跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.172) 您好!臺灣時間:2025/09/11 08:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳崇平
研究生(外文):WU, CHONG-PING
論文名稱:以Comamonas sp.重組菌株生合成三元共聚物 poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) 之研究
論文名稱(外文):The study of terpolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) biosynthesized by the recombinant strain of Comamonas sp.
指導教授:許德賢
指導教授(外文):SHEU, DER-SHYAN
口試委員:鄭至玉許德賢藍祺偉
口試委員(外文):CHENG, CHIH-YUSHEU, DER-SHYANLAN, CHI-WEI
口試日期:2019-07-30
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:海洋生物技術系
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:50
中文關鍵詞:聚羥基烷酸酯果糖酸饋料批式醱酵
外文關鍵詞:polyhydroxyalkanoatelevulinilic acidfed-batch fermentation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:303
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:1
本研究使用菌株Comamonas sp. L8U篩選自台灣環境土壤,透過剔除PHA合成酶phaC1L8U基因和可水解3-hydroxybutyryl-CoA (3HBCoA) 的硫酯酶 (thioesterase) TE2、TE4基因,並同時表現下列三個基因,分別為來自Pseudomonas putida H9的廣泛基質專一性PHA合成酶phaC1H9基因、來自Aeromonas caviae的 (R)-specific enoyl-CoA hydratase (phaJ) 可將β-氧化路徑中間體trans-2-enoyl-CoA轉化成 (R)-3-hydroxyhexanoyl-CoA、Vitreoscilla sp. 之細菌血紅蛋白vgb基因。本研究所使用的碳源果糖酸 (levulinic acid) 為可再生性碳源,可由稻稈、蔗渣和麥稈等農業廢棄物中的纖維素,在酸性加熱條件下轉換獲得,能達到不與人類搶糧食與耕地之目的。果糖酸對於一般的細菌具有毒性,Comamonas sp. 可利用不同比例的果糖酸和己酸 (hexanoic acid) 為複合碳源,獲得不同單體組成的poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) 三元共聚物。此聚合物的組成以3HV單體為主3HB、3HHx為輔。使用GC、NMR、GPC、DSC和奈微拉伸試驗機等多種儀器測量,分析單體組成、物理性質如玻璃轉換溫度 (Tg)、熔點 (Tm)、結晶溫度 (Tc) 和機械性質如抗拉強度 (tensile strength)、楊氏模量 (Young's modulus)、斷裂伸長率 (elongation at break) 等。
Comamonas sp. L8U is isolated form environmental soils in Taiwan. Deletion PHA synthase phaCL8U gene and the thioesterase genes, TE2 and TE4, which can hydrolyze 3-hydroxybutyryl-CoA (3HBCoA). Exhibiting phaC1 gene of a broad range substrate specificity from Pseudomonas putida H9, (R)-specific enoyl-CoA hydratase (phaJ) of Aeromonas caviae which converts the internediate β-oxidation pathway, trans-2-enoyl-CoA, into (R)-3-hydroxyhexanoyl-CoA, and the hemoglobin vgb of Viteloscilla sp. of. The carbon source levulinic acid used in this study is a renewable carbon source. It can be converted from cellulose in agricultural waste such as rice straw, bagasse and wheat straw under acidic heating conditions, and can achieve the purpose of not robbing humans of grain and cultivated land. Levulinic acid is toxic to bacteria. Comamonas sp. can use different ratios of levulinic acid and hexanoic acid as composite carbon sources to obtain poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) terpolymers with different monomer compositions. The composition of this polymer is dominated by 3HV monomers, while 3HB and 3HHx are auxiliary. Using a variety of instruments to measure such as GC, NMR, GPC, DSC and Micro/Nano tensile tester. Analysis of monomer composition, physical properties such as glass transition temperature (Tg), melting temparature (Tm), crystallization temparature (Tc) and mechanical properties for tensile strength, Young's modulus, and elongation at break.
摘 要 i
Abstract ii
目 錄 iii
表目錄 vi
圖目錄 vii
附圖目錄 viii
第一章 前 言 1
一、石化塑膠與環境汙染 1
二、聚羥基烷酸酯(polyhydroxyalkanoates, PHA) 1
1. 來源 1
2. 聚羥基烷酸酯的化學結構 2
3. 聚羥基烷酸酯的物理性質 3
4. 聚羥基烷酸酯的生合成路徑 4
5. 聚羥基烷酸酯的應用 5
三、果糖酸 (levulinic acid) 6
四、Comamonas sp. L8U 7
五、研究目的與策略 8
1. 研究目的 8
2. 研究策略 8
第二章 材料與方法 10
一、實驗菌株及培養基 10
二、器材與儀器 10
三、基因剔除與基因置換 11
1. 基因剔除之PCR擴增 11
2. 基因置換之PCR擴增 11
3. 接合作用 11
4. 轉形作用 12
5. 質體DNA的萃取與定序 12
6. 接合生殖 (conjugation) 12
7. 基因剔除與置換 (doube crossover) 13
四、基因互補實驗 13
五、PHA之累積 14
六、PHA含量和單體組成之分析 14
1. PHA之轉酯化 14
2. 氣相層析儀分析 14
七、PHA之饋料批式醱酵實驗 14
八、PHA之半連續醱酵試驗 (semi-continous fermerntation) 16
九、PHA之萃取與純化 16
十、PHA之分子量分析 16
十一、PHA之聚合物化學結構分析 17
十二、PHA之膜片觀察與顯微鏡分析 17
十三、PHA之物理性質分析 17
十四、PHA之機械性質分析 18
第三章 結 果 19
一、置換Comamonas sp. L8U phaC基因對PHA累積的影響 19
二、剔除Comamonas sp. L8U多種基因並表現phaC1H9基因對於PHA累積的影響 19
三、Comamonas sp.重組菌株表現phaJ基因和vgb基因對PHA累積的影響 20
四、Comamonas sp.重組菌株之饋料批式醱酵試驗 20
五、Comamonas sp.重組菌株之半連續醱酵試驗 22
六、醱酵試驗之PHA單體組成分析 (NMR) 22
七、醱酵試驗之PHA聚合物分子量分析 (GPC) 22
八、醱酵試驗之PHA膜片外觀和顯微鏡觀察 23
九、PHA聚合物熱性質分析 23
十、醱酵試驗之PHA聚合物機械性質分析 (拉伸試驗) 24
第五章 結 論 28
第六章 參考文獻 29


Alting-Mees, M. A., & Short, J. M. (1989). pBluescript II: gene mapping vectors. Nucleic acids research, 17.
Cammas, S., Bear, M. M., Moine, L., Escalup, R., Ponchel, G., Kataoka, K., & Guérin, P. (1999). Polymers of malic acid and 3-alkylmalic acid as synthetic PHAs in the design of biocompatible hydrolyzable devices. International journal of biological macromolecules, 25(1-3), 273-282.
Chen, G. Q. (2009). A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. Chemical Society Reviews, 38(8), 2434-2446. doi:10.1039/b812677c
Demirbas, A. (2005). Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues. Progress in Energy and Combustion Science, 31(2), 171-192. doi:10.1016/j.pecs.2005.02.002
Escapa, I. F., Garcia, J. L., Buhler, B., Blank, L. M., Prieto, M. A. (2012). The polyhydroxyalkanoate metabolism controls carbon and energy spillage in Pseudomonas putida. Environmental Microbiology, 14(4), 1049-1063. doi:10.1111/j.1462-2920.2011.02684.x
Jambeck, J. R., Geyer, R., Wilcox, C., Siegler, T. R., Perryman, M., Andrady, A., . . . Law, K. L. (2015). Plastic waste inputs from land into the ocean. Science, 347(6223), 768-771. doi:10.1126/science.1260352
Jendrossek, D. (2009). Polyhydroxyalkanoate Granules Are Complex Subcellular Organelles (Carbonosomes). Journal of Bacteriology, 191(10), 3195-3202. doi:10.1128/jb.01723-08
Joseph J. Bozell, L. M., D.C. Elliott, Y. Wang, G.G. Neuenscwander, S.W. Fitzpatrick, R.J. Bilski, J.L. Jarnefeld. (2000). Production of levulinic acid and use as a platform chemical for derived products. Resources, conservation and recycling, 28(3-4), 227-239.
Kesaven Bhubalan, D.-N. R., Hideki Abe, Tadahisa Iwata, Kumar Sudesh. (2010). Improved synthesis of P(3HB-co-3HV-co-3HHx) terpolymers by mutant Cupriavidus necator using the PHA synthase gene of Chromobacterium sp. USM2 with high affinity towards 3HV. Polymer Degradation and Stability, 95(8), 1436-1442. doi:10.1016/j.polymdegradstab.2009.12.018
Khanna, S., & Srivastava, A. K. (2005). Recent advances in microbial polyhydroxyalkanoates. Process Biochemistry, 40(2), 607-619. doi:10.1016/j.procbio.2004.01.053
Kovach, M. E., Elzer, P. H., Hill, D. S., Robertson, G. T., Farris, M. A., Roop, R. M., & Peterson, K. M. (1995). 4 NEW DERIVATIVES OF THE BROAD-HOST-RANGE CLONING VECTOR PBBR1MCS, CARRYING DIFFERENT ANTIBIOTIC-RESISTANCE CASSETTES. Gene, 166(1), 175-176. doi:10.1016/0378-1119(95)00584-1
Lemoigne, M. (1926). Produits de Deshydration et de Polymerisation de L'acide β= Oxybutyrique. Bull. Soc. Chim. Biol, 8, 770-782.
Lin, X., Wu, Zhengmei, Zhang, Chenyuan, Liu, Shijie, Nie, Shuangxi. (2018). Enzymatic pulping of lignocellulosic biomass. Industrial Crops and Products, 120, 16-24. doi:10.1016/j.indcrop.2018.04.033
Luengo, J. M., Garcı́a, B., Sandoval, A., Naharro, G., & Olivera, E. R. (2003). Bioplastics from microorganisms. Current Opinion in Microbiology, 6(3), 251-260. doi:10.1016/s1369-5274(03)00040-7
Matsusaki, H., Abe, H., & Doi, Y. (2000). Biosynthesis and Properties of Poly(3-hydroxybutyrate-co-3-hydroxyalkanoates) by Recombinant Strains ofPseudomonassp. 61-3. Biomacromolecules, 1(1), 17-22. doi:10.1021/bm9900040
Nair, L. S., & Laurencin, C. T. (2007). Biodegradable polymers as biomaterials. Progress in polymer science, 32(8-9), 762-798. doi:10.1016/j.progpolymsci.2007.05.017
Narayan, R. (2011). Carbon footprint of bioplastics using biocarbon content analysis and life-cycle assessment. Mrs Bulletin, 36(9), 716-721. doi:10.1557/mrs.2011.210
Nelms, S. E., Duncan, E. M., Broderick, A. C., Galloway, T. S., Godfrey, M. H., Hamann, M., . . . Godley, B. J. (2016). Plastic and marine turtles: a review and call for research. ICES Journal of Marine Science: Journal du Conseil, 73(2), 165-181. doi:10.1093/icesjms/fsv165
Nie, S., Zhang, C., Zhang, Q., Zhang, K., Zhang, Y., Tao, P., & Wang, S. (2018). Enzymatic and cold alkaline pretreatments of sugarcane bagasse pulp to produce cellulose nanofibrils using a mechanical method. Industrial Crops and Products, 124, 435-441. doi:10.1016/j.indcrop.2018.08.033
Nobes, G. A. R., Maysinger, D., & Marchessault, R. H. (1998). Polyhydroxyalkanoates: materials for delivery systems. Drug Delivery, 5(3), 167-177.
North, E. J., & Halden, R. U. (2013). Plastics and environmental health: the road ahead. Rev Environ Health, 28(1), 1-8. doi:10.1515/reveh-2012-0030
Pakalapati, H., Chang, C. K., Show, P. L., Arumugasamy, S. K., Lan, J. C. W. (2018). Development of polyhydroxyalkanoates production from waste feedstocks and applications. Journal of Bioscience and Bioengineering, 126(3), 282-292. doi:10.1016/j.jbiosc.2018.03.016
Qi, Q., Steinbüchel, A., & Rehm, B. H. (1998). Metabolic routing towards polyhydroxyalkanoic acid synthesis in recombinant Escherichia coli (fadR): inhibition of fatty acid β-oxidation by acrylic acid. FEMS microbiology letters, 167(1), 89-94.
Ricke, S. C. (2003). Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. Poultry science, 82(4), 632-639.
Schlegel, H. G., Gottschalk, G., & Von Bartha, R. (1961). Formation and utilization of poly-β-hydroxybutyric acid by Knallgas bacteria (Hydrogenomonas). Nature, 191, 4787.
Sendil, D., Gürsel, I., Wise, D. L., & Hasırcı, V. (1999). Antibiotic release from biodegradable PHBV microparticles. Journal of Controlled Release, 59(2), 207-217.
Simon, R. U. P. A. P., Priefer, U., & Pühler, A. (1983). A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Bio/technology, 1(9), 784.
Singh, N., Hui, D., Singh, R., Ahuja, I. P. S., Feo, L., & Fraternali, F. (2017). Recycling of plastic solid waste: A state of art review and future applications. Composites Part B-Engineering, 115, 409-422. doi:10.1016/j.compositesb.2016.09.013
Slawomir Ciesielski, J., Nipon Pisutpaisal. (2015). Plant oils as promising substrates for polyhydroxyalkanoates production. Journal of Cleaner Production, 106, 408-421. doi:10.1016/j.jclepro.2014.09.040
Steinbuchel, A. (2001). Perspectives for biotechnological production and utilization of biopolymers: Metabolic engineering of polyhydroxyalkanoate biosynthesis pathways as a successful example. Macromolecular Bioscience, 1(1), 1-24.
Sudesh, K., Abe, H., & Doi, Y. (2000). Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Progress in Polymer Science, 25(10), 1503-1555. doi:10.1016/s0079-6700(00)00035-6
Tan, G. Y. A., Chen, C. L., Li, L., Ge, L., Wang, L., Razaad, I. M. N., . . . Wang, J. Y. (2014). Start a Research on Biopolymer Polyhydroxyalkanoate (PHA): A Review. Polymers, 6(3), 706-754. doi:10.3390/polym6030706
Tian, J., Sinskey, A. J., Stubbe, J. (2005). Detection of intermediates from the polymerization reaction catalyzed by a D302A mutant of class III polyhydroxyalkanoate (PHA) synthase. Biochemistry, 44(5), 1495-1503. doi:10.1021/bi047734z
Titz, M., Kettl, K.-H., Shahzad, K., Koller, M., Schnitzer, H., & Narodoslawsky, M. (2012). Process optimization for efficient biomediated PHA production from animal-based waste streams. Clean Technologies and Environmental Policy, 14(3), 495-503. doi:10.1007/s10098-012-0464-7
Wei, R., Zimmermann, W. (2017). Microbial enzymes for the recycling of recalcitrant petroleum-based plastics: how far are we? Microbial Biotechnology, 10(6), 1308-1322. doi:10.1111/1751-7915.12710
Wiggam, M. I., O'kane, M. J., Harper, R., Atkinson, A. B., Hadden, D. R., Trimble, E. R., & Bell, P. M. (1997). Treatment of diabetic ketoacidosis using normalization of blood 3-hydroxybutyrate concentration as the endpoint of emergency management: a randomized controlled study. Diabetes care, 20(9), 1347-1352.
Xue, S. J., Jiang, H., Chen, L., Ge, N., Liu, G. L., Hu, Z., . . . Chi, Z. (2019). Over-expression of Vitreoscilla hemoglobin (VHb) and flavohemoglobin (FHb) genes greatly enhances pullulan production. Int J Biol Macromol, 132, 701-709. doi:10.1016/j.ijbiomac.2019.04.007
Zhang, J., Zhang, B., Zhang, J., Lin, L., Liu, S., & Ouyang, P. (2010). Effect of phosphoric acid pretreatment on enzymatic hydrolysis of microcrystalline cellulose. Biotechnol Adv, 28(5), 613-619. doi:10.1016/j.biotechadv.2010.05.010
Zhang X., F. M., Jones G. O., & Waymouth R. M. (2018). Catalysis as an Enabling Science for Sustainable Polymers. Chem Rev, 118(2), 839-885. doi:10.1021/acs.chemrev.7b00329
Zinn, M., Witholt, B., & Egli, T. (2001). Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate. Advanced drug delivery reviews, 53(1), 5-11.
郭丁傳 (2017)。野生菌株Comamonas sp. L8U 生和成均質聚合物poly(3-hydroxyvalerate) 的研究。國立高雄海洋科技大學海洋生物技術系暨研究所碩士論文,台灣高雄。
劉崇賢 (2017)。野生菌株Pseudomonas putida H9生合成均質聚合物poly(3-hydroxyhexanoate) 及PHA合成酶基質專一性之研究。國立高雄海洋科技大學海洋生物技術系暨研究所碩士論文,台灣高雄。
王琪 (2018)。Comamonas sp. L8U轉換果糖酸為3-羥基戊酸最佳化條件及產量提升之研究。國立高雄科技大學 (楠梓/旗津校區) 海洋生物技術系暨研究所碩士論文,台灣高雄。
楊朝森 (2008)。一種共聚酯與六種金屬陶瓷牙冠之檢測分析。國立中山大學材料科學研究所碩士論文。台灣屏東。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊