|
[1]H. Zogg, S. Blunier. (1986). Molecular beam epitaxial growth of high structural perfection CdTe on Si using a (Ca,Ba)F2 buffer layer. Appl. Phys. Lett. 49, 1531. [2]N. K. Dhar, M. Zandian, J. G. Pasko, J. M. Arias, J. H. Dinan. (1997). Planar p -on- n HgCdTe heterostructure infrared photodiodes on Si substrates by molecular beam epitaxy, Appl. Phys. Lett. 70, 1730. [3]D. Xu, T. Biegala, M. Carmody, J. W. Garland, C. Grein, S. Sivananthan. (2010). Proposed monolithic triple-junction solar cell structures with the potential for ultrahigh efficiencies using II–VI alloys and silicon substrates, Appl. Phys. Lett. 96, 073508. [4]M. Carmody, S. Mallick, J. Margetis, R. Kodama, T. Biegala, D. Xu, P. Bechmann, J. W. Garland, S. Sivananthan. (2010). Single-crystal II-VI on Si single-junction and tandem solar cells, Appl. Phys. Lett, 96, 153502. [5]J. W. Garland, T. Biegala, M. Carmody, C. Gilmore , S. Sivananthan. (2011). Next-generation multijunction solar cells: The promise of II-VI materials, J. Appl. Phys. 109, 102423. [6]J. W. Garland, T. Biegala, M. Carmody, C. Gilmore. (2011). Next-generation multijunction solar cells: The promise of II-VI materials, J. Appl. Phys., 109, p. 102423 [7]Darius Kuciauskas, Ana Kanevce, James M. Burst, Joel N. Duenow. (2013). Minority Carrier Lifetime Analysis in the Bulk of Thin-Film Absorbers Using Subbandgap (Two-Photon) Excitation. IEEE J. Photovolt., 3, p. 1319 [8]Jie Ma, Darius Kuciauskas, David Albin, Raghu Bhattacharya. (2013). Dependence of the Minority-Carrier Lifetime on the Stoichiometry of CdTe Using Time-Resolved Photoluminescence and First-Principles Calculations Phys. Rev. Lett., 111, p. 067402 [9]Jyh-Shyang Wang, Yu-Hsuan Tsai, Chang-Wei Chen,Zi-Yuan Dai. (2014). Improving surface smoothness and photoluminescence of CdTe(111)Aon Si(111) substrates grown by molecular beam epitaxy using Mn atoms, Journal of Alloys and Compounds, 592 53–56 [10]Lifei Xi, Kheng Hwee Chua, Yanyuan Zhao, JunZhang, Qihua Xiong, Yeng Ming Lam. (2012). Controlled synthesis of CdE (E = S, Se and Te) nanowires, RSC Advances, 2, 5243–5253 [11]Younghun Jung, Seunju Chun, Donghwan Kim, Jihyun Kim. (2011). Growth of p-CdTe thin films on n-GaN/sapphire, Journal of Crystal Growth 326, 69–72. [12]Akitoshi Ishizaka and Yasuhiro Shiraki. (1986). Low Temperature Surface Cleaning of Silicon and Its Application to Silicon MBE J. Electrochem. Soc., 133, p. 666 [13]Y. Xin, S. Rujirawat, N. D. Browning, R. Sporken. (1999). The effect of As passivation on the molecular beam epitaxial growth of high-quality single-domain CdTe(111)B on Si(111) substrates. Appl. Phys. Lett., 75, p. 349 [14]C.E.M. Campos, K. Ersching, J.C. de Lima. (2008). Influence of minor oxidation of the precursor powders to form nanocrystalline CdTe by mechanical alloying, Journal of Alloys and Compounds 466 80–86. [15]J. Oh, and C. H. Grein. (1998). Epitaxial growth simulations of CdTe(1 1 1)B on Si(0 0 1), J. Crystal Growth, 193, 241. [1]M. Takeguchi, M. R. McCartney, and David J. Smith, (2004). Mapping In concentration, strain, and internal electric field in InGaN/GaN quantum well structure Appl. Phys. Lett. 84, 2103. [2]I. Ho and G. B. Stringfellow, (1996). Solid phase immiscibility in GaInN Appl. Phys. Lett. 69, 2701. [3]Zi-Hui Zhang, Swee Tiam Tan, Zhengang Ju, (2013). On the Effect of Step-Doped Quantum Barriers in InGaN/GaN Light Emitting Diodes Journal Of Display Technology, vol. 9, no. 4. [4]A. A. Efremov, N. I. Bochkareva, R. I. Gorbunov, D. A. Lavrinovich, Y. T. Rebane, D. V. Tarkhin, and Y. G. Shreter, (2006). “Effect of the Joule heating on the quantum efficiency and choice of thermal conditions for high-power blue InGaN/GaN LEDs,” Semiconductors, vol. 40, pp. 605–610. [5]M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, (2007). “Origin of efficiency droop in GaN-based light-emitting diodes,” Appl. Phys. Lett., vol. 91, pp. 183507-1–183507-3. [6]W. Chow, M. H. Crawford, J. Y. Tsao, and M. Kneissl, (2010). “Internal efficiency of InGaN light-emitting diodes: Beyond a quasiequilibrium model,” Appl. Phys. Lett., vol. 97, pp. 121105-1–121105-3. [7]H. Y. Ryu and J. I. Shim, (2011). “Effect of current spreading on the efficiency droop of InGaN light-emitting diodes,” Opt. Express, vol. 19, pp. 2886–2894. [8]Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, (2007). “Auger recombination in InGaN measured by photoluminescence,” Appl. Phys. Lett., vol. 91, pp. 141101-1–141101-3. [9]Y. J. Lee, C. H. Chen, and C. J. Lee, (2010). “Reduction in the efficiency-droop effect of InGaN green light-emitting diodes using gradual quantum wells,” IEEE Photon. Technol. Lett., vol. 22, no. 10, pp. 1506–1508. [10]C. H. Wang, S. P. Chang, W. T. Chang, J. C. Li, Y. S. Lu, Z. Y. Li, H. C. Yang, S. C. Wang, (2010). “Efficiency droop alleviation in InGaN/GaN light-emitting diodes by graded-thickness multiple quantum wells,” Appl. Phys. Lett., vol. 97, pp. 181101-1–181101-3. [11]H. P. Zhao, G. Y. Liu, R. A. Arif, and N. Tansu, (2010). “Current injection efficiency induced efficiency-droop in InGaN quantum well light-emitting diodes,” Solid-State Electron., vol. 54, pp. 1119–1124.
[12]R. M. Farrell, P. S. Hsu, D. A. Haeger, K. Fujito, S. P. Denbaars, J. S. Speck, and S . Nakamura, (2010). “Low-threshold-current-density AlGaN cladding free m -plane InGaN/GaN laser diodes,” Appl. Phys. Lett., vol. 96, pp. 231113-1–231113-3.
[13]R. M. Farrell, D. A. Haeger, P. S. Hsu, K. Fujito, D. F. Feezell, S. P. Denbaars, J. S. Speck, and S. Nakamura, (2011). “Determination of internal pa- rameters for AlGaN-cladding-free m-plane InGaN/GaN laser diodes,” Appl. Phys. Lett., vol. 99, pp. 171115-1–171115-3.
[14]L. W. Wu, S. J. Chang, T. C. Wen, Y. K. Su, J. F. Chen, W. C. Lai, C. H. Kuo, C. H. Chen, and J. K. Sheu, (2002). “Influence of Si-doping on the characteristics of InGaN-GaN multiple quantum-well blue light emit- ting diodes,” IEEE J. Quantum Electron., vol. 38, no. 5, pp. 446–450.
[15]Z. Zheng, Z. Chen, Y. Xian, B. Fan, S. Huang, W. Jia, Z. Wu, G. Wang, and H. Jiang, (2011). “Enhanced electrostatic discharge properties of nitride- based light-emitting diodes with inserting Si-delta-doped layers,” Appl. Phys. Lett., vol. 99, pp. 111109-1–111109-3.
[16]H. P. D. Schenk, A. Bavard, E. Frayssinet, X. Song, F. Cayrel, H. Ghouli, M. Lijadi, L. Naïm, M. Kennard, Y. Cordier, D. Rondi, and D. Alquier, (2012). “Delta-doping of epitaxial GaN layers on large diameter Si(111) substrates,” Appl. Phys. Express, vol. 5, pp. 025504-1–025504-3.
[17]J. H. Ryou, J. Limb, W. Lee, J. P. Liu, Z. Lochner, D. W. Yoo, and R. D. Dupuis, (2008). “Effect of silicon doping in the quantum-well barriers on the electrical and optical properties of visible green light-emitting diodes,” IEEE Photon. Technol. Lett., vol. 20, no. 11, pp. 1769–1771.
[18]M. K. Kwon, K. Park, S. H. Baek, J. Y. Kim, and S. J. Park, (2005). “Si delta doping in a GaN barrier layer of InGaN/GaN multiquantum well for an efficient ultraviolet light-emitting diode,” Journal of Appl. Phys., vol. 97, pp. 106109-1–106109-3.
[19]D. Zhu, A. N. Noemaun, M. F. Schubert, J. Cho, E. F. Schubert, M. H. Crawford, and D. D. Koleske, (2010). “Enhanced electron capture and symmetrized carrier distribution in GaInN light-emitting diodes having tailored barrier doping,” Appl. Phys. Lett., vol. 96, pp. 121110-1–121110-3.
[20]V. Fiorentini, F. Bernardini, F. Della Sala, A. Di Carlo, and P. Lugli, (1999).“Effects of macroscopic polarization in III–V nitride multiple quantum wells,” Phys. Rev. B, vol. 60, pp. 8849–8858.
|