跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.36) 您好!臺灣時間:2025/12/11 05:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王博彥
研究生(外文):Bo-Yan Wang
論文名稱:研究(I)錳濃度對碲化錳鎘薄膜成長在矽基板的影響及(II)部份位壘層矽摻雜對八個週期氮化銦鎵/氮化鎵量子井的效應
論文名稱(外文):Studies of (I) the influence of Mn composition on CdMnTe epilayers grown on Si substrate and (II) the effect of silicon doping in part of barriers on 8 periods InGaN/GaN quantum wells
指導教授:鄭永楨
指導教授(外文):Yung-Chen Cheng
口試委員:王祥辰黃吉豐
口試委員(外文):Hsiang-Chen WangChi-Feng Huang
口試日期:2015-07-31
學位類別:碩士
校院名稱:國立臺南大學
系所名稱:材料科學系碩士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:40
中文關鍵詞:碲化錳鎘分子束磊晶氮化銦鎵/氮化鎵有機金屬氣相沉積
外文關鍵詞:CdMnTeMBEInGaN/GaNMOCVD
相關次數:
  • 被引用被引用:1
  • 點閱點閱:323
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
本研究分為兩個部份,第一部份研究錳濃度對分子束磊晶成長的碲化錳鎘薄膜於矽基板的影響,由於原子間鍵結能的差異,碲化鎘晶體中的碲原子間彼此容易鍵結形成缺陷,而錳與碲的鍵結能小於碲與碲的鍵結能,因此碲會優先與錳原子鍵結並減少碲-碲缺陷的數量,在本研究的樣品中,錳濃度分別為0、2、21%,其中錳濃度21%光激螢光光譜的積分強度約3倍強於其他樣品,光激螢光光譜峰值與光調制反射光譜所得能隙能量差(史托克偏移)隨著錳濃度增加而增加,這顯示錳濃度越高組成變動越大即能帶變動越大,掃描式電子顯微鏡的影像也發現21%樣品的表面形貌是較平整的,顯微拉曼散射光譜也顯示與碲鍵結缺陷有關的的A1及E振動模式強度有明顯的減弱,因此錳濃度21%有最佳的光學與材料特性。
第二部份研究八週期多重量子井的位壘層部份矽摻雜的光學性質及其藍光發光二極體的發光與效率影響。矽摻雜的位壘層分別是基板方向算起前二、前三、前四、前五層的位壘做摻雜。研究中顯示所有位壘層摻雜矽樣品能降低量子井壓電場,因為所有樣品相對未摻雜矽的樣品其光激螢光光譜峰值能量都有藍移。此外,前四層矽摻雜位壘的樣品其光激螢光光譜強度最強且有較強的載子束縛與較小的量子侷限史塔克效應。在激發光激螢光光譜中前四層矽摻雜樣品在位壘層與量子井層之能隙間有很強的吸收峰,其顯示其八層量子井邊界有弱的局限位能,載流子能較均勻分布於八層量子井。在其藍光發光二極體中,前四層矽摻雜位壘樣品在高電流注入下外部量子效率與光輸出功率較其他摻雜樣品高,因此,八層量子井前四層矽摻雜位壘是較佳的摻雜條件。

There are two parts in this research. The first part is the study of effects of Mn content in Cd1-xMnxTe grown by molecular beam epitaxy (MBE) on silicon (Si) (111) substrate. Owing to different binding energy of atoms, Te-Te binding shows the lower forming energy than Cd-Te, results in the production of Te-Te binding defects. Incorporation of Mn atoms into CdTe demonstrates that the lower binding energy of Mn-Te than Te-Te can cause the reduction of Te-Te binding defects in CdTe:Mn. In this report, the ternary alloy of Cd1-xMnxTe with Mn content in 0, 2, 21 % were prepared. The integrated intensity of photoluminescence (PL) spectra exhibits three times larger than other samples in sample with Mn content 21 %. The Stokes shift (SS) characterized by peak energy of PL spectra and bandgap energy of photoreflectance (PR) spectra show the greater value in Mn 21 % than others. The results indicate that the larger the Mn content in Cd1-xMnxTe, the more the composition fluctuations of Mn content in Cd1-xMnxTe showing larger SS. Scan electron microscope (SEM) images give the direct behavior of materialmicrostructures. The results indicates that Mn 21 % sample have relatively flat surface of the film. Micro-Raman spectra also exhibit the diminished intensity of scattering modes of A1 and E that are related to Te-Te binding defects. The consequence is that the better condition of Mn content is 21 % in Cd1-xMnxTe for superior optical and material properties.
The second part of the research is the study of optical behaviors of blue light emitting diodes (LEDs) with multiple quantum wells (MQs) containing part of Si doping. The Si doping layers are the first two, three, four, and five barriers of QWs in the growth sequence from sapphire substrate of four samples. The results indicate that the reduction of piezoelectric field in QWs were occurred in all samples for the blue shift in PL peak energy compared with the undoped Si sample. First four Si-doped barrier samples show larger PL spectra intensity with greater carrier localization in QWs and smaller quantum confined Stark effect (QCSE). Soft confinement potential of QWs was observed in first four Si-doped barrier samples due to the existence of strong absorption intensity in the bandgap energy between quantum wells and barriers. The uniform spreading of carriers in QWs were expected in this sample. Blue LED with first four Si-doped barrier, thus having better output power and external quantum efficiency (EQE) under high current injection. Therefore, first four Si-doped barrier is the favorite condition for light emission of blue LED having 8 QWs.

第一章 導論…………………………………..……………………..…….........1
第二章 實驗原理………………………….……………………………..……..7
2-1 光激螢光光譜……………….…………………………………..7
2-2 電激螢光光譜…………………………………………………...9
2-3 激發光激螢光光譜……………………………………………...9
2-4 光調制反射光譜……………….……………………………....10
2-5 顯微拉曼散射光譜………………………...…………………..11
2-6 掃描式電子顯微鏡…………….………………………………13
2-7 X光繞射譜…………………………………………………….14
2-8 參考文獻……………………………………………………….15
第三章 錳濃度對碲化錳鎘薄膜成長在矽(111)基板的影響………….……..16
3-1 前言…………………………………………………………….16
3-2 樣品結構與製備……………………………………………….16
3-3 X光繞射譜……………………………………………………..17
3-4 掃描式電子顯微鏡…………………………………………….18
3-5 光激螢光光譜及光調制反射光譜…………………………….18
3-6 顯微拉曼散射光譜…………………………………………….23
3-7 結論…………………………………………………………….24
3-8 參考文獻………………………………...……………………..24
第四章 八個週期氮化銦鎵/氮化鎵量子井部份位壘層矽摻雜對藍光二極體放光效應的影響……………………………………………………...26
4-1 前言…………………………………………………………….26
4-2 樣品結構與製備……………………………………………….27
4-3 光激螢光光譜及激發光激螢光光譜………………………….29
4-4 電激螢光光譜………………………………………………….35
4-5 結論…………………………………………………………….37
4-6 參考文獻……………………………………………………….37
第五章 總結…………………………………………………………………...40

[1]H. Zogg, S. Blunier. (1986). Molecular beam epitaxial growth of high structural perfection CdTe on Si using a (Ca,Ba)F2 buffer layer. Appl. Phys. Lett. 49, 1531.
[2]N. K. Dhar, M. Zandian, J. G. Pasko, J. M. Arias, J. H. Dinan. (1997). Planar p -on- n HgCdTe heterostructure infrared photodiodes on Si substrates by molecular beam epitaxy, Appl. Phys. Lett. 70, 1730.
[3]D. Xu, T. Biegala, M. Carmody, J. W. Garland, C. Grein, S. Sivananthan. (2010). Proposed monolithic triple-junction solar cell structures with the potential for ultrahigh efficiencies using II–VI alloys and silicon substrates, Appl. Phys. Lett. 96, 073508.
[4]M. Carmody, S. Mallick, J. Margetis, R. Kodama, T. Biegala, D. Xu, P. Bechmann, J. W. Garland, S. Sivananthan. (2010). Single-crystal II-VI on Si single-junction and tandem solar cells, Appl. Phys. Lett, 96, 153502.
[5]J. W. Garland, T. Biegala, M. Carmody, C. Gilmore , S. Sivananthan. (2011). Next-generation multijunction solar cells: The promise of II-VI materials, J. Appl. Phys. 109, 102423.
[6]J. W. Garland, T. Biegala, M. Carmody, C. Gilmore. (2011). Next-generation multijunction solar cells: The promise of II-VI materials, J. Appl. Phys., 109, p. 102423
[7]Darius Kuciauskas, Ana Kanevce, James M. Burst, Joel N. Duenow. (2013). Minority Carrier Lifetime Analysis in the Bulk of Thin-Film Absorbers Using Subbandgap (Two-Photon) Excitation. IEEE J. Photovolt., 3, p. 1319
[8]Jie Ma, Darius Kuciauskas, David Albin, Raghu Bhattacharya. (2013). Dependence of the Minority-Carrier Lifetime on the Stoichiometry of CdTe Using Time-Resolved Photoluminescence and First-Principles Calculations Phys. Rev. Lett., 111, p. 067402
[9]Jyh-Shyang Wang, Yu-Hsuan Tsai, Chang-Wei Chen,Zi-Yuan Dai. (2014). Improving surface smoothness and photoluminescence of CdTe(111)Aon Si(111) substrates grown by molecular beam epitaxy using Mn atoms, Journal of Alloys and Compounds, 592 53–56
[10]Lifei Xi, Kheng Hwee Chua, Yanyuan Zhao, JunZhang, Qihua Xiong, Yeng Ming Lam. (2012). Controlled synthesis of CdE (E = S, Se and Te) nanowires, RSC Advances, 2, 5243–5253
[11]Younghun Jung, Seunju Chun, Donghwan Kim, Jihyun Kim. (2011). Growth of p-CdTe thin films on n-GaN/sapphire, Journal of Crystal Growth 326, 69–72.
[12]Akitoshi Ishizaka and Yasuhiro Shiraki. (1986). Low Temperature Surface Cleaning of Silicon and Its Application to Silicon MBE J. Electrochem. Soc., 133, p. 666
[13]Y. Xin, S. Rujirawat, N. D. Browning, R. Sporken. (1999). The effect of As passivation on the molecular beam epitaxial growth of high-quality single-domain CdTe(111)B on Si(111) substrates. Appl. Phys. Lett., 75, p. 349
[14]C.E.M. Campos, K. Ersching, J.C. de Lima. (2008). Influence of minor oxidation of the precursor powders to form nanocrystalline CdTe by mechanical alloying, Journal of Alloys and Compounds 466 80–86.
[15]J. Oh, and C. H. Grein. (1998). Epitaxial growth simulations of CdTe(1 1 1)B on Si(0 0 1), J. Crystal Growth, 193, 241.
[1]M. Takeguchi, M. R. McCartney, and David J. Smith, (2004). Mapping In concentration, strain, and internal electric field in InGaN/GaN quantum well structure Appl. Phys. Lett. 84, 2103.
[2]I. Ho and G. B. Stringfellow, (1996). Solid phase immiscibility in GaInN Appl. Phys. Lett. 69, 2701.
[3]Zi-Hui Zhang, Swee Tiam Tan, Zhengang Ju, (2013). On the Effect of Step-Doped Quantum Barriers in InGaN/GaN Light Emitting Diodes Journal Of Display Technology, vol. 9, no. 4.
[4]A. A. Efremov, N. I. Bochkareva, R. I. Gorbunov, D. A. Lavrinovich, Y. T. Rebane, D. V. Tarkhin, and Y. G. Shreter, (2006). “Effect of the Joule heating on the quantum efficiency and choice of thermal conditions for high-power blue InGaN/GaN LEDs,” Semiconductors, vol. 40, pp. 605–610.
[5]M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, (2007). “Origin of efficiency droop in GaN-based light-emitting diodes,” Appl. Phys. Lett., vol. 91, pp. 183507-1–183507-3.
[6]W. Chow, M. H. Crawford, J. Y. Tsao, and M. Kneissl, (2010). “Internal efficiency of InGaN light-emitting diodes: Beyond a quasiequilibrium model,” Appl. Phys. Lett., vol. 97, pp. 121105-1–121105-3.
[7]H. Y. Ryu and J. I. Shim, (2011). “Effect of current spreading on the efficiency droop of InGaN light-emitting diodes,” Opt. Express, vol. 19, pp. 2886–2894.
[8]Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, (2007). “Auger recombination in InGaN measured by photoluminescence,” Appl. Phys. Lett., vol. 91, pp. 141101-1–141101-3.
[9]Y. J. Lee, C. H. Chen, and C. J. Lee, (2010). “Reduction in the efficiency-droop effect of InGaN green light-emitting diodes using gradual quantum wells,” IEEE Photon. Technol. Lett., vol. 22, no. 10, pp. 1506–1508.
[10]C. H. Wang, S. P. Chang, W. T. Chang, J. C. Li, Y. S. Lu, Z. Y. Li, H. C. Yang, S. C. Wang, (2010). “Efficiency droop alleviation in InGaN/GaN light-emitting diodes by graded-thickness multiple quantum wells,” Appl. Phys. Lett., vol. 97, pp. 181101-1–181101-3.
[11]H. P. Zhao, G. Y. Liu, R. A. Arif, and N. Tansu, (2010). “Current injection efficiency induced efficiency-droop in InGaN quantum well light-emitting diodes,” Solid-State Electron., vol. 54, pp. 1119–1124.

[12]R. M. Farrell, P. S. Hsu, D. A. Haeger, K. Fujito, S. P. Denbaars, J. S. Speck, and S . Nakamura, (2010). “Low-threshold-current-density AlGaN cladding free m -plane InGaN/GaN laser diodes,” Appl. Phys. Lett., vol. 96, pp. 231113-1–231113-3.

[13]R. M. Farrell, D. A. Haeger, P. S. Hsu, K. Fujito, D. F. Feezell, S. P. Denbaars, J. S. Speck, and S. Nakamura, (2011). “Determination of internal pa- rameters for AlGaN-cladding-free m-plane InGaN/GaN laser diodes,” Appl. Phys. Lett., vol. 99, pp. 171115-1–171115-3.

[14]L. W. Wu, S. J. Chang, T. C. Wen, Y. K. Su, J. F. Chen, W. C. Lai, C. H. Kuo, C. H. Chen, and J. K. Sheu, (2002). “Influence of Si-doping on the characteristics of InGaN-GaN multiple quantum-well blue light emit- ting diodes,” IEEE J. Quantum Electron., vol. 38, no. 5, pp. 446–450.

[15]Z. Zheng, Z. Chen, Y. Xian, B. Fan, S. Huang, W. Jia, Z. Wu, G. Wang, and H. Jiang, (2011). “Enhanced electrostatic discharge properties of nitride- based light-emitting diodes with inserting Si-delta-doped layers,” Appl. Phys. Lett., vol. 99, pp. 111109-1–111109-3.

[16]H. P. D. Schenk, A. Bavard, E. Frayssinet, X. Song, F. Cayrel, H. Ghouli, M. Lijadi, L. Naïm, M. Kennard, Y. Cordier, D. Rondi, and D. Alquier, (2012). “Delta-doping of epitaxial GaN layers on large diameter Si(111) substrates,” Appl. Phys. Express, vol. 5, pp. 025504-1–025504-3.

[17]J. H. Ryou, J. Limb, W. Lee, J. P. Liu, Z. Lochner, D. W. Yoo, and R. D. Dupuis, (2008). “Effect of silicon doping in the quantum-well barriers on the electrical and optical properties of visible green light-emitting diodes,” IEEE Photon. Technol. Lett., vol. 20, no. 11, pp. 1769–1771.

[18]M. K. Kwon, K. Park, S. H. Baek, J. Y. Kim, and S. J. Park, (2005). “Si delta doping in a GaN barrier layer of InGaN/GaN multiquantum well for an efficient ultraviolet light-emitting diode,” Journal of Appl. Phys., vol. 97, pp. 106109-1–106109-3.

[19]D. Zhu, A. N. Noemaun, M. F. Schubert, J. Cho, E. F. Schubert, M. H. Crawford, and D. D. Koleske, (2010). “Enhanced electron capture and symmetrized carrier distribution in GaInN light-emitting diodes having tailored barrier doping,” Appl. Phys. Lett., vol. 96, pp. 121110-1–121110-3.

[20]V. Fiorentini, F. Bernardini, F. Della Sala, A. Di Carlo, and P. Lugli, (1999).“Effects of macroscopic polarization in III–V nitride multiple quantum wells,” Phys. Rev. B, vol. 60, pp. 8849–8858.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊