………….….- 96 -
表4-6-41 計算(分裂效應)之P3平均振幅變異數分析摘要表…………………..- 97 -
表4-6-42 各任務事件相關腦電位之結果統整………………………………… - 99 -
表4-6-43各任務之結果統整……………………………………………………- 101 -
表4-7-1注意力缺失、過動衝動與WJ-III數學成就測驗、電腦化計算任務之相
關……….- 104 -
表4-8-1工作記憶與WJ-III數學成就測驗、電腦化計算任務之相關…..….. - 105 -
表4-9-1視算及任務(反應時間、正確率)與數學之相關…………………….. - 106 -
表4-9-2數數任務低數量及高數量(反應時間、正確率、錯誤率、遺漏率)
與數學之相關……………………………………………..…………...- 108 -
表4-9-3視算與估算任務之P3與計算之相關…………………………….…. - 109 -
表4-9-4數數任務(視算、數數範圍)之CDA與計算之相關……….……….. - 110 -
表4-9-5計算任務(問題大小效應與分裂效應)之事件相關腦電位P3
與計算之相關………………………………………………………….- 110 -
1,史麗珠(2011)。進階應用生物統計學。臺北市: 學富文化。
2,台灣精神醫學會(2015)。精神疾病診斷手冊第五版。新北:合記。
3,吳武典、蔡崇建、胡心慈、王振德、林幸台、郭靜姿(2007)。托尼非語文智力
測驗再版-指導手冊。台北:心理。
4,柯華葳、詹益綾(2007)。國民小學(二至六年級)閱讀理解篩選測驗使用手冊。台
北:國立臺灣師範大學特殊教育中心。
5,陳榮華、陳心怡(譯)(2007)。魏氏兒童智力量表第四版(中文版)指導手冊(David
Wechsler)。台北:中國行為科學社。
6,曾美惠、傅中珮(譯)(2010)。動作協調問卷(中文版)指導手冊(Brenda N.
Wilson)。台北:心理。
7,劉昱志, 劉士愷, 商志雍, 林健禾, 杜長齡, & 高淑芬(2006)。注意力缺陷過動
症中文版 Swanson, Nolan, and Pelham, Version IV (SNAP-IV) 量表之常
模及信效度。臺灣精神醫學, 20, 290-304。
8. Agrillo, C., Piffer, L., & Adriano, A. (2013). Individual differences in non–symbolic numerical abilities predict mathematical achievements but contradict ATOM. Behavioral and Brain Functions, 9:26.
9. Alloway, T. P. (2007). Automated Working: Memory Assessment: Manual. Pearson.
10. Antonini, T. N., Kingery, K. M., Narad, M. E., Langberg, J. M., Tamm, L., & Epstein, J. N. (2016). Neurocognitive and behavioral predictors of math performance in children with and without ADHD. Journal of Attention Disorders, 20(2), 108–118.
11. Ashcraft, M. H., & Battaglia, J. (1978). Cognitive arithmetic: evidence for retrieval and decision processes in mental addition. Journal of Experimental Psychology: Human Learning and Memory, 4(5), 527–538.
12. Ashcraft, M. H., & Stazyk, E. H. (1981). Mental addition: a test of three verification models. Memory & Cognition, 9(2), 185–196.
13. Ashkenazi, S., Henik, A., Ifergane, G., & Shelef, I. (2008). Basic numerical processing in left intraparietal sulcus (IPS) acalculia. Cortex, 44(4), 439–448.
14. Baddeley, A. (2012). Working memory: theories, models, and controversies. Psychology, 63(1), 1–29.
15. Baroody, A. J. (1987). The development of counting strategies for single-digit addition. Journal for Research in Mathematics Education, 18(2), 141–157.
16. Beek, L. V., Ghesquière, P., DeSmedt, B., & Lagae, L. (2014). The arithmetic problem size effect in children:anevent-related potential study. Human Neuroscience, 8, 1–11.
17. Beek, L. V., Ere, P. G., Smedt, B. D.& Lagae, L. (2015). Arithmetic difficulties in children with mild traumatic brain injury at the subacute stage of recovery. Developmental Medicine and Child Neurology, 57(11), 1042–1048.
18. Bonny, J.W., & Lourenco, S. F. (2013). The approximate number system and its relation to early math achievement: Evidence from the preschool years. Journal of Experimental Child Psychology, 114(3), 375–388.
19. Brannon, E. M., Lutz, D., & Cordes, S. (2006). The development of area discrimination and its implications for number representation in infancy. Developmental Science, 9(6), 59–64.
20. Capodieci, A., & Martinussen, R. (2017). Math error types and correlates in adolescents with and without attention deficit hyperactivity disorder. Frontiers in Psychology, 8, 1801.
21. Chen, Y. N., & Mitra, S. (2009). The spatial-verbal difference in the n-back task: an ERP study. Acta Neurologica Taiwanica, 18(3), 170–179.
22. Chen, Q., & Li, J. (2014). Association between individual differences in non–symbolic number acuity and math performance: A meta–analysis. Acta Psychologica, 148, 163–172.
23. Cohen, K. R., Lammertyn, J., & Izard, V. (2008). Are numbers special? An overview of chronometric, neuroimaging, developmental and comparative studies of magnitude representation, Progress in Neurobiology, 84(2), 132–147.
24. Coles, M. G. H., & Rugg, M. D. (2011). Event-related brain potentials: an introduction,UK : Oxford University Press.
25. Colomer, C., Re, A. M., Miranda, A., & Lucangeli, D. (2013). Numerical and calculation abilities in children with ADHD. Learning Disabilities, 11(2), 1–15.
26. Deary, I. J., Strand, S., Smith, P.& Fernandes, C.(2007). Intelligence and educational achievement. Intelligence, 35, 13–21.
27. Dehaene, S. (1989). The psychophysics of numerical comparison: A reexamination of apparently incompatible data. Perception & Psychophysics, 45(6), 557–566.
28. Dehaene, S. (1996). The organization of brain activations in number comparison: Event-related potentials and the additive-factors method. Journal of Cognitive Neuroscience, 8(1), 47–68.
29. Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive neuropsychology, 20(3-6), 487-506.
30. Dehaene, S. (2003). The neural basis of the Weber–Fechner Law: A logarithmic mental number line. Trends in Cognitive Sciences, 7(4), 145–147.
31. De Smedt, B., Noël, M. P., Gilmore, C., & Ansari, D. (2013). How do symbolic and non–symbolic numerical magnitude processing skills relate to individual differences in children's mathematical skills? A review of evidence from brain and behavior. Trends in Neuroscience and Education, 2(2), 48–55.
32. Desoete, A., Ceulemans, A., DeWeerdt, F., & Pieters, S. (2012). Can we predictmathematical learning disabilities from symbolic and non–symbolic comparison tasks in kindergarten? Findings from a longitudinal study. British Journal of Educational Psychology, 82(1), 64–81.
33. Dormal, G., Andres, M., & Pesenti, M. (2012). Contribution of the right intraparietal sulcus to numerosity and length processing: An fMRI-guided TMS study. Cortex, 48(5), 623–629.
34. Drew, T., & Vogel, E. K. (2008). Neural measures of individual differences in selecting and tracking multiple moving objects. The Journal of Neuroscience, 28(16), 4183–4191.
35. Donchin, E., & Coles, M. G. (1988). Is the P300 component a manifestation of context updating?. Behavioral and brain sciences, 11(3), 357-374.
36. Duverne, S., & Lemaire, P. (2005). Arithmetic split effects reflect strategy selection: an adult age comparative study in addition comparison and verification tasks. Canadian Journal of Experimental Psychology, 59(4), 262–278.
37. Galfano, G., Penolazzi, B., Fardo, F., Dhooge, E., Angrilli, A., & Umiltà, C. (2011). Neurophysiological markers of retrieval‐induced forgetting in multiplication fact retrieval. Psychophysiology, 48(12), 1681–1691.
38. Geary, D. C. (2003). Learning disabilities in arithmetic: Problem-solving differences and cognitive deficits. Handbook of learning disabilities, 199–212.
39. Ghelani, K., Sidhu, R., Jain, U., & Tannock, R. (2004). Reading comprehension and reading related abilities in adolescents with reading disabilities and attention‐deficit/hyperactivity disorder. Dyslexia, 10(4), 364–384.
40. Geary, D. C., & Jefferson, T. (2011). Consequences, characteristics, and causes of mathematical learning disabilities and persistent low achievement in mathematics. Journal of Developmental and Behavioral Pediatrics, 32(3), 250–263.
41. Gelman, R., & Gallistel, C. R. (1978). The child’s understanding of number, cambridge, MA:Harvard University Press.
42. Gomez, A., Piazza, M., Jobert, A., Lambertz, G. D., Dehaene, S., & Huron, C. (2015). Mathematical difficulties in developmental coordination disorder: Symbolic and non–symbolic number processing. Research in Developmental Disabilities, 43(44), 167–178.
43. Gremillion, M. L., & Martel, M. M. (2012). Semantic language as a mechanism explaining the association between ADHD symptoms and reading and mathematics underachievement. Journal of abnormal child psychology, 40(8), 1339-1349.
44. Griffin, I. (2002). Multiple mechanisms of selective attention: differential modulation of stimulus processing by attention to space or time. Neuropsychologia, 40(13), 2325–2340.
45. Hart, S. A., Petrill, S. A., Willcutt, E., Thompson, L. A., Schatschneider, C., Deater-Deckard, K., & Cutting, L. E. (2010). Exploring how symptoms of attention-deficit/hyperactivity disorder are related to reading and mathematics performance: General genes, general environments. Psychological Science, 21(11), 1708-1715.
46. Hegerl, U., & Juckel, G. (1993). Intensity dependence of auditory evoked potentials as an indicator of central serotonergic neurotransmission: A new hypothesis. Biological Psychiatry, 33(3), 173–187.
47. Heine, A., Wißmann, J., Tamm, S., Smedt, B. D., Schneider, M., Stern, E., Verschaffel, L., & Jacobs, A. M. (2013). An electrophysiological investigation of non–symbolic magnitude processing: Numerical distance effects in children with and without mathematical learning disabilities. Cortex, 49(8), 2162–2177.
48. Henik, A., Leibovich, T., Naparstek, S., Diesendruck, L., & Rubinsten, O. (2012). Quantities, amounts, and the numerical core system. Frontiers in Human Neuroscience, 5, 186.
49. Hutchison, J. E., Lyons, I. M., & Ansari, D. (2018). More similar than different: gender differences in children's basic numerical skills are the exception not the rule. Child Development, Retrieved from https://onlinelibrary.wiley.com/doi/abs/10.1111/cdev.13044
50. Hyde, D. C., & Spelke, E. S. (2012). Spatiotemporal dynamics of processing non–symbolic number: An event‐related potential source localization study. Human Brain Mapping, 33(9), 2189–2203.
51. Ikkai, A., McCollough, A. W., & Vogel, E. K. (2010). Contralateral delay activity provides a neural measure of the number of representations in visual working memory. Journal of Neurophysiology, 103(4), 1963–1968.
52. Izard, V., Sann, C., Spelke, E. S., & Streri, A. (2009). Newborn infants perceive abstract numbers. Proceedings of the National Academy of Sciences, 106(25), 10382–10385.
53. Jost, K., Beinhoff, U., Hennighausen, E., & Rösler, F. (2004). Facts, rules, and strategies in single-digit multiplication: evidence from event-related brain potentials. Cognitive Brain Research, 20(2), 183–193.
54. Jordan, N. C., Glutting, J., & Ramineni, C. (2008). A number sense screening tool for identifying children at risk for mathematical difficulties. In: A, Dowker (Eds). Mathematical difficulties: Psychology, neuroscience and intervention (pp. 45–58). New York: Elsevier.
55. Kaufman, E. L., Lord, M. W., Reese, T. W., & Volkmann, J. (1949). The discrimination of visual number. American Journal of Psychology. 62(4), 498–525.
56. Kaufmann, L., Handl, P., & Thöny, B. (2003). Evaluation of a numeracy intervention program focusing on basic numerical knowledge and conceptual knowledge: A pilot study. Journal of Learning Disabilities, 36(6), 564–573.
57. Kaufmann, L., & Nuerk, H. C. (2008). Basic number processing deficits in ADHD: a broad examination of elementary and complex number processing skills in 9- to 12-year-old children with ADHD-C. Developmental Science, 11(5), 692–699.
58. Kaufmann, L., Wood, G., Rubinsten, O., & Henik, A. (2011). Meta–analyses of developmental fMRI studies investigating typical and atypical trajectories of number processing and calculation. Developmental Neuropsychology, 36(6), 763–787.
59. Kramer, A. F., Cepeda, N. J., & Cepeda, M. L. (2001). Methylphenidate effects on task-switching performance in attention-deficit/hyperactivity disorder. Journal of the American Academy of Child & Adolescent Psychiatry, 40(11), 1277–1284.
60. Kuhn, J. T., Ise, E., Raddatz, J., Schwenk, C., & Dobel, C. (2016). Basic numerical processing, calculation, and working memory in children with dyscalculia and/or ADHD symptoms. Zeitschrift für Kinder-und Jugendpsychiatrie und Psychotherapie. 44(5), 1–11.
61. Landerl, K. (2013). Development of numerical processing in children with typical and dyscalculic arithmetic skills—a longitudinal study. Frontiers in Psychology, 4(459), 1–14.
62. Lee, K. M. (2000). Cortical areas differentially involved in multiplication and subtraction: a functional magnetic resonance imaging study and correlation with a case of selective acalculia. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society, 48(4), 657-661.
63. LeFevre, J. A., Fast, L., Skwarchuk, S. L, Smith-Chant, B. L., Bisanz, J., Kamawar, D., & Penner-Wilger, M. (2010). Pathways to mathematics: Longitudinal predictors of performance. Child Development, 81(6), 1753–1767.
64. Link, S. (1990). Modeling imageless thought: The relative judgment theory of numerical comparisons. Journal of Mathematical Psychology, 34(1), 2–41.
65. Lucangeli, D., & Cabrele, S. (2006). Mathematical Difficulties and ADHD. Exceptionality, 14(1), 53–62.
66. Marshall, R. M., Shafer,V. A., O’Donnell, L., Elliott, J., & Handwerk, M. L. (1999). Arithmetic disabilities and ADD subtypes: Implication for DSM-IV. Journal of Learning Disabilities, 32(3), 239–247.
67. Mazza, V., & Caramazza, A. (2011). Temporal brain dynamics of multiple object processing: The flexibility of individuation. PloS One, 6(2), e17453.
68. Mazzocco, M. M., Devlin, K. T., & McKenney, S. J. (2008). Is it a fact? Timed arithmetic performance of children with mathematical learning disabilities (MLD) varies as a function of how MLD is defined. Developmental Neuropsychology, 33(3), 318–344.
69. McLean, J. F., & Hitch, G. J. (1999). Working memory impairments in children with specific arithmetic learning difficulties. Journal of Experimental Child Psychology, 74(3), 240–260.
70. Mussolin, C., Mejias, S., & Noel, M. P. (2010). Symbolic and non–symbolic number comparison in children with and withoutd Dyscalculia. Cognition, 115(1), 10–25.
71. Näätänen, R., & Picton, T. W. (1986). N2 and automatic versus controlled processes. Electroencephalography and Clinical Neurophysiology, 38, 169–186.
72. Näätänen, R., & Picton, T. (1987). The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure. Psychophysiology, 24(4), 375–425.
73. Nan, Y., Knösche, T. R., & Luo, Y. J. (2006). Counting in everyday life: Discrimination and enumeration. Neuropsychologia, 44(7), 1103–1113.
74. Niedeggen M, Ro¨sler F. (1999). N400 effects reflect activation spread during retrieval of arithmetic facts. Psychological Science, 10(3), 271–276.
75. Nieder, A., & Dehaene, S. (2009). Representation of number in the brain. Annual Review of Neuroscience, 32, 185–208.
76. Núñez-Peña, M. I., Honrubia-Serrano, M. L., & Escera, C. (2005). Problem size effect in additions and subtractions: an event-related potential study. Neuroscience Letters, 373(1), 21–25.
77. Núñez-Peña, M. I. (2008). Effects of training on the arithmetic problem-size effect: an event-related potential study. Experimental Brain Research, 190(1), 105–110.
78. Núñez-Peña, M. I., & Suárez-Pellicioni, M. (2012). Processing false solutions in additions: differences between high-and lower-skilled arithmetic problem-solvers. Experimental Brain Research, 218(4), 655–663.
79. Pagano, S., & Mazza, V. (2012). Individuation of multiple targets during visual enumeration: New insights from electrophysiology. Neuropsychologia, 50(5), 754–761.
80. Pagano, S., Lombard, L., & Mazza, V. (2014). Brain dynamics of attention and working memory engagement in subitizing. Brain Research, 1543, 244–252.
81. Passolunghi, M. C., Cornoldi, C., & De Liberto, S. (1999). Working memory and intrusions of irrelevant information in a group of specific poor problem solvers. Memory and Cognition, 27(5), 779–790.
82. Passolunghi, M. C., & Siegel, L. S. (2004). Working memory and access to numerical information in children with disability in mathematics. Journal of Experimental Child Psychology, 88(4), 348–367.
83. Paulsen, D. J., & Neville, H. J. (2008). The processing of non–symbolic numerical magnitudes as indexed by ERPs. Neuropsychologia, 46(10), 2532–2544.
84. Piazza, M. (2011). Neurocognitive start-up tools for symbolic number representations. In Space, Time and Number in the Brain, 267–285.
85. Polich, J. (2007). Updating P300: an integrative theory of P3a and P3b. Clinical Neurophysiology, 118(10), 2128–2148.
86. Price, G. R., Holloway, I. D., Räsänen, P., Vesterinen, M., & Ansari, D. (2007). Impaired parietal magnitude processing in developmental dyscalculia, Current Biology, 17(24), 1042–1043.
87. Price, G. R., & Ansari, D. (2013). Dyscalculia: characteristics, causes, and treatments. Numeracy, 6(1), 1–16.
88. Rapport, M. D., Alderson, R. M., Kofler, M. J., Sarver, D. E., Bolden, J., & Sims, V. (2008). Working memory deficits in boys with attention-deficit/hyperactivity disorder (ADHD): the contribution of central executive and subsystem processes. Journal of Abnormal Child Psychology, 36(6), 825–837.
89. Rapport, M. D., Orban, S. A., Kofler, M. J., & Friedman, L. M. (2013). Do programs designed to train working memory, other executive functions, and attention benefit children with ADHD? A meta–analytic review of cognitive, academic, and behavioral outcomes. Clinical Psychology Review, 33(8), 1237–1252.
90. Rogers, M., Hwang, H., Toplak, M., Weiss, M., & Tannock, R. (2011). Inattention, working memory, and academic achievement in adolescents referred for attention deficit/hyperactivity disorder (ADHD), Child Neuropsychology, 17(5), 444–458.
91. Schleifer, P., & Landerl, K. (2011). Subitizing and counting in typical and atypical development. Developmental Science, 14(2), 280–291.
92. Schneider, M., Beeres, K., Coban, L., Merz, S., Susan Schmidt, S., Stricker, J., … De Smedt, B. (2017). Associations of non–symbolic and symbolic numerical magnitude processing with mathematical competence: A meta–analysis. Developmental Science, 20(3), e12372–e12374.
93. Schwarz, W., & Heinze, H. J. (1998). On the interaction of numerical and size information in digit comparison: A behavioral and event-related potential study. Neuropsychologia, 36(11), 1167–1179.
94. Soltész, F., & Szűcs, D. (2009). An electro-physiological temporal principal component analysis of processing stages of number comparison in developmental dyscalculia. Cognitive Development, 24(4), 473-485.
95. Starkey, P., & Cooper, R. (1980). Perception of numbers by human infants. Science, 210(4473), 1033–1035.
96. Stern, P., & Shalev, L. (2013). The role of sustained attention and display medium in reading comprehension among adolescents with ADHD and without it. Research in Developmental Disabilities, 34(1), 431–439.
97. Temple, E., & Posner, M. I. (1998). Brain mechanisms of quantity are similar in 5-year-old children and adults. Proceedings of the National Academy of Sciences of the United States of America, 95(13), 7836–7841.
98. Tosto, M. G., Momi, S. K., Asherson, P., & Malki, K. (2015). A systematic review of attention deficit hyperactivity disorder (ADHD) and mathematical ability: current findings and future implications. BMC Medicine, 13(1), 1–14.
99. Tosto, M. G., Petrill, S. A., Malykh, S., Malki, K., Haworth, C., Mazzocco, M. M., & Kovas, Y. (2017). Number sense and mathematics: Which, when and how?. Developmental Psychology, 53(10), 19–24.
100. Trick, L. M. (1992). A theory of enumeration that grows out of a general theory of vision: Subitizing, counting, and FINSTs. Advances in Psychology, North-Holland, 91, 257–299.
101. Trick, L. M., & Pylyshyn, Z. W. (1994). Why are small and large numbers enumerated differently? A limited capacity preattentive stage in vision. Psychological Review, 101(1), 80–102.
102. Tzelgov, J., Meyer, J., & Henik, A. (1992). Automatic and intentional processing of numerical information. Journal of Experimental Psychology: Learning, Memory, and Cognition, 18(1), 166–179.
103. Von Aster, M. G., & Shalev, R. S. (2007). Number development and developmental dyscalculia. Developmental Medicine and Child Neurology, 49(11), 868–873.
104. Wang, J. J., Odic, D., Halberda, J., & Feigenson, L. (2016). Changing the precision of preschoolers’ approximate number system representations changes their symbolic math performance. Journal of Experimental Child Psychology, 147, 82–99.
105. Wender, K. F., & Rothkegel, R. (2000). Subitizing and its subprocesses. Psychological Research, 64(2), 81–92.
106. Xu, F., & Spelke, E. S. (2000). Large number discrimination in 6-month-old infants. Cognition, 74(1), 1–11.
107. Zentall, S. S., Smith, Y. N., Lee, Y. B. B., & Wieczorek, C. (1994). Mathematical outcomes of attention-deficit hyperactivity disorder. Journal of Learning Disabilities, 27(8), 510–519.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top