|
1,史麗珠(2011)。進階應用生物統計學。臺北市: 學富文化。 2,台灣精神醫學會(2015)。精神疾病診斷手冊第五版。新北:合記。 3,吳武典、蔡崇建、胡心慈、王振德、林幸台、郭靜姿(2007)。托尼非語文智力 測驗再版-指導手冊。台北:心理。 4,柯華葳、詹益綾(2007)。國民小學(二至六年級)閱讀理解篩選測驗使用手冊。台 北:國立臺灣師範大學特殊教育中心。 5,陳榮華、陳心怡(譯)(2007)。魏氏兒童智力量表第四版(中文版)指導手冊(David Wechsler)。台北:中國行為科學社。 6,曾美惠、傅中珮(譯)(2010)。動作協調問卷(中文版)指導手冊(Brenda N. Wilson)。台北:心理。 7,劉昱志, 劉士愷, 商志雍, 林健禾, 杜長齡, & 高淑芬(2006)。注意力缺陷過動 症中文版 Swanson, Nolan, and Pelham, Version IV (SNAP-IV) 量表之常 模及信效度。臺灣精神醫學, 20, 290-304。 8. Agrillo, C., Piffer, L., & Adriano, A. (2013). Individual differences in non–symbolic numerical abilities predict mathematical achievements but contradict ATOM. Behavioral and Brain Functions, 9:26. 9. Alloway, T. P. (2007). Automated Working: Memory Assessment: Manual. Pearson. 10. Antonini, T. N., Kingery, K. M., Narad, M. E., Langberg, J. M., Tamm, L., & Epstein, J. N. (2016). Neurocognitive and behavioral predictors of math performance in children with and without ADHD. Journal of Attention Disorders, 20(2), 108–118. 11. Ashcraft, M. H., & Battaglia, J. (1978). Cognitive arithmetic: evidence for retrieval and decision processes in mental addition. Journal of Experimental Psychology: Human Learning and Memory, 4(5), 527–538. 12. Ashcraft, M. H., & Stazyk, E. H. (1981). Mental addition: a test of three verification models. Memory & Cognition, 9(2), 185–196. 13. Ashkenazi, S., Henik, A., Ifergane, G., & Shelef, I. (2008). Basic numerical processing in left intraparietal sulcus (IPS) acalculia. Cortex, 44(4), 439–448. 14. Baddeley, A. (2012). Working memory: theories, models, and controversies. Psychology, 63(1), 1–29. 15. Baroody, A. J. (1987). The development of counting strategies for single-digit addition. Journal for Research in Mathematics Education, 18(2), 141–157. 16. Beek, L. V., Ghesquière, P., DeSmedt, B., & Lagae, L. (2014). The arithmetic problem size effect in children:anevent-related potential study. Human Neuroscience, 8, 1–11. 17. Beek, L. V., Ere, P. G., Smedt, B. D.& Lagae, L. (2015). Arithmetic difficulties in children with mild traumatic brain injury at the subacute stage of recovery. Developmental Medicine and Child Neurology, 57(11), 1042–1048. 18. Bonny, J.W., & Lourenco, S. F. (2013). The approximate number system and its relation to early math achievement: Evidence from the preschool years. Journal of Experimental Child Psychology, 114(3), 375–388. 19. Brannon, E. M., Lutz, D., & Cordes, S. (2006). The development of area discrimination and its implications for number representation in infancy. Developmental Science, 9(6), 59–64. 20. Capodieci, A., & Martinussen, R. (2017). Math error types and correlates in adolescents with and without attention deficit hyperactivity disorder. Frontiers in Psychology, 8, 1801. 21. Chen, Y. N., & Mitra, S. (2009). The spatial-verbal difference in the n-back task: an ERP study. Acta Neurologica Taiwanica, 18(3), 170–179. 22. Chen, Q., & Li, J. (2014). Association between individual differences in non–symbolic number acuity and math performance: A meta–analysis. Acta Psychologica, 148, 163–172. 23. Cohen, K. R., Lammertyn, J., & Izard, V. (2008). Are numbers special? An overview of chronometric, neuroimaging, developmental and comparative studies of magnitude representation, Progress in Neurobiology, 84(2), 132–147. 24. Coles, M. G. H., & Rugg, M. D. (2011). Event-related brain potentials: an introduction,UK : Oxford University Press. 25. Colomer, C., Re, A. M., Miranda, A., & Lucangeli, D. (2013). Numerical and calculation abilities in children with ADHD. Learning Disabilities, 11(2), 1–15. 26. Deary, I. J., Strand, S., Smith, P.& Fernandes, C.(2007). Intelligence and educational achievement. Intelligence, 35, 13–21. 27. Dehaene, S. (1989). The psychophysics of numerical comparison: A reexamination of apparently incompatible data. Perception & Psychophysics, 45(6), 557–566. 28. Dehaene, S. (1996). The organization of brain activations in number comparison: Event-related potentials and the additive-factors method. Journal of Cognitive Neuroscience, 8(1), 47–68. 29. Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive neuropsychology, 20(3-6), 487-506. 30. Dehaene, S. (2003). The neural basis of the Weber–Fechner Law: A logarithmic mental number line. Trends in Cognitive Sciences, 7(4), 145–147. 31. De Smedt, B., Noël, M. P., Gilmore, C., & Ansari, D. (2013). How do symbolic and non–symbolic numerical magnitude processing skills relate to individual differences in children's mathematical skills? A review of evidence from brain and behavior. Trends in Neuroscience and Education, 2(2), 48–55. 32. Desoete, A., Ceulemans, A., DeWeerdt, F., & Pieters, S. (2012). Can we predictmathematical learning disabilities from symbolic and non–symbolic comparison tasks in kindergarten? Findings from a longitudinal study. British Journal of Educational Psychology, 82(1), 64–81. 33. Dormal, G., Andres, M., & Pesenti, M. (2012). Contribution of the right intraparietal sulcus to numerosity and length processing: An fMRI-guided TMS study. Cortex, 48(5), 623–629. 34. Drew, T., & Vogel, E. K. (2008). Neural measures of individual differences in selecting and tracking multiple moving objects. The Journal of Neuroscience, 28(16), 4183–4191. 35. Donchin, E., & Coles, M. G. (1988). Is the P300 component a manifestation of context updating?. Behavioral and brain sciences, 11(3), 357-374. 36. Duverne, S., & Lemaire, P. (2005). Arithmetic split effects reflect strategy selection: an adult age comparative study in addition comparison and verification tasks. Canadian Journal of Experimental Psychology, 59(4), 262–278. 37. Galfano, G., Penolazzi, B., Fardo, F., Dhooge, E., Angrilli, A., & Umiltà, C. (2011). Neurophysiological markers of retrieval‐induced forgetting in multiplication fact retrieval. Psychophysiology, 48(12), 1681–1691. 38. Geary, D. C. (2003). Learning disabilities in arithmetic: Problem-solving differences and cognitive deficits. Handbook of learning disabilities, 199–212. 39. Ghelani, K., Sidhu, R., Jain, U., & Tannock, R. (2004). Reading comprehension and reading related abilities in adolescents with reading disabilities and attention‐deficit/hyperactivity disorder. Dyslexia, 10(4), 364–384. 40. Geary, D. C., & Jefferson, T. (2011). Consequences, characteristics, and causes of mathematical learning disabilities and persistent low achievement in mathematics. Journal of Developmental and Behavioral Pediatrics, 32(3), 250–263. 41. Gelman, R., & Gallistel, C. R. (1978). The child’s understanding of number, cambridge, MA:Harvard University Press. 42. Gomez, A., Piazza, M., Jobert, A., Lambertz, G. D., Dehaene, S., & Huron, C. (2015). Mathematical difficulties in developmental coordination disorder: Symbolic and non–symbolic number processing. Research in Developmental Disabilities, 43(44), 167–178. 43. Gremillion, M. L., & Martel, M. M. (2012). Semantic language as a mechanism explaining the association between ADHD symptoms and reading and mathematics underachievement. Journal of abnormal child psychology, 40(8), 1339-1349. 44. Griffin, I. (2002). Multiple mechanisms of selective attention: differential modulation of stimulus processing by attention to space or time. Neuropsychologia, 40(13), 2325–2340. 45. Hart, S. A., Petrill, S. A., Willcutt, E., Thompson, L. A., Schatschneider, C., Deater-Deckard, K., & Cutting, L. E. (2010). Exploring how symptoms of attention-deficit/hyperactivity disorder are related to reading and mathematics performance: General genes, general environments. Psychological Science, 21(11), 1708-1715. 46. Hegerl, U., & Juckel, G. (1993). Intensity dependence of auditory evoked potentials as an indicator of central serotonergic neurotransmission: A new hypothesis. Biological Psychiatry, 33(3), 173–187. 47. Heine, A., Wißmann, J., Tamm, S., Smedt, B. D., Schneider, M., Stern, E., Verschaffel, L., & Jacobs, A. M. (2013). An electrophysiological investigation of non–symbolic magnitude processing: Numerical distance effects in children with and without mathematical learning disabilities. Cortex, 49(8), 2162–2177. 48. Henik, A., Leibovich, T., Naparstek, S., Diesendruck, L., & Rubinsten, O. (2012). Quantities, amounts, and the numerical core system. Frontiers in Human Neuroscience, 5, 186. 49. Hutchison, J. E., Lyons, I. M., & Ansari, D. (2018). More similar than different: gender differences in children's basic numerical skills are the exception not the rule. Child Development, Retrieved from https://onlinelibrary.wiley.com/doi/abs/10.1111/cdev.13044 50. Hyde, D. C., & Spelke, E. S. (2012). Spatiotemporal dynamics of processing non–symbolic number: An event‐related potential source localization study. Human Brain Mapping, 33(9), 2189–2203. 51. Ikkai, A., McCollough, A. W., & Vogel, E. K. (2010). Contralateral delay activity provides a neural measure of the number of representations in visual working memory. Journal of Neurophysiology, 103(4), 1963–1968. 52. Izard, V., Sann, C., Spelke, E. S., & Streri, A. (2009). Newborn infants perceive abstract numbers. Proceedings of the National Academy of Sciences, 106(25), 10382–10385. 53. Jost, K., Beinhoff, U., Hennighausen, E., & Rösler, F. (2004). Facts, rules, and strategies in single-digit multiplication: evidence from event-related brain potentials. Cognitive Brain Research, 20(2), 183–193. 54. Jordan, N. C., Glutting, J., & Ramineni, C. (2008). A number sense screening tool for identifying children at risk for mathematical difficulties. In: A, Dowker (Eds). Mathematical difficulties: Psychology, neuroscience and intervention (pp. 45–58). New York: Elsevier. 55. Kaufman, E. L., Lord, M. W., Reese, T. W., & Volkmann, J. (1949). The discrimination of visual number. American Journal of Psychology. 62(4), 498–525. 56. Kaufmann, L., Handl, P., & Thöny, B. (2003). Evaluation of a numeracy intervention program focusing on basic numerical knowledge and conceptual knowledge: A pilot study. Journal of Learning Disabilities, 36(6), 564–573. 57. Kaufmann, L., & Nuerk, H. C. (2008). Basic number processing deficits in ADHD: a broad examination of elementary and complex number processing skills in 9- to 12-year-old children with ADHD-C. Developmental Science, 11(5), 692–699. 58. Kaufmann, L., Wood, G., Rubinsten, O., & Henik, A. (2011). Meta–analyses of developmental fMRI studies investigating typical and atypical trajectories of number processing and calculation. Developmental Neuropsychology, 36(6), 763–787. 59. Kramer, A. F., Cepeda, N. J., & Cepeda, M. L. (2001). Methylphenidate effects on task-switching performance in attention-deficit/hyperactivity disorder. Journal of the American Academy of Child & Adolescent Psychiatry, 40(11), 1277–1284. 60. Kuhn, J. T., Ise, E., Raddatz, J., Schwenk, C., & Dobel, C. (2016). Basic numerical processing, calculation, and working memory in children with dyscalculia and/or ADHD symptoms. Zeitschrift für Kinder-und Jugendpsychiatrie und Psychotherapie. 44(5), 1–11. 61. Landerl, K. (2013). Development of numerical processing in children with typical and dyscalculic arithmetic skills—a longitudinal study. Frontiers in Psychology, 4(459), 1–14. 62. Lee, K. M. (2000). Cortical areas differentially involved in multiplication and subtraction: a functional magnetic resonance imaging study and correlation with a case of selective acalculia. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society, 48(4), 657-661. 63. LeFevre, J. A., Fast, L., Skwarchuk, S. L, Smith-Chant, B. L., Bisanz, J., Kamawar, D., & Penner-Wilger, M. (2010). Pathways to mathematics: Longitudinal predictors of performance. Child Development, 81(6), 1753–1767. 64. Link, S. (1990). Modeling imageless thought: The relative judgment theory of numerical comparisons. Journal of Mathematical Psychology, 34(1), 2–41. 65. Lucangeli, D., & Cabrele, S. (2006). Mathematical Difficulties and ADHD. Exceptionality, 14(1), 53–62. 66. Marshall, R. M., Shafer,V. A., O’Donnell, L., Elliott, J., & Handwerk, M. L. (1999). Arithmetic disabilities and ADD subtypes: Implication for DSM-IV. Journal of Learning Disabilities, 32(3), 239–247. 67. Mazza, V., & Caramazza, A. (2011). Temporal brain dynamics of multiple object processing: The flexibility of individuation. PloS One, 6(2), e17453. 68. Mazzocco, M. M., Devlin, K. T., & McKenney, S. J. (2008). Is it a fact? Timed arithmetic performance of children with mathematical learning disabilities (MLD) varies as a function of how MLD is defined. Developmental Neuropsychology, 33(3), 318–344. 69. McLean, J. F., & Hitch, G. J. (1999). Working memory impairments in children with specific arithmetic learning difficulties. Journal of Experimental Child Psychology, 74(3), 240–260. 70. Mussolin, C., Mejias, S., & Noel, M. P. (2010). Symbolic and non–symbolic number comparison in children with and withoutd Dyscalculia. Cognition, 115(1), 10–25. 71. Näätänen, R., & Picton, T. W. (1986). N2 and automatic versus controlled processes. Electroencephalography and Clinical Neurophysiology, 38, 169–186. 72. Näätänen, R., & Picton, T. (1987). The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure. Psychophysiology, 24(4), 375–425. 73. Nan, Y., Knösche, T. R., & Luo, Y. J. (2006). Counting in everyday life: Discrimination and enumeration. Neuropsychologia, 44(7), 1103–1113. 74. Niedeggen M, Ro¨sler F. (1999). N400 effects reflect activation spread during retrieval of arithmetic facts. Psychological Science, 10(3), 271–276. 75. Nieder, A., & Dehaene, S. (2009). Representation of number in the brain. Annual Review of Neuroscience, 32, 185–208. 76. Núñez-Peña, M. I., Honrubia-Serrano, M. L., & Escera, C. (2005). Problem size effect in additions and subtractions: an event-related potential study. Neuroscience Letters, 373(1), 21–25. 77. Núñez-Peña, M. I. (2008). Effects of training on the arithmetic problem-size effect: an event-related potential study. Experimental Brain Research, 190(1), 105–110. 78. Núñez-Peña, M. I., & Suárez-Pellicioni, M. (2012). Processing false solutions in additions: differences between high-and lower-skilled arithmetic problem-solvers. Experimental Brain Research, 218(4), 655–663. 79. Pagano, S., & Mazza, V. (2012). Individuation of multiple targets during visual enumeration: New insights from electrophysiology. Neuropsychologia, 50(5), 754–761. 80. Pagano, S., Lombard, L., & Mazza, V. (2014). Brain dynamics of attention and working memory engagement in subitizing. Brain Research, 1543, 244–252. 81. Passolunghi, M. C., Cornoldi, C., & De Liberto, S. (1999). Working memory and intrusions of irrelevant information in a group of specific poor problem solvers. Memory and Cognition, 27(5), 779–790. 82. Passolunghi, M. C., & Siegel, L. S. (2004). Working memory and access to numerical information in children with disability in mathematics. Journal of Experimental Child Psychology, 88(4), 348–367. 83. Paulsen, D. J., & Neville, H. J. (2008). The processing of non–symbolic numerical magnitudes as indexed by ERPs. Neuropsychologia, 46(10), 2532–2544. 84. Piazza, M. (2011). Neurocognitive start-up tools for symbolic number representations. In Space, Time and Number in the Brain, 267–285. 85. Polich, J. (2007). Updating P300: an integrative theory of P3a and P3b. Clinical Neurophysiology, 118(10), 2128–2148. 86. Price, G. R., Holloway, I. D., Räsänen, P., Vesterinen, M., & Ansari, D. (2007). Impaired parietal magnitude processing in developmental dyscalculia, Current Biology, 17(24), 1042–1043. 87. Price, G. R., & Ansari, D. (2013). Dyscalculia: characteristics, causes, and treatments. Numeracy, 6(1), 1–16. 88. Rapport, M. D., Alderson, R. M., Kofler, M. J., Sarver, D. E., Bolden, J., & Sims, V. (2008). Working memory deficits in boys with attention-deficit/hyperactivity disorder (ADHD): the contribution of central executive and subsystem processes. Journal of Abnormal Child Psychology, 36(6), 825–837. 89. Rapport, M. D., Orban, S. A., Kofler, M. J., & Friedman, L. M. (2013). Do programs designed to train working memory, other executive functions, and attention benefit children with ADHD? A meta–analytic review of cognitive, academic, and behavioral outcomes. Clinical Psychology Review, 33(8), 1237–1252. 90. Rogers, M., Hwang, H., Toplak, M., Weiss, M., & Tannock, R. (2011). Inattention, working memory, and academic achievement in adolescents referred for attention deficit/hyperactivity disorder (ADHD), Child Neuropsychology, 17(5), 444–458. 91. Schleifer, P., & Landerl, K. (2011). Subitizing and counting in typical and atypical development. Developmental Science, 14(2), 280–291. 92. Schneider, M., Beeres, K., Coban, L., Merz, S., Susan Schmidt, S., Stricker, J., … De Smedt, B. (2017). Associations of non–symbolic and symbolic numerical magnitude processing with mathematical competence: A meta–analysis. Developmental Science, 20(3), e12372–e12374. 93. Schwarz, W., & Heinze, H. J. (1998). On the interaction of numerical and size information in digit comparison: A behavioral and event-related potential study. Neuropsychologia, 36(11), 1167–1179. 94. Soltész, F., & Szűcs, D. (2009). An electro-physiological temporal principal component analysis of processing stages of number comparison in developmental dyscalculia. Cognitive Development, 24(4), 473-485. 95. Starkey, P., & Cooper, R. (1980). Perception of numbers by human infants. Science, 210(4473), 1033–1035. 96. Stern, P., & Shalev, L. (2013). The role of sustained attention and display medium in reading comprehension among adolescents with ADHD and without it. Research in Developmental Disabilities, 34(1), 431–439. 97. Temple, E., & Posner, M. I. (1998). Brain mechanisms of quantity are similar in 5-year-old children and adults. Proceedings of the National Academy of Sciences of the United States of America, 95(13), 7836–7841. 98. Tosto, M. G., Momi, S. K., Asherson, P., & Malki, K. (2015). A systematic review of attention deficit hyperactivity disorder (ADHD) and mathematical ability: current findings and future implications. BMC Medicine, 13(1), 1–14. 99. Tosto, M. G., Petrill, S. A., Malykh, S., Malki, K., Haworth, C., Mazzocco, M. M., & Kovas, Y. (2017). Number sense and mathematics: Which, when and how?. Developmental Psychology, 53(10), 19–24. 100. Trick, L. M. (1992). A theory of enumeration that grows out of a general theory of vision: Subitizing, counting, and FINSTs. Advances in Psychology, North-Holland, 91, 257–299. 101. Trick, L. M., & Pylyshyn, Z. W. (1994). Why are small and large numbers enumerated differently? A limited capacity preattentive stage in vision. Psychological Review, 101(1), 80–102. 102. Tzelgov, J., Meyer, J., & Henik, A. (1992). Automatic and intentional processing of numerical information. Journal of Experimental Psychology: Learning, Memory, and Cognition, 18(1), 166–179. 103. Von Aster, M. G., & Shalev, R. S. (2007). Number development and developmental dyscalculia. Developmental Medicine and Child Neurology, 49(11), 868–873. 104. Wang, J. J., Odic, D., Halberda, J., & Feigenson, L. (2016). Changing the precision of preschoolers’ approximate number system representations changes their symbolic math performance. Journal of Experimental Child Psychology, 147, 82–99. 105. Wender, K. F., & Rothkegel, R. (2000). Subitizing and its subprocesses. Psychological Research, 64(2), 81–92. 106. Xu, F., & Spelke, E. S. (2000). Large number discrimination in 6-month-old infants. Cognition, 74(1), 1–11. 107. Zentall, S. S., Smith, Y. N., Lee, Y. B. B., & Wieczorek, C. (1994). Mathematical outcomes of attention-deficit hyperactivity disorder. Journal of Learning Disabilities, 27(8), 510–519.
|