跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.54) 您好!臺灣時間:2026/01/12 12:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉奕宏
研究生(外文):LIU, YI-HONG
論文名稱:環丁碸降解菌之分離暨結合生物網膜技術(BioNET®)進行實際廢水環丁碸之降解
論文名稱(外文):Isolation and Application of Sulfolane-Degrading Bacteria to Treat Sulfolane in Real Wastewater by Combining Biological New Environmental Technology (BioNET®)
指導教授:楊茱芳
指導教授(外文):YANG, CHU-FANG
口試委員:張冠甫萬騰州
口試委員(外文):CHANG, KUAN-FOOWAN, TERNG-JOU
口試日期:2017-07-06
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:環境與安全衛生工程系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:128
中文關鍵詞:環丁碸生物降解鑑別性培養基Cupriavidus metallidurans Y-dBioNET®生物添加
外文關鍵詞:sulfolanebiodegradationdifferential solid mediumstrain Cupriavidus metallidurans Y-dBioNET®bioaugmentation
相關次數:
  • 被引用被引用:2
  • 點閱點閱:961
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
石化產業為國家工業發展之基礎,隨著時代的演變與科技的進步,現今民生用品及燃料用油多仰賴化石燃料,但高使用率也造成環境的危害,為提高原物料使用品質以及降低燃燒與使用化石燃料造成的污染,逐年新建各項純化或淨化程序,藉此達到環境維護之目的。如今,天然氣體淨化廠、石化廠與萃取廠等純化或淨化程序中多以環丁碸作為蒸餾萃取劑,然而,製程中難免有回收不全的環丁碸溶液流入廢水處理系統,造成系統負荷突增,且環丁碸具生物毒性,容易導致放流水質不穩定,增加環丁碸污染環境的風險。以生物方式去除廢水中環丁碸不旦可避免二次污染與後續再處置之問題,亦對環境較為友善且成本相對低廉。
生物復育是利用環境微生物降解有害物質成為無害或低毒性產物的方法,其中的生物添加法(Bioaugmentation)係指將具有降解能力的純種菌株或混合菌群額外加入廢水處理系統或污染場址中,藉此改善污染物的分解速率,進而增進污染物的降解效果。生物網膜技術(Biological New Environmental Technology, BioNET®)是以「多孔性生物擔體」作為生物處理系統之核心,使微生物大量附著於擔體表面分解水中污染物,達到淨化水質之目的,具有容易操作、節省反應槽體積、高效率與高穩定性等優點。
基於石化廠廢水處理系統常面臨環丁碸造成的突增負荷,為穩定廢水處理效能,本研究以石化廠活性污泥系統作為目標降解菌之分菌來源,並透過馴養方式增加活性污泥中環丁碸降解菌群的活性與比例,再利用鑑別性培養基分離環丁碸降解菌株,並測試其環丁碸降解能力,接著以不同稀釋倍數與含有環丁碸的實廠廢水進行批次實驗,選定適合植種於實廠廢水處理系統之環丁碸降解菌,隨後進一步探討該菌株於不同pH值、環丁碸濃度以及硫酸根濃度下的環丁碸降解特性,最後以生物添加方式額外植種環丁碸降解菌於BioNET®反應槽,評估生物添加對實廠廢水處理以及環丁碸去除的效益。
實驗結果顯示,活性污泥經過馴養後,混合菌群的環丁碸降解速率可增進3.9至7.1倍;鑑別性培養基共分離出18株純菌,其中4株菌株具有降解環丁碸能力,經16S rDNA序列定序比對得知降解速率較佳之菌株Y-a、Y-d與Y-f皆為Cupriavidus metallidurans,這三株純菌皆能利用不同稀釋倍數與添加有環丁碸的實廠廢水生長,其中以菌株Cupriavidus metallidurans Y-d擁有最高環丁碸與sCOD去除率。菌株Cupriavidus metallidurans Y-d培養於pH 6時,菌株之比生長速率與比基質利用率明顯低於培養於pH值為7、8與9情況下,菌株活性顯然受到抑制,菌株於pH介於7-9時,可將環丁碸降解幾近完全,其中又以pH 8具有最高菌體生長量與環丁碸去除率;以濃度介於500-2000 mg/L環丁碸培養菌株時,隨著環丁碸濃度的上升,O.D.600值也逐漸增加,比生長速率由0.194上升至0.479,比基質利用率由0.480上升至0.593,證明菌株可穩定生長於2000 mg/L環丁碸濃度下,且保持良好的環丁碸降解能力,對環丁碸的耐受性極高;菌株降解環丁碸的能力隨著硫酸根濃度上升而下降,高濃度硫酸根所形成之滲透壓會抑制菌株的活性。植種菌株Cupriavidus metallidurans Y-d於BioNET®反應槽中,其出流水水質較為穩定,與僅植種活性污泥之BioNET®反應槽相比,出流水中環丁碸與sCOD平均濃度皆明顯下降,且sCOD平均濃度可達到石化廠放流水標準;顯示以生物添加策略,確實可精進BioNET®反應槽處理含有環丁碸實廠廢水之效能。

Petrochemical industry is foundation of national development and has great contribution to social and economic growth. As improvement of economic environment, people pay attention to environment quality so that numerous pollution control facilities and technologies are established. Sulfolane is extensively used as extractive solvent in sour-gas processing plant to remove hydrogen sulfide and in petrochemical industry to recover valuble products. However, as repeated use of sulfolane, deteriorated sulfolane becomes corrosive and may leak into environment to threaten aquatic and terrestrial organisms. Toxic sulfolane may also flow into the activated sludge system to cause shock loading and make effluent water quality fail to meet discharge standard. Thus, it is important to remove sulfolane from environment and maintain stable wastewater treatment efficiency.
To deal with sulfolane, biological strategy is superior to physical and chemical strategies because of environmental friendly and cost consideration. Among several biological technologies, bioaugmentation is the addition specific microorganisms into soil, groundwater or wastewater treatment system to speed up the rate of degradation of a contaminant. Therefore, isolation of microbes capable of degrading target contaminant is an important issue. Moreover, maintenance of added microbes in the polluted area and system promises successful bioaugmentation. Biological New Environmental Technology (BioNET®) is the core of the biological treatment system with "porous biological carrier". The carrier contains high surface area to facilitate massive microbial attachment so that sludge age is prolonged and bacterial diversity is maintained. BioNET® has the advantages of easy operation, high processing load and high efficiency.
In order to solve the wastewater treatment system of petrochemical plant suffered by sulfolane shock loading, in this study, sulfolane degrading bacteria from the activated sludge system of petrochemical plant were enriched and isolated. After confirming thier sulfolane degrading ability, target sulfolane degrading bacterium used for bioaugmentation was further selected by comparing their utilization of various diluted real wastewater with and without 1000 mg/L sulfolane. Sulfolane biodegradation of target sulfolane degrading bacterium was then investigated under various pHs, sulfolane and sulfate concentrations. After establishing the optimal sulfolane-degrading contidition, bioaugmentation effect was evaluated by sulfolane removal efficiency when BioNET® reaction tank was operated in the presence and absence of sulfolane degrading bacterium.
Enrichment could enhance sulfolane degrading rate of mixed culture from 3.9 to 7.1 times. There were 18 strains isolated from the enriched activated sludge. Among these isolates, 3 strains (strain Y-a, Y-d and Y-f) were capable of degrading sulfolane and all identified as Cupriavidus metallidurans using 16S rDNA sequencing. Strain C. metallidurans Y-a, C. metallidurans Y-d and C. metallidurans Y-f could utilize real wastewater and degrade 1000 mg/L sulfolane in real wastewater. Among these 3 strains, strain C. metallidurans Y-d had the highest sulfolane and sCOD removal efficiencies so was chosen for the following experiments. The specific growth rate and specific substrate utilization rate of strain C. metallidurans Y-d at pH of 7-9 were obviously higher than those at pH of 6. 1000 mg/L sulfolane was almost completely degraded at pH of 7-9. The optimal pH of strain C. metallidurans Y-d to degrade sulfolane was 8. When increasing sulfolane concentration from 500 mg/L to 2000 mg/L, the specific growth rate increased from 0.194 to 0.479 and the specific substrate utilization rate increased from 0.480 to 0.593. Therefore, strain C. metallidurans Y-d was capable of degrading 2000 mg/L sulfolane. High sulfate concentration causing high osmotic pressure had a negative effect on sulfolane degradation. The results of BioNET® reaction tank experiments indicated that average sulfolane and sCOD concentrations in the effluent in the presence of strain C. metallidurans Y-d were significantly lower than those in the absence of strain C. metallidurans Y-d. The sCOD average concentration in the effluent with bioaugmentation could meet the petrochemical plant effluent standard. Bioaugmentation could substantially enhance sulfolane removal efficiency of BioNET® reaction tank.

摘要 i
Abstract iii
誌謝 v
目錄 vii
表目錄 xii
圖目錄 xiv
第一章 緒論 1
1.1 研究緣起 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1台灣石化工業背景介紹 3
2.1.1石化工業的興起 3
2.1.2石化廠之水質特性 3
2.2環丁碸之物化特性 4
2.3環丁碸之合成途徑 5
2.4環丁碸的用途 7
2.4.1萃取溶劑 7
2.4.2氣體淨化 8
2.4.3聚合物溶劑 8
2.4.4其他用途 8
2.5環丁碸的劣化與再生 9
2.5.1環丁碸的劣化 9
2.5.2環丁碸的再生利用 11
2.6環丁碸的毒性 13
2.6.1對陸生植物類的影響 13
2.6.2對水生生物類的影響 14
2.6.3對哺乳類動物的影響 16
2.7環丁碸的處理方式 18
2.7.1物理處理 18
2.7.2化學處理 18
2.7.3生物處理 19
2.8環丁碸降解菌介紹 20
2.8.1好氧環丁碸降解菌 22
2.8.2無氧環丁碸降解菌 23
2.8.3厭氧環丁碸降解菌 24
2.9影響環丁碸生物降解之因子 24
2.9.1溫度 24
2.9.2 pH值 24
2.9.3營養鹽添加 25
2.9.4環丁碸類似物 25
2.10環丁碸萃取分析技術 26
2.10.1萃取溶劑的選擇 27
2.10.2添加鹽類對環丁碸萃取效率之影響 27
2.10.3溫度對環丁碸萃取效率之影響 28
2.11 BioNET®技術介紹 29
2.11.1多孔性生物擔體介紹 30
2.11.2 BioNET®技術之特點 31
2.11.3 BioNET®技術應用範圍與對象 31
第三章 材料與方法 33
3.1實驗架構 33
3.2實驗儀器設備與藥品 35
3.2.1實驗儀器設備 35
3.2.2實驗藥品 36
3.3活性污泥與原廢水來源 37
3.4緩衝溶液與培養基配製 38
3.4.1磷酸鹽緩衝溶液 38
3.4.2礦物鹽培養液 38
3.4.3礦物鹽固體培養基 39
3.4.4鑑別性培養液 39
3.4.5鑑別性固體培養基 39
3.5環丁碸降解菌之馴化、分離與鑑定 40
3.5.1活性污泥之馴化 40
3.5.2環丁碸降解菌分離與篩選 42
3.5.3分離菌株降解環丁碸能力測試 44
3.5.4環丁碸降解菌之鑑定 44
3.6環丁碸降解菌批次實驗 46
3.6.1植種環丁碸降解菌選擇 46
3.6.2植種環丁碸降解菌環丁碸降解特性研究 49
3.7 BioNET®反應槽連續流試驗 52
3.7.1 BioNET®反應槽設計與規劃 52
3.7.2 BioNET®反應槽之實廠廢水生物降解能力測試 55
3.7.3 BioNET®反應槽添加生物製劑之生物降解能力測試 55
3.8分析方法 56
3.8.1 pH值測定 56
3.8.2 O.D.600 nm值測定 56
3.8.3細胞乾重檢量線建立 56
3.8.4化學需氧量(COD)分析 56
3.8.5硫酸根測定 57
3.8.6環丁碸萃取與分析 58
第四章 結果與討論 60
4.1從石化廠活性污泥系統分離環丁碸降解菌 60
4.1.1環丁碸降解菌馴養 60
4.1.2環丁碸降解菌之分離與降解能力測試 62
4.1.3菌種鑑定結果 66
4.2最適植種降解菌之批次試驗結果 68
4.2.1利用不同稀釋倍數實廠廢水之實驗結果 68
4.2.2添加環丁碸於實廠廢水之批次實驗 76
4.2.3環丁碸降解菌比較與選定 79
4.2.4菌株Cupriavidus metallidurans Y-d植種效益初探 81
4.3各項環境因子影響菌株Cupriavidus metallidurans Y-d降解環丁碸之批次試驗 83
4.3.1菌株Cupriavidus metallidurans Y-d降解環丁碸之最適pH值 83
4.3.2不同環丁碸濃度對菌株Cupriavidus metallidurans Y-d降解環丁碸之影響 86
4.3.3不同硫酸根濃度對菌株Cupriavidus metallidurans Y-d降解環丁碸之影響 89
4.3.4綜合討論 93
4.4有無植種菌株Cupriavidus metallidurans Y-d對BioNET®反應槽之影響 95
第五章 結論與建議 98
5.1結論 98
5.2建議 100
參考文獻 101
童聞亮,顏福池,楊仲苗,2010,工業廢水中環丁碸的氣相色譜測定,化工生產與技術,17 (2),33-35。
李明玉,2005,降低環丁碸抽提系统設備腐蝕性研究,碩士論文,天津大學化學工程研究所。
盧文章,2000,石化產業排放水回收技術,經濟部八十九年度科技研究發展專案計畫研究報告。
顧侃英,2000,芳烴抽提中環丁碸的劣化及影響,石油學報,16(4),19-25。
洪仁陽、張王冠、邵信、張敏超,2001,BioNET 高級生物處理技術之應用,環保月刊,1,130-140。
侯力群、吳應湘、許晶禹、孫君書,2008,天然氣水合物熱激勵法開採模型研究,西安石油大學學報(自然科學版),23(2),44-47。
趙國雄,1994,芳烴抽提裝置溶劑環丁碸劣化因素探討,石油煉製與化工,25(5),44-48。
張富欽,2009,石化廠高導電度廢水之回用研究,碩士論文,國立雲林科技大學環境與安全衛生工程研究所。
張王冠、莊順興、洪仁陽、鄒文源,2000,應用BioNET技術處理化工業廢水二級處理出流水,2000產業環保工程實務技術研討會,經濟部工業局。
張王冠、鄒文源、洪仁陽,2001,生物網膜技術應用於低污染水以及廢水之處理,土木技術,36,104-112。
陳田珍,2005,環丁碸芳烴抽提蒸餾工藝在大型工業生產中的應用,碩士論文,天津大學化學工程研究所。
陳泰穎,2012,仁武地區石化廠周界居民健康評估之研究,碩士論文,國立屏東科技大學環境工程與科學研究所。
陳一波,1996,環丁碸抽提裝置腐蝕原因及控制,揚子石油化工,11(1),14-17。
邵信、洪仁陽、李茂松、張敏超,2001,工業用水回收程序評估與工程實務,土木技術,36,92-103。
鄒文源、張王冠、洪仁陽、吳漢松、莊順興,1999,BioNET生物程序處理自來水凡水之研究,自來水會利,18(4),22-33。
鄒文源、洪仁陽、張王冠、柳佩姍,2002,BioNET處理染整廠放流水回收再利用之模廠研究,產業環保工程實務技術研討會,經濟部工安環保週。
Agatonovic, V. and Vaisman, E., 2005. Sulfolane impacted soil and groundwater treatability study. EBA Engineering Consultants, Ltd. And University of Calgary Tomographic Imaging and Porous Media Laboratory.
Agrawal, B. B., Jain, M. C., Gupta, P. L., 1987. Erdoel Kohle, Erdgas, Petrochem., 40, 489-490.
Ahmad, B. and Nurul'Ain., 2009. Advanced Oxidation Process of Sulfolane in Wastewater Using Fenton Reagent. TP Chemical technology.
Andersen, M. E., Jones, R. A., Kurlansik, L., Mehl, R. G., Jenkins, L. J. J., 1976. Sulfolane induced convulsions in rodents. Research Communications in Chemical Pathology and Pharmacology, 15, 571-580.
Andersen, M. E., Jones, R. A., Mehl, R. G., Hill, T. A., Kurlansik, L., Jenkins, L. J. J., 1977. The inhalation toxicity of sulfolane (tetrahydrothiophene-1,1-dioxide). Toxicology and Applied Pharmacology, 40, 463-472.
Aromatics and Derivatives, 1999. Suloflane Process. UOP LLC 2699-22899ADIV.
Asselin, G. F., 1977. Aromatic hydrocarbon separation via solvent extraction. United States Patent, 4,058,454.
Baker, D. C., 1988. Shell oil co. U.S. Pat., 4,792,405.
Barton, L. R., 1960. E.I. du pont de nemours and co., Inc. U.S. Pat. 2,953,818.
Blomgren, G. E., 1980. Proc. symp. power sources biomed. implantable appl. ambient temp. Lithium Batt., 80, 368-377.
Branch BCWM, Ltd K.I., 2003. British Columbia. Ministry of water l and branch APWM. Water Quality Guidelines for Sulfolane. Komex International Limited.
Bridié, A. L., Wolff, C. J. M., Winter, M., 1979a. The acute toxicity of some petrochemicals to goldfish. Water Res., 13, 623-626.
Brown, V. K. H., Ferrigan, L. W., Stevenson, D. E., 1966. Acute toxicity and skin irritant properties of sulfolane. Brit. J. Industr. Md.23, 302-304.
CAPP (Canadian Association of Petroleum Producers), 1997. Evaluation of the Fate of sulfolane and DIPA in the subsurface at sour gas processing plant sites. Report prepared by the Departments of Biological Sciences and Renewable Resources, University of Alberta, CAPP Pub, 1997-0004, April, 1997.
CAPP (Canadian Association of Petroleum Producers), 1998. 1997 Investigation of hydrocarbon attenuation in natural wetlands, vol. I and II. Unpublished Report prepared by Komex International Ltd., File No. KI97-4545.
CAPP (Canadian Association of Petroleum Producers), 1999. 1998 Investigation of hydrocarbon attenuation in natural wetlands, vol. I and II. Unpublished Report prepared by Komex International Ltd., File No. KI98-4545.
CAPP (Canadian Association of Petroleum Producers), 2000. 1999 Investigation of hydrocarbon attenuation in natural wetlands, vol. I and II. Unpublished report prepared by Komex International Ltd., File No. C45450105.
CAPP (Canadian Association of Petroleum Producers), 2001. Soil and water quality guidelines for sulfolane and diisopropanolamine: Environmental and Human Health. Draft report submitted to CAPP, September 2001.
Chou, C. C. and Swatloski, R. A., 1983. Biodegradation of sulfolane in refinery wastewater. Proceedings of the 27th Purdue Industrial Waste Conference. Ann Arbor Science Publishers, Ann Arbor, MI., 559-566.
Cloughley, J. B., Regtop, H., Bode, O., 1993. Scotia Holdings PLC, UK. Eur. Pat. 576,191.
Clermont, L. P., 1970. TAPPI, 53, 2243.
Coggeshall, M. and Price, S., 2013. Sulfolane removal system.U.S., 13,196,697.
Covitch, M. J. and Sweetapple G.G., 1985. Diamond shamrock chemicals co. U.S. Pat. 4,540,716.
Cui, Q., Yang, J., Zhao, R., Li, M., 2013. Aerobic biological treatment of high sulphate sebacic acid wastewater. J. Industrial Water Treatment, 33(11), 60-63.
Dawson, J. F. and Schofield, J., 1974. Yorkshire chemicals, Ltd. Brit. Pat. 1,349,511.
De Graff, R. R., 1969. Aromatic hydrocarbon recovery process. United States Patent, 3,466,345.
Deal, G. H., Evans, H. D., Oliver, E. D., Papadopoulos M. N., 1959. A better way to extract aromatics. Petroleum Refiner, 38(9), 185-192.
Doucette, W. J., Chard, J. K., Moore, B. J., Staudt, W. J., Headley, J. V., 2005. Uptake of sulfolane and diisopropanolamine (DIPA) by cattails (Typha latifolia). Microchemical Journal, 81, 41-49.
Environment Canada, 2003. Sulfolane daphnia toxicity test results. Report from Pacific Environmental Science Centre of Environment Canada, prepared for Komex International Ltd., dated 17 March 2003.
ERAC (Environmental Research Advisory Council), 1998. Toxicity Assessment of sulfolane and diisopropanolamine. Report prepared by HydroQual Laboratories and Golder Associates, 0005.
Fairhurst, F. M., Whale, G. F., Gould, A., Walter, D., 1992. Evaluation of the pacific oyster (Crassostrea gigas) embryo larval test: statistical validation of the test procedure and susceptibility to reference toxicants. Group Research Report SBGR.91.256. Shell Research Limited. London. Sittingbourne Research Centre. Cited In: Synthetic Chemicals Ltd., 1995.
Fedorak, P. M. and Coy, D. L., 1996. Biodegradation of sulfolane in soil and groundwater samples from a sour gas plant site. Environmental Technology, 17:10, 1093-1102.
Garrison, W. E. and Hyde, T. J., 1968. E.I. du Pont de Nemours & Co., Inc. U.S. Pat. 3,361,697.
Girling, A. E., 1987. Validation of a method for determining the acute toxicity of test substances to the marine copepod Acartia tonsa and its application to the testing of oil-based products. Group Research Report. SBGR 87082. Shell Research Limited. London. Sittingborne Research Centre. Cited In: Synthetic Chemicals Ltd., 1995.
Gounot, A. M., 1994. Microbial oxidation and reduction of manganese: consequences in groundwater and applications. FEMS Microbiol., Rev., 14, 339-350.
Gray, K. A., Pogrebinsky, O. S., Mrachko, T., Xi, L., Monticello, D. J., Squires, C. H., 1996. Molecular mechanisms of biocatalytic desulfurization of fossil fuels. Nat Biotechnol, 14,1705-1709.
Greene, E. A. and Fedorak, P. M., 1998a. A differential medium for the isolation and enumeration of sulfolane-degrading bacteria. Journal of Microbiological Methods, 33, 255-262.
Greene, E. A., Gieg, L. M., Coy, D. L., Fedorak, P. M., 1998b. Sulfolane biodegradation potential in aquifer sediments at sour natural gas plant sites. Water Resources, 32, 3680-3688.
Greene, E. A., 1999. Microbial Sulfolane degradation by environmental organisms isolated from contaminated sour gas plant sediments. University of Alberta, Microbiology and biotechnology department of biologicat sciences.
Greene, E. A., Coy, D. L., Fedorak, P. M., 1999. Laboratory evaluations of factors affecting biodegradation of sulfolane and diisopropanolamine. Bioremediation Journal, 3:4, 299-313
Greene, E. A., Beatty, P. H., Fedorak, P. M., 2000. Sulfolane degradation by mixed cultures and a bacterial isolate identified as a Variovorax sp. Archives of Microbiology, 174, 111-119.
Greene, E. A. & Fedorak, P. M., 2001. Nutrient stimulation of sulfolane biodegradation in a contaminated soil from a sour natural gas plant and in a pristine soil, environmental technology, 22(6), 619-629.
Greenberg, A., Trussel, R.R., Cleseeri, L.S., 1985. Standard Methods for the Examination of Waste and Wastewater, 16 thed., Am. Public Health Assoc., Washington,pp.1268.
Headley, J. V., Peru, K. M., Dickson, L. C., 1999a. Gas chromatographic-mass spectrometric determination of sulfolane in wetland vegetation exposed to sour gas-contaminated groundwater. Journal of Chromatography, 859, 69-75.
Henery, J. D., 1985. El Paso Products Co. U.S. Pat. 4,543,438.
Heisenberg, E. and Kleine, J., 1952. Vereinigte Glanzstoff-Fabriken. U.S. Pat. 2,617,777.
Hooker, G. W. and Peterson, N. R., 1949. The Dow Chemical Co. U.S. Pat. 2,471,272.
Huban, C. M. and Plowman, R. D., 1997. Bioaugmentation: Put microbes to work. Chemical Engineering, 104(3), 74-84.
Huggins, R. L., 1977. Sulfolane Extraction of Aromatics. AIChE Spring National Meeting paper.
Jain, A. K. and Chopra, S. J., 1991. In: X. Chou ed., Proceedings of an International Conference on Petroleum Refining and Petrochemical Processing, 368-374.
Joshi, S. K., 1992. Council of Scientific and Industrial Research, India. Ind. Pat. 170,747.
Juhl, M. J. and Clark, D. P., 1990. Thiophene-degrading Escherichia coli mutants possess sulfone oxidase activity and show altered resistanceto sulfur-containing antibiotics. Appl Environ Microbiol, 60:36, 24-3631
Kirk, O., 1999. Encyclopedia of chemical technology. Fourth Edition, 1999. John Wiley & Sons.
Khanna, M. K. and Rawat, B. S., 1992. Res. Ind., 37, 67-72.
Koch, V. R., Dominey, L. A., Goldman, J. L., Langmuir, M. E., 1987. J. Power Sources, 20, 287-291.
Little, D. M., 1969. Phillips Petroleum Co. U.S. Pat. 3,474,030.
Luther, S. M., Dudas, M. J., Fedorak, P. M., 1998. Sorption of sulfolane and diisopropanolamine by soils, clays and aquifer materials. Journal of Contaminant Hydrology, 32, 159-176
Marko, O. W. and Rentsch, S. F., 1983. Dow Corning Corp. U.S. Pat. 4,402,796.
Matsuda, Y., Morita, M., Yamada, K., Hirai, K., 1985. J. Electrochem. Soc., 132, 2538-2543.
Maxfield, M., Jow, T. R., Sewchok, M. G., Shacklette, L. W., 1989. J. Power Sources, 26, 93102.
McLeod, D. W., Lin, C. Y., Ying, W. C., Tucker, M. E., 1992. Biological activated carbon for removing sulfolane from groundwater. Proceedings of the 46th Purdue Industrial Waste Conference. Ann Arbor Science Publishers: Ann Arbor, MI., 99-111.
McLeod, D. W., Ying, W. C., Hannan, S. C., Tucker, M. E., Lin, C. Y., Friedrich, E. A., 1994. Successful application of biological activated carbon for removing sulfolane from groundwater. Proceedings of the 49th Purdue Industrial Waste Conference. Ann Arbor Science Publishers: Ann Arbor, MI., 149-159.
Mehra, Y. R., 1987a. El Paso Hydrocarbons Co. Wo. Pat. 8,702,031.
Mehra, Y. R., 1987b. El Paso Hydrocarbons Co. Wo. Pat. 8,700,518.
Mehrotra, R., Garg, M. O., Chopra, S. J., 1986. Liquid-liquid phase equilibria for dearomatisation of ATF fraction. Fluid Phase Equilib., 32, 17-25.
Miller, F. F., 1951. B.F. Goodrich Co. U.S. Pat. 2,548,169.
Morris, R. C. and Shokal, E. C., 1944. Shell Development Co. U.S. Pat. 2,360,860.
Nealson, K. H. and Saffarini, D., 1994. Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation. Annu. Rev. Microbiol. 48, 311-343.
Ono, M., 1977. Mitsubishi Rayon Co., Ltd. Jpn. Pat. 77; 25,173.
Roberts, R. G., 1972. Courtaulds, Ltd. Brit. Pat. 1,263,082.
Rosier, C., Leys, N., Henoumont, C., Mergeay, M., Wattiez, R., 2012. Purification and Characterization of the Acetone Carboxylase of Cupriavidus metallidurans Strain CH34. Appl Environ Microbiol, 78(12), 4516-4518.
Rothrock, G. M., 1955. E.I. du Pont de Nemours & Co., Inc. U.S. Pat. 2,706,674.
Schneider, D. F., 2003. Extraction unit sulfolane solvent regeneration.
Schneider, D. F., 2004. Avoid Sulfolane Regeneration Problems. Chemical Engineering Progress, 100(7), 34-39.
Shell Oil Company, 1984a. FYI-OTS-0484-0304S, Supplement. sequence e. technical bulletin IC:71-20-sulfolane. Office of toxic substances. U.S. Environmental Protection Agency. Washington, D.C.
Shell Oil Company, 1984b. FYI-OTS-0484-0304S, Supplement. sequence e. toxicity tests with daphnia magna: acute toxicity of eight test materials to a newly introduced strain of D. magna in reconstituted fresh water. February, 1983. Office of Toxic Substances. U.S. Environmental Protection Agency. Washington, D.C. Stapp P.R. (1984) Phillips Petroleum Co. U.S. Pat. 4,485,872.
SRC, 1994. Aquatic plant toxicity tests – Indicators for growth inhibition and stimulation for petroleum industry waste. SRC Publication No. E-2100-8-C-93, prepared for the Canadian Association of Petroleum Producers, Saskatchewan Research Council, Saskatoon, SK.
Starr, L. D., 1975. TAPPI Alkaline Pulping Conference Preprints, 195.
Stewart, O., 2010. Sulfolane technical assistance and evaluation report. Alaska Department of Environmental Conservation.
Symons, G. E. and Buswell, A. M., 1933. The methane fermentation of carbohydrates. J. Am. Chem. Soc. 55, 2028-2036.
Tilstam, U., 2012. Sulfolane: A versatile dipolar aprotic solvent. Org. Process Res, 16 (7), 1273-1278.
Visco, S. J., Liu, M. D., Jonghe, L. C., 1990. J. Electrochem. Soc., 137, 1191-1192.
Wang, J. M., 2005. Experiment study on detection of sulfolane in water by gas chromatography. Journal of preventive medicine information, 21 (6), 749-750.
Wang, X. G., Huang S.L., Shen Y., Xv Y.B., Wu J.H., 2015. Research progress in sulfolane synthetic processes. Contemporary Chemical Industry, 3, 520-526
Wisniak, J., 1970. Br. Chem. Eng., 15, 76.
WorleyParsons Komex (WPX), 2008. Remediation of sulfolane impacted groundwater characterization, treatment and disposal. Presentation. July 2.
Yu, L., Mehrabani-Zeinabad M., Achari G., Langford C.H., 2016. Application of UV based advanced oxidation to treat sulfolane in an aqueous medium. Chemosphere, 160, 155-161
Zhu, Z. H., Sun, M. L., Li, Z. S., Yang, Z. C., Zhang, T. B., Heng, Z. C., Xiao, B. L., Li, Q. Y., Peng, Q. Y., Dong, Y. H., 1987. An investigation of the maximum allowable concentration of sulfolane in surface water. Journal of West China University Medical Society, Hua Hsi I Ko Ta Hsueh Hsueh Pao, 18, 376-380.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top