跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/12/21 08:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:簡子惠
研究生(外文):Tzu-Hui Chien
論文名稱:由氯化銅蝕刻廢液回收銅鹽之研究
論文名稱(外文):A Study on the Recovery of Copper Salts from Wasted Etching Solution Containing Copper Chloride
指導教授:蔡德華
口試委員:羅文偉郭文正張裕祺
口試日期:2005-06-30
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:化學工程所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:105
中文關鍵詞:氯化銅蝕刻液氫氧化銅氧化銅硫酸銅
外文關鍵詞:Copper chloride etchantCopper hydroxideCopper oxideCupper sulfate
相關次數:
  • 被引用被引用:5
  • 點閱點閱:1312
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在印刷電路板業中蝕刻液屬於高用量及高污染性質的液體;因此本研究主要使用印刷電路板業中含銅量較高之酸性氯化銅蝕刻液,使用酸鹼中和法從酸性蝕刻廢液製備出銅鹽,以達到廢棄物資源化再利用之永續經營。
本實驗所使用之酸鹼中和法可製備氫氧化銅及氧化銅兩種,一般製備此兩種銅鹽之方法為控制不同pH值、反應溫度及煅燒溫度,製備不同晶相形狀及顆粒大小的氫氧化銅及氧化銅粉末;而本實驗是模擬廢酸液在各種比例之銅離子與氯離子條件下,添加5N NaOH溶液的量,固定pH值,找出製備氫氧化銅之最適條件,發現Cu2+:Cl-在莫耳數比為1:5時所使用之NaOH溶液較少量,且不易黏稠,致使反應完全。
氧化銅部分則分為煅燒法與水熱分解法,煅燒法在各種儀器下分析,發現在350℃、5小時之後,可得一純氧化銅。而水熱分解法利用模擬廢酸液Cu2+:Cl-在莫耳數比為1:5之100mL混合液,加入56mL 5N NaOH溶液,利用不同之反應溫度、時間並藉由各種儀器觀察不同反應溫度、時間之產物結構、形狀、成分,由實驗發現需在160℃攪拌1小時以後,產物才會反應完全。
硫酸銅五個結晶水部分則利用固定量的Cu(OH)2、CuO,加入過濃的5N硫酸溶液。由實驗知,在攪拌時間上,若超過1.5小時,會有細小顆粒開始產生;在等待晶體沉澱時,時間愈久晶體顆粒愈大。但對以過濾出的銅含量產物並沒有相對的影響,但對產率有一定的影響力。並且實驗中也以自然乾燥與烘乾吸水做比較,發現烘乾後吸水的硫酸銅較接近其理論值。
Etchants are high consumption and high pollution of the printed circuit board industry; therefore this research uses the etchant for the acid copper chloride amount the high copper content in the printed circuit board industry, using the neutralization for acids and bases to prepare of the copper salt by the acid wasted etching liquid. This way is in order to reach the waste recovery and sustainable development.
Experiment uses the neutralization for acids and bases can preparation of the copper hydroxide and copper oxide. Generally, the control factors of the synthetic experiments included the different pH values, reaction temperature or to calcined temperature of copper salt products, to prepare the different crystalline grain shape and particle size the copper hydroxide and the copper oxide powder; then the experiment is simulation waste acid solution under various kinds the proportion of Cu2+and Cl-, then add the 5N NaOH solution and fixed pH value. Find out preparation to copper hydroxide optimum operate condition. Showed that when the molar ration Cu(II):Cl(I) =1:5, used small amount of NaOH solution , and products not sticky, cause the reaction to be complete.
The part of copper oxide divides into the calcined and hydrothermal decomposition, by analyse under various kinds of instruments, can finding that in 350℃and 5 hours later, can obtained the pure copper oxide. The hydrothermal decomposition used the 56mL 5N NaOH solution add to the molar ration Cu(II):Cl(I) =1:5. Using different reaction temperature and reaction time, to observe products structures, shapes, components by analyse under various kinds of instruments. Finding that products reaction complete showed to 160℃ and 1 hours stirring.
The part of five pieces of water of crystallization of copper sulfate use equivalent Cu(OH)2 and CuO, add 5N H2SO4 solution. when mixing time exceed 1.5 hours, there will be emerge of tiny particles; crystal to follow precipitate for a long time, then crystal size gradually increase. But to not having relative influence with the result of content of copper that is filtered out, there is certain influence to the yield. To compare air-dry with dry by heat then absorbent water, we can find the dry by heat then absorbent water theory value to approach.
中文摘要…………………………………i
英文摘要…………………………………ii
誌謝…………………………………iv
目錄…………………………………v
表目錄…………………………………viii
圖目錄…………………………………ix
第一章 緒論…………………………………1
1.1 前言…………………………………1
1.2 研究目的………………………………… 6
第二章 文獻回顧…………………………………7
2.1 印刷電路板簡介…………………………………7
2.1.1 製造方法…………………………………7
2.2 蝕刻液種類及蝕刻機制…………………………………15
2.2.1 氯化銅蝕刻液…………………………………15
2.2.2 鹼性氯化銨氨銅蝕刻液…………………………17
2.2.3 氣相蝕刻…………………………………17
2.2.4 硫酸─雙氧水蝕刻液…………………………………18
2.2.5 其它種類蝕刻液…………………………………18
2.3 蝕刻液回收方法…………………………………20
2.3.1 氯化銅蝕刻液回收方法………………………20
2.4 氫氧化銅之簡介…………………………………28
2.4.1 氫氧化物沉降法…………………………………28
2.4.2 沉澱機制…………………………………31
2.4.2.1 膠形沉澱物……………………………32
2.4.2.2 晶形沉澱物…………………………………33
2.5 氧化銅之簡介…………………………………34
2.6 硫酸銅之簡介…………………………………39
第三章 實驗方法…………………………………40
3.1 實驗藥品與儀器設備…………………………………40
3.1.1 實驗藥品…………………………………40
3.1.2 實驗設備…………………………………41
3.2 實驗步驟…………………………………43
3.2.1 製備氫氧化銅…………………………………43
3.2.2 製備氧化銅…………………………………43
3.2.3 製備硫酸銅…………………………………45
3.3 分析設備…………………………………46
3.3.1 原子吸收光譜…………………………………46
3.3.2 掃描式電子顯微鏡…………………………………47
3.3.3 X-ray繞射儀…………………………………49
3.3.4 熱重分析儀…………………………………49
3.3.5 傅立葉紅外線吸收光譜…………………………………50
第四章 結果與討論…………………………………51
4.1 氫氧化銅的分析…………………………………51
4.1.1 氫氧化鈉對不同濃度之模擬蝕刻廢液滴定之pH值變化………52
4.1.2 模擬氯化銅蝕刻廢液對氫氧化銅之膠羽成長影響………55
4.1.3 氫氧化銅SEM之分析……………………………57
4.1.4 氫氧化銅TGA之分析……………………………60
4.1.5 氫氧化銅XRD之分析……………………………61
4.2 氧化銅的分析……………………………63
4.2.1 由氫氧化銅製備成氧化銅…………………………63
4.2.1.1 煅燒溫度、時間對氧化銅的影響………63
4.2.2 利用水熱分解法製備氧化銅……………………………75
4.2.2.1 溫度、時間對氧化銅的影響分析……………………………75
4.3 硫酸銅的製備……………………………87
4.3.1 SEM之分析……………………………92
4.3.2 TGA之分析……………………………94
4.3.3 XRD之分析……………………………96
第五章 結論 ……………………………98
參考文獻……………………………101
[1]朱昱學,「電路板業廢棄物清除處理現況與發展趨勢」,電路板會刊,第15期,2001,第67-73頁。
[2]薛仲男,「歐盟三大環保指令簡介」,產經資訊,第28期,2005,第36-42頁。
[3]「印刷電路板製造業廢棄物資源化案例彙編」,台北市,經濟部工業局編印,1996。
[4]葉基光,「工業污染之成因與防治」,台北市,徐氏基金會出版,1990,第105-107頁。
[5]林均輝,「印刷電路板用蝕刻液發展趨勢」,電路板資訊,第12期,1988,第24 -30頁。
[6]黃盛郎,「台灣PCB產業在全球的地位與現況」,電路板會刊,第27期,2005,第4 -9頁。
[7]「ISO14000系列─電路板業環境技術與建制環境管理系統指引」,台北市,經濟部工業局編印,2000。
[8]林忠舜,「利用酸鹼中和法由氯化銅酸性蝕刻廢液製備奈米氧化銅微粒之研究」,碩士論文,元智大學化學工程研究所,桃園縣,2004。
[9]張啟達,「工業廢水減量回收案例介紹-印刷電路板業」,工業污染防治,第55期,1995,第117-129頁。
[10]王宗雄,「高密度細線化需求下的銅化學蝕刻製程」,工業材料,第168期,2000,第161-170頁。
[11]「電路板業回收設備選用手冊」,台北市,經濟部工業局編印,1995。
[12]張良濤,「氯化銅蝕刻之研究」,技術學刊,第九卷,第三期,1994,第291-297頁。
[13]江德鑫,「鹼性蝕銅液與酸性蝕銅液之介紹」,電路板資訊,第12期,1988,第78-89頁。
[14]鄭智和,「廢印刷電路板之處理技術介紹」,電路板會刊,第14期,2001,64-69頁。
[15]J. Kinura “Development of recycling technology of wastws for electronic products and components”, Corrosion Engineering, vol.44, 1995, pp.611-612.
[16]N. S. Clair, L. M. McCarty and F. P. Parkin, “Chemical for environmental engineerinr,” 4th ed., 1994, pp.152-173.
[17]曾立鑫,「印刷電路板非氨系蝕刻液之研究」,碩士論文,國立清華大學化學工程研究所,新竹市,1998。
[18]張玉霞,「酸洗液及蝕刻液以硫酸轉換法再生利用之研究」,碩士論文,國立臺北科技大學環境規劃與管理研究所,台北市,2004。
[19]“Removal of copper and persulfate from spent sodium persulfate etchant by precipitation”, Etchant-Disposal Precipitation, No.4 Revised, 1996.
[20]「印刷電路板業資訊化應用技術手冊」,經濟部工業局,105-107,2002。
[21]黃進修、鄭智和,「台灣地區廢酸鹼資源化技術應用介紹」,化工技術,第九卷,第一期,2001,第116-127頁。
[22]張玉霞等,「廢酸擴散透析回收再利用技術評估」,工業污染防治,第65期,1998,第112-138頁。
[23]Alkaline Etchant Regeneration (AER system), ”The system applies for a joint international patent with printed circuit boards manufacturer”, Ain Co. Ltd., Japan, 2004.
[24]朱昱學,「電路板廢水處理之改善與降低成本」,電路板會刊,第九期,2000,第40-47頁。
[25]http://www.getgoal.com.tw/tech/tech-6.htm
[26]吴新明、易求实、吳金平、譚志誠、區松生,「奈米氫氧化銅的均勻沉澱法製備及低溫熱容」,材料科學与工艺,第9卷,第1期,2001,第71-74頁。
[27]G. H. Du, G. Van Tendeloo “Cu(OH)2 nanowires, CuO nanowires and CuO nanobelts”, Chemical Physics Letters, vol.393, 2004, pp.64–69.
[28]徐揚鈞,「化學沉降法去除重金屬離子時沉降顆粒粒徑的影響與控制研究」,碩士論文,國立中興大學環境工程所,台中市,1993。
[29]曾迪華,「電鍍廢水化學沉降處理法之比較」,工業污染防治,第24期,1987,第80-84頁。
[30]「廢水處理常用化學藥劑手冊」,台北市,經濟部工業局工業污染防治技術服務團,1994,第3-39頁。
[31]「半導體製造業污染防治技術」,台北市,經濟部工業局編印,1995。
[32]D. A. Skoog, D.M.West , 賀孝雍、陶雨臺譯,「分析化學基本原理」,台北市,曉園出版社,1984。
[33]Peters, R. W. and Y. Ku, ” Batch precipitation studies for heavy metal removal by sulfide precipitation ”, Paper presented at the Summer Nationaal AIChE Meeting, Philadelphia, PA, 1984, pp.19-22.
[34]P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J. M. Taracon, “Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries” Nature, London, vol.407, 2000, pp.496-498.
[35]R. V. Kumar, Y. Diamant, A. Gedanken, “Sonochemical synthesis and characterization of nanometer-size transition metal oxides from metal acetates”, Chem.Mater., vol.12, 2000, pp.2301-2305.
[36]H. Cao, S. L. Suib, “Highly efficient heterogeneous photooxidation of 2-propanol to acetone with amorphous manganese oxide catalysts”, J. Am. Chem. Soc. vol.116, 1994, pp.5334-5342.
[37]M. Singhal, P. Chhabra, P. Kang, D.O.Shah, “Synthesis of ZnO nanoparticles for varistor application using Zn-substituted aerosol OT microemulsion”, Mater. Res. Bull. vol.32, 1997, pp.239-247.
[38]C. Macilwain, “Bell labs win superconductivity patent”, Nature, London, vol.403, 2000, pp.121-122.
[39]A. H. Macdonald, “Superconductivity: copper oxides get charged up”, Nature, London, vol.414, 2001, pp.409-410.
[40]F. Lanza, R. Feduzi, “Effects of lithium oxide on the electrical properties of CuO at low temperatures”, J. Mater. Res., vol.5, 1990, pp.1739-1744.
[41]P. Larsson, A. Andersson, “Complete oxidation of CO, ethanol, and ethyl acetate over copper oxide supported on titania and ceria modified titania”, J. Catal, vol.179, 1998, pp.72-89.
[42]V. Chilan, A. Molnar, K. Balazsil, “One-step synthesis of methyl isobutyl ketone from acetone and hydrogen over Cu-on-MgO catalysts”, J. Catal, vol.184, 1999, pp.134-143.
[43]B. Raveau, C. Michel, M. Herview, D. Groult, “Crystal chemistry of high-Tc superconducting copper oxides”, Berlin, Springer-Verlag, 1991.
[44]C. P. Poole, T. Datta, H.A. Farach, M.M. Rigney, C.R.Sanders, “Copper oxide superconductors”, New York, John Wiley&Sons,1988.
[45]Z. Wang, V. Pischedda, S. K. Saxena, and P. Lazor, “X-ray diffraction and Raman spectroscopic study of nanocrystalline CuO under pressures”, Solid State Commun.,vol.121,no.5, 2002, pp.275-279.
[46]郭欣怡,「以水溶液沉澱法製備不同形貌之氧化銅」,碩士論文,國立新竹師範學院數理研究所,新竹市,2003。
[47]W. Z. Wang, Y. Zhan, X. Wang, Y. Liu, C. Zheng, and G.Wang, “Synthesis and characterization of CuO nanowhiskers by a novel one-step, solid-state reaction in the presence of a nonionic surfactant”, Mater. Res. Bull., vol.37 ,no.6, 2002, pp.1093-1100.
[48]J. F. Xu, W. Ji, Z. X.Shen, S. H. Tang, X. R. Ye, D. Z. Jia, and X. Q. Xin, “Preparation and characterization of CuO nanocrystals”, J. Solid State Chem., vol.147, no.2, 1999, pp.516-519.
[49]R. V. Kumar, Y. Diamant, and A. Gedanken, “Sonochemical synthesis and characterization of nanometer-size transition metal oxides from metal acetates”, Chem. Mater., vol.12, no.8, 2000, pp.2301-2305.
[50]R. V. Kumar, R. Elgamiel, Y. Diamant, A. Gedanken, and J. Norwig, “Sonochemical preparation and characterizaton of nanocrystalline copper oxide embedded in poly (vinyl alcohol) and its effect on crystal growth of copper oxide”, Langmuir, vol.17, no.5, 2000, pp.1406-1410.
[51]C. K. Xu, Y. K. Liu, G. Xu,and G. Wang, “Preparation and characterization of CuO nanorods by thermal decomposition of CuC2O4 precursor”, Mater. Res.Bull., vol.37, no.14, 2002, pp.2365-2372.
[52]C. L. Carnes, J. Stipp, and K. J. Klabunde, “Synthesis, characterization, and adsorption studies of nanocrystalline copper oxide and nickel oxide”, Langmuir, vol.18, no.4, 2002, pp.1352-1359.
[53]X. Jiang, T. Herricks, and Y. Xia, “CuO nanowires can be synthesized by heating copper substrates in air”, Nano Lett.,vol.2, no.12, 2002, pp.1333-1338.
[54]S. A. Vorobyova, A. I. Lesnikovich, and V. V. Muchinskii, “Interphase synthesis and some characteristics of stable colloidal solution of CuO in octane”, Coll. Surf. A, vol.150, 1999, pp.297-300.
[55]T. Maruyama, “Copper oxide thin films prepared by chemical vapor deposition from copper dipivaloylmethanate”, Sol. Energy Mater. Sol. Cells, vol.56, 1998, pp.85-92.
[56]Z. Pan, Z. Dai, Z. Wang, “Nanobelts of semiconducting oxides”, Science, vol.291, 2001, pp.1947-1950.
[57]Z. S. Hong, Y. Cao, and J. F. Deng, “A convenient alcohothermal approach for low temperature synthesis of CuO nanoparticles”, Mater. Lett. Vol.52, 2002, pp.34-38.
[58]A. Dierstein, H. Natter, F. Meyer, H. O. Stephan, Ch. Kropf, and R. Hempelmann, “Electrichemical deposition under oxidizing conditions (EDOC): a new synthesis for nanocrystalline metal oxides”, Scripta Mater., vol. 44, no.8-9, 2001, pp.2209-2212.
[59]M. T. Reetz and W. Helbig, “Size-selective synthesis of nanostructured transition metal clusters”, J. Am. Chem. Soc., vol.116, 1994, 7401-7402.
[60]B. Kavita, J. B. Singh, “Quantum size effects in CuO nanoparticles”, Physical Review B, vol.61, no.16, 2000, pp.11093-11096.
[61]Y. Zhou, S. H. Yu, X. P. Cui, C. Y. Wang, Z. Y. Chen, “Formation of silver nanowires by a novel solid-liquid phase arc discharge method”, Chem. Mater., vol.11, no.3, 1999, pp.545-546.
[62]J. J. Zhu, S. W. Liu, O. Palchik, Y. Koltypin, A. Gedanken, “Shape-controlled synthesis of silver nanoparticles by pulse sonoelectrochemical Methods”, Langmuir, vol.16, 2000, pp.6396-6399.
[63]H. Wang, J. Z. Xu, J. J. Zhu, and H. Y. Chen, “Preparation of CuO nanoparticles by microwave irradiation”, J. Cryst. Growth, vol.244, 2002, pp.88-94.
[64]D. Chen, G. Shen, K. Tang, and Y. Qian, “Large-scale synthesis of CuO shuttle-like crystals via a convenient hydrothermal decomposition route”, J. Cryst. Growth, vol.245, 2003, pp.225-228.
[65]G. H. Du, Q. Chen, R. C. Che, L. M. Peng, “ Preparation and structure analysis of titanium oxide nanotubes”, Appl. Phys. Lett. vol.79, 2001, pp.3702-3704.
[66]http://www.dfmg.com.tw/dasp/dfaux/o16-d.htm
[67]黃樹倫,「廢電路板及污泥中銅之回收再利用」,碩士論文,私立中國文化大學應用化學研究所,台北市,1995。
[68]L. M. Luo, Y. B. Liu “ A new technology on preparation of copper sulphate”, Journal of Wuhan institute of chemical technology, vol.21, no.3, 2002, pp.88-94.
[69]易求实,「均勻沉澱法製備奈米鹼式硫酸銅殺蟲劑的研究」,农葯,第40卷,第8期,2001,第20-22頁。
[70]邱承美,「儀器分析原理」,台北市,科文出版社,1984。
[71]周玉、武高輝合著,「材料分析測試技術-材料X射線衍射與電子顯微分析」 ,哈爾濱,哈爾濱工業大學出版, 1998。
[72]柯清水,「化學化工大辭典」,台北市,正文書局,1998,第1122頁。
[73]Y. K. Kim , D. H. Riu, S. R. Kim and B. I. Kim “Preparation of shape- controlled copper oxide powders from copper-containing solution”, mater. Lett., vol.54, no 2-3, 2002, pp.229-237.
[74]V. Ranjani Siriwardane, A. James Poston Jr, P. Edward Fisher, Ming-Shing Shen, Angela L. Miltz, “Decomposition of the sulfates of copper, iron(II), iron(III), nickel, and zinc : XPS, SEM, DRIFTS, XRD, and TGA study”, Applied Surface Science, vol.152, 1999, pp.219-236.
[75]J. Mu, D. D. perimutter, “Thermal decomposition of inorganic sulfates and their hydrates”, Ind. Eng. Chem. Process, vol.20, 1981, pp.640-646.
[76]Y. Cudennec, A. Lecerf , “The transformation of Cu(OH)2 into CuO, revisited”, Solid State Sciences vol.5 , 2003, pp. 1471–1474.
[77]West , R. Anthony, “Basic solid state chemistry”, New York , John Wiley & Sons, 1999, pp.3.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top