跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2026/01/13 14:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:莊育嘉
研究生(外文):Yu-Chia Chuang
論文名稱:Advillin於體感覺亞型神經元的神經再生與神經病變痛所扮演的角色
論文名稱(外文):Involvement of advillin in somatosensory neuron subtype-specific axon regeneration and neuropathic pain
指導教授:陳志成陳志成引用關係
指導教授(外文):Chih-Cheng Chen
學位類別:博士
校院名稱:國立陽明大學
系所名稱:生化暨分子生物研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:英文
論文頁數:102
中文關鍵詞:神經再生神經痛生物標記神經生長錐
外文關鍵詞:Advillinaxon regenerationneuropathic painbiomarkergrowth cone
相關次數:
  • 被引用被引用:0
  • 點閱點閱:396
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
Advillin 為一種在感覺神經元專一表現的蛋白質,其功用為調節和控制肌動蛋白微絲的結構。目前已知該蛋白質於發育早期大量表現於幾乎所有形式的體感覺神經元,然而,Advillin在成體準確的功能與角色仍尚未釐清。在本研究中,我們發現Advillin於成鼠感覺神經節其神經元族群的表現上具有特化性,主要表現於異凝集素B4 (IB4)這群非胜肽生成型的體感覺亞型神經元。無論於細胞培養或活體實驗中,皆顯示基因剔除Advillin專一地損減IB4這類軸突神經元纖維的再生。在神經元纖維再生的過程裡,Advillin主要表現於神經生長錐(growth cone)上,並存在於絲狀偽足(filopodia)的尖端結構,影響神經元纖維尋找路徑的能力,並透過與局部接合蛋白質複合體(focal adhesion complex)相關蛋白質諸如Myosin IIa、Vinculin和Focal adhesion kinase的結合和調控,來形塑和調節生長錐的形成。此外,我們更進一步地發現,在神經元纖維回縮的過程中,有部分含有Advillin的局部接合蛋白質複合體會由纖維尖端脫落於介質上,而這現象促使我們在帶有神經性疼痛的小鼠腦脊髓液中偵測到Advillin。為了瞭解Advillin所調控的神經纖維再生在神經性疼痛所扮演的角色,我們將Advillin基因剔除鼠和活體基因減弱的實驗運用在神經性疼痛的小鼠模式上,包含experimental autoimmune encephalomyelitis (EAE)此發炎性的、奧沙利鉑(oxaliplatin)此化療性的和慢性壓迫性損傷(chronic constriction injury, CCI)此類周邊神經局部損傷的神經性疼痛模式。其結果顯示無論基因剔除或基因減弱皆能延續或惡化神經損傷所引起的機械性痛覺過敏(mechanical hyperalgesia)、機械性觸摸痛(mechanical allodynia)和冷覺觸摸痛(cold allodynia)。更重要的是,在EAE 和CCI此兩種神經性疼痛小鼠模式中,Advillin基因剔除能導致脊髓背角(spinal-cord dorsal horn)上的IB4神經重塑(neural plasticity)型態發生異常。本篇論文由Advillin出發,替神經生長錐的形成、神經纖維的再生和神經性疼痛提供了一個嶄新的整合性方向,並點出了IB4此類非胜肽生成型的神經元於其中的角色。
Advillin is a sensory neuron-specific protein which regulates organization of the actin cytoskeleton. Studies indicate advillin expressed at high levels in all types of somatosensory neurons in early development. The precise role of advillin in adulthood, however, is largely unexplored. Here we reveal advillin protein expression mostly restricted to isolectin B4-positive (IB4+) neurons, classified as non-peptidergic nociceptors, in adult dorsal root ganglia (DRG). Advillin knockout (KO) specifically impaired axonal regeneration in adult IB4+ DRG neurons in vitro and in vivo. During axon regeneration, advillin was expressed at the very tips of filopodia, influenced neurite pathfinding, and modulated formation of the growth cone by interacting with and/or regulating focal adhesion-related proteins, such as myosin IIa, vinculin and activated focal adhesion kinase. The advillin-containing focal adhesion protein complex was shed from neurite tips during neurite retraction and was detectable in cerebrospinal fluid of mice with neuropathy. To test the role of advillin-mediated regeneration in neuropathic pain, advillin null mice and mice with in vivo advillin knockdown were applied to inflammation-induced (experimental autoimmune encephalomyelitis), chemotherapy-induced (oxaliplatin), and local peripheral nerve injury-induced (chronic constriction injury) neuropathic pain models. Knockout or knockdown of advillin aggravated neuropathic pain, including mechanical hyperalgesia, mechanical allodynia, and cold allodynia. Most importantly, advillin KO disturbed EAE-induced and CCI-induced neural plasticity of IB4+ afferents in the spinal-cord dorsal horn. Our study highlights a role for advillin in growth cone formation, axon regeneration, and neuropathic pain associated with IB4+ DRG neurons in adulthood.
誌謝 I
摘要 II
Abstract III
Table of Contents IV
List of figures and tables VII
Abbreviations IX
Chapter 1. Advillin Modulates Neurite Outgrowth of Somatosensory Neurons 1
1.1 Introduction 1
1.1.1 Advillin belongs to gelsolin family, assumed an actin regulating protein 1
1.1.2 Advillin is specifically expressed in sensory neurons 3
1.1.3 Objective 4
1.2 Materials and Methods 5
1.2.1 Animals 5
1.2.2 Antibody preparation 5
1.2.3 Co-immunoprecipitation 6
1.2.4 Mass spectrometry 6
1.2.5 Western blot analysis 7
1.2.6. Plasmid construction 8
1.2.7. Cell culture and transfection 8
1.2.8 Immunofluorescence 9
1.2.9 Live imaging 11
1.2.10 Image quantification 12
1.2.11 Statistical analysis 13
1.3 Results 14
1.3.1 Validation and characterization of advillin antibody by western blot. 14
1.3.2 Identification of advillin interacting protein by using LC-MS/MS analyses 14
1.3.3 The expression profile of advillin protein in DRG neuronal population of adult mice 15
1.3.4 The central and peripheral projections of advillin protein is subtype-specific 16
1.3.5 Advillin immunoreactivity labeled specific axonal structure in Avil+/Cre::GFP mice 17
1.3.6 Advillin is expressed in filopodia tips at active growth cones of regenerative DRG neurons 17
1.3.7 Advillin promotes neurite processing and filopodium formation in Neuro-2a cells. 18
1.3.9 Advillin leads neurite outgrowth and modulates filopodia of living N2a cells 19
1.3.10 Advillin has effect on the dynamics of axonal neurite outgrowth of DRG neurons on live imaging. 20
1.3.11 Advillin modulates subtype-specific neurite behaviors 20
1.3.12 Advillin coordinates the localization of vinculin and focal adhesion kinase in growth cones. 21
1.3.13 Advillin modulates the distribution of myosin IIa in growth cones. 21
1.3.14 Advillin-associated protein complex is shedding from neurite retraction. 22
Chapter 2. A Role of Advillin in the Development of Neuropathic Pain 24
2.1 Introduction 24
2.1.1 Neuropathic pain and peripheral nerve regeneration 24
2.1.2 Neuropathy and axonal regeneration of subtype specific somatosensory neurons 25
2.1.3 Models of neuropathic pain 25
2.1.4 Objective 29
2.2 Materials and Methods 30
2.2.1 Animals 30
2.2.2 Experimental autoimmune encephalomyelitis model 30
2.2.3 Oxaliplatin model 31
2.2.4 CCI-decompression model 31
2.2.5 Measurements of mechanical nocifensive behavior 31
2.2.6 Assessments of cold allodynia 32
2.2.7 Balance-beam walking task and gait behavior 33
2.2.8 Rotarod test 33
2.2.9 In vivo advillin knockdown 34
2.2.10 Western blot analysis 35
2.2.11 Immunohistochemistry 35
2.2.12 Image quantification 36
2.2.13 CSF collection 36
2.2.14 Quantification of advillin in CSF 37
2.2.15 Statistical Analysis 37
2.3 Results 38
2.3.1 Advillin has effect on EAE-induced symptoms 38
2.3.2 Advillin is involved in EAE-induced neuropathic pain 38
2.3.3 Advillin-KO EAE mice reveal elevated vinculin expression in superficial dorsal horn 40
2.3.4 Advillin impacts on neural plasticity of IB4+ central afferents in the EAE mouse model 40
2.3.5 Advillin is promising as a biomarker of EAE-induced neuropathic pain 41
2.3.6 Advillin plays a role in chemotherapy-induced peripheral neuropathy 41
2.3.7 Advillin is detectable in the CSF of mice with oxaliplatin-induced neuropathy 42
2.3.8 Advillin is involved in peripheral neuropathy induced by chronic constriction injury 43
2.3.9 Chronic constriction injury augments Advillin expression in the superficial dorsal horn 44
2.3.10 Advillin affects neural plasticity of IB4+ central afferents in the CCI mouse model 44
2.3.11 Advillin is detectable in the CSF of CCI mice 45
Chapter 3 Discussion 46
3.1 Summary 46
3.2 Non-peptidergic nociceptors and neuropathic pain 46
3.3 Advillin modulates growth cones to mediate neurite outgrowth 47
3.4 Clinical potential 49
3.5 Advillin, neural plasticity, and neuropathic pain 50
3.6 Advillin in neuropathic pain models 52
3.7 Advillin and stress 53
3.8 Conclusion 54
References 55



List of figures and tables
Table 1. LC MS/MS analysis of co-immunoprecipitation with advillin antibody 67
Table 2. Expression profiles of advillin in neuron subtypes of lumbar dorsal root ganglia (DRG) in adult mice. 69
Figure 1.Validation and characterization of advillin expression by western blotting 70
Figure 2.Exploring the interacting protein by co-IP and LC MS/MS 71
Figure 3.Advillin expression in mouse neonatal spinal cord and DRG 72
Figure 4.Expression of advillin protein in adult DRG neurons 73
Figure 5.Hierarchical clustering and K-means clustering of advillin immunoreactivity. 74
Figure 6.Advillin protein in the central and peripheral projections of adult sensory neurons. 75
Figure 7.Advillin immunoreactivity in Avil+/Cre::GFP mice. 76
Figure 8.Advillin expression in filopodia tips at active growth cones of regenerative DRG neurons 77
Figure 9.Effect of advillin on neurite processing and filopodium formation. 78
Figure 10. Advillin modulating neurite processing in living N2a cells 79
Figure 11. Effect of advillin KO on in vitro DRG neuron regeneration 80
Figure 12. Dynamics of axonal neurite outgrowth of DRG neurons on live imaging. 81
Figure 13. The effect of advillin KO on subtype-specific neurite outgrowth 82
Figure 14. Effect of advillin KO on vinculin and focal adhesion kinase (FAK) in growth cones. 83
Figure 15. Effect of advillin KO on myosin IIa in growth cones. 84
Figure 16. Shedding the advillin-associated protein complex from neurite retraction. 85
Figure 17. Effect of advillin KO on EAE-induced symptoms. 86
Figure 18. Effect of advillin KO on EAE-induced cold allodynia. 87
Figure 19. Validation of advillin knockdown in N2a cells and DRG neurons 88
Figure 20. Experimental design of advillin knockdown and von Frey test 89
Figure 21. Advillin-KO EAE mice in the recovery phase showed elevated vinculin expression in lamina I of superficial dorsal horns. 90
Figure 22. Advillin KO resulted in abnormal neural plasticity in spinal dorsal horn in the
recovery phase of EAE models. 91
Figure 23. The method used for analyzing IB4+ and CGRP+ overlapping areas in the spinal dorsal horn. 92
Figure 24. Assessment of advillin as a biomarker for EAE-induced neuropathic pain 93
Figure 25. Effect of advillin KO and knockdown on oxaliplatin-induced peripheral neuropathy 94
Figure 26. Experimental design of advillin knockdown and cold plate test 95
Figure 27. Assessment of advillin as a biomarker for oxaliplatin-induced neuropathic pain 96
Figure 28. Expression of advillin in the spinal cord dorsal horn after chronic constriction injury and decompression of constriction 97
Figure 29. Effect of advillin KO on neuroplasticity associated with local nerve injury
from compression of the sciatic nerve. 98
Figure 30. Western blot analysis of advillin expression in CSF samples of CCI model. 99
Appendix Figure 1. Effect of advillin KO and knockdown on EAE-induced neuropathic pain. 100
Appendix Figure 2. Effect of advillin KO on neuropathic pain induced by chronic constriction injury 101
Appendix Figure 3. Dissection of the fixed spinal cord from CCI-treated mice 102
1. Marks PW, Arai M, Bandura JL, Kwiatkowski DJ. Advillin (p92): a new member of the gelsolin/villin family of actin regulatory proteins. J Cell Sci. 1998;111 ( Pt 15):2129-36.
2. Silacci P, Mazzolai L, Gauci C, Stergiopulos N, Yin HL, Hayoz D. Gelsolin superfamily proteins: key regulators of cellular functions. Cell Mol Life Sci. 2004;61(19-20):2614-23.
3. Walsh TP, Weber A, Davis K, Bonder E, Mooseker M. Calcium dependence of villin-induced actin depolymerization. Biochemistry. 1984;23(25):6099-102.
4. Walsh TP, Weber A, Higgins J, Bonder EM, Mooseker MS. Effect of villin on the kinetics of actin polymerization. Biochemistry. 1984;23(12):2613-21.
5. Khurana S, George SP. Regulation of cell structure and function by actin-binding proteins: villin's perspective. FEBS Lett. 2008;582(14):2128-39.
6. Kumar N, Khurana S. Identification of a functional switch for actin severing by cytoskeletal proteins. J Biol Chem. 2004;279(24):24915-8.
7. Janmey PA, Matsudaira PT. Functional comparison of villin and gelsolin. Effects of Ca2+, KCl, and polyphosphoinositides. J Biol Chem. 1988;263(32):16738-43.
8. Athman R, Louvard D, Robine S. The epithelial cell cytoskeleton and intracellular trafficking. III. How is villin involved in the actin cytoskeleton dynamics in intestinal cells? Am J Physiol Gastrointest Liver Physiol. 2002;283(3):G496-502.
9. Northrop J, Weber A, Mooseker MS, Franzini-Armstrong C, Bishop MF, Dubyak GR, et al. Different calcium dependence of the capping and cutting activities of villin. J Biol Chem. 1986;261(20):9274-81.
10. George SP, Wang Y, Mathew S, Srinivasan K, Khurana S. Dimerization and actin-bundling properties of villin and its role in the assembly of epithelial cell brush borders. J Biol Chem. 2007;282(36):26528-41.
11. Friederich E, Pringault E, Arpin M, Louvard D. From the structure to the function of villin, an actin-binding protein of the brush border. Bioessays. 1990;12(9):403-8.
12. Fath KR, Burgess DR. Microvillus assembly. Not actin alone. Curr Biol. 1995;5(6):591-3.
13. Ezzell RM, Chafel MM, Matsudaira PT. Differential localization of villin and fimbrin during development of the mouse visceral endoderm and intestinal epithelium. Development. 1989;106(2):407-19.
14. Shibayama T, Carboni JM, Mooseker MS. Assembly of the intestinal brush border: appearance and redistribution of microvillar core proteins in developing chick enterocytes. J Cell Biol. 1987;105(1):335-44.
15. Khurana S, Arpin M, Patterson R, Donowitz M. Ileal microvillar protein villin is tyrosine-phosphorylated and associates with PLC-gamma1. Role of cytoskeletal rearrangement in the carbachol-induced inhibition of ileal NaCl absorption. J Biol Chem. 1997;272(48):30115-21.
16. Ferrary E, Cohen-Tannoudji M, Pehau-Arnaudet G, Lapillonne A, Athman R, Ruiz T, et al. In vivo, villin is required for Ca(2+)-dependent F-actin disruption in intestinal brush borders. J Cell Biol. 1999;146(4):819-30.
17. Pinson KI, Dunbar L, Samuelson L, Gumucio DL. Targeted disruption of the mouse villin gene does not impair the morphogenesis of microvilli. Dev Dyn. 1998;211(1):109-21.
18. Roy S, Esmaeilniakooshkghazi A, Patnaik S, Wang Y, George SP, Ahrorov A, et al. Villin-1 and Gelsolin Regulate Changes in Actin Dynamics That Affect Cell Survival Signaling Pathways and Intestinal Inflammation. Gastroenterology. 2018;154(5):1405-20 e2.
19. Ubelmann F, Chamaillard M, El-Marjou F, Simon A, Netter J, Vignjevic D, et al. Enterocyte loss of polarity and gut wound healing rely upon the F-actin-severing function of villin. Proc Natl Acad Sci U S A. 2013;110(15):E1380-9.
20. Hasegawa H, Abbott S, Han BX, Qi Y, Wang F. Analyzing somatosensory axon projections with the sensory neuron-specific Advillin gene. J Neurosci. 2007;27(52):14404-14.
21. Akopian AN, Wood JN. Peripheral nervous system-specific genes identified by subtractive cDNA cloning. J Biol Chem. 1995;270(36):21264-70.
22. Ravenall SJ, Gavazzi I, Wood JN, Akopian AN. A peripheral nervous system actin-binding protein regulates neurite outgrowth. Eur J Neurosci. 2002;15(2):281-90.
23. Zhou X, Wang L, Hasegawa H, Amin P, Han BX, Kaneko S, et al. Deletion of PIK3C3/Vps34 in sensory neurons causes rapid neurodegeneration by disrupting the endosomal but not the autophagic pathway. Proc Natl Acad Sci U S A. 2010;107(20):9424-9.
24. Shibata M, Ishii J, Koizumi H, Shibata N, Dohmae N, Takio K, et al. Type F scavenger receptor SREC-I interacts with advillin, a member of the gelsolin/villin family, and induces neurite-like outgrowth. J Biol Chem. 2004;279(38):40084-90.
25. Cheng CM, Lin YW, Bellin RM, Steward RL, Jr., Cheng YR, LeDuc PR, et al. Probing localized neural mechanotransduction through surface-modified elastomeric matrices and electrophysiology. Nat Protoc. 2010;5(4):714-24.
26. Dib-Hajj SD, Choi JS, Macala LJ, Tyrrell L, Black JA, Cummins TR, et al. Transfection of rat or mouse neurons by biolistics or electroporation. Nat Protoc. 2009;4(8):1118-26.
27. Henley J, Poo MM. Guiding neuronal growth cones using Ca2+ signals. Trends Cell Biol. 2004;14(6):320-30.
28. Turney SG, Ahmed M, Chandrasekar I, Wysolmerski RB, Goeckeler ZM, Rioux RM, et al. Nerve growth factor stimulates axon outgrowth through negative regulation of growth cone actomyosin restraint of microtubule advance. Mol Biol Cell. 2016;27(3):500-17.
29. Perrot R, Berges R, Bocquet A, Eyer J. Review of the multiple aspects of neurofilament functions, and their possible contribution to neurodegeneration. Mol Neurobiol. 2008;38(1):27-65.
30. Ju JS, Fuentealba RA, Miller SE, Jackson E, Piwnica-Worms D, Baloh RH, et al. Valosin-containing protein (VCP) is required for autophagy and is disrupted in VCP disease. J Cell Biol. 2009;187(6):875-88.
31. Guyant-Marechal L, Laquerriere A, Duyckaerts C, Dumanchin C, Bou J, Dugny F, et al. Valosin-containing protein gene mutations: clinical and neuropathologic features. Neurology. 2006;67(4):644-51.
32. Yi L, Kaler SG. Interaction between the AAA ATPase p97/VCP and a concealed UBX domain in the copper transporter ATP7A is associated with motor neuron degeneration. J Biol Chem. 2018;293(20):7606-17.
33. Pan HC, Lin JF, Ma LP, Shen YQ, Schachner M. Major vault protein promotes locomotor recovery and regeneration after spinal cord injury in adult zebrafish. Eur J Neurosci. 2013;37(2):203-11.
34. Paspalas CD, Perley CC, Venkitaramani DV, Goebel-Goody SM, Zhang Y, Kurup P, et al. Major vault protein is expressed along the nucleus-neurite axis and associates with mRNAs in cortical neurons. Cereb Cortex. 2009;19(7):1666-77.
35. Noorimotlagh Z, Babaie M, Safdarian M, Ghadiri T, Rahimi-Movaghar V. Mechanisms of spinal cord injury regeneration in zebrafish: a systematic review. Iran J Basic Med Sci. 2017;20(12):1287-96.
36. Zurborg S, Piszczek A, Martinez C, Hublitz P, Al Banchaabouchi M, Moreira P, et al. Generation and characterization of an Advillin-Cre driver mouse line. Mol Pain. 2011;7:66.
37. Eva R, Fawcett J. Integrin signalling and traffic during axon growth and regeneration. Curr Opin Neurobiol. 2014;27:179-85.
38. Ezratty EJ, Partridge MA, Gundersen GG. Microtubule-induced focal adhesion disassembly is mediated by dynamin and focal adhesion kinase. Nat Cell Biol. 2005;7(6):581-90.
39. Woo S, Rowan DJ, Gomez TM. Retinotopic mapping requires focal adhesion kinase-mediated regulation of growth cone adhesion. J Neurosci. 2009;29(44):13981-91.
40. Robles E, Gomez TM. Focal adhesion kinase signaling at sites of integrin-mediated adhesion controls axon pathfinding. Nat Neurosci. 2006;9(10):1274-83.
41. Medeiros NA, Burnette DT, Forscher P. Myosin II functions in actin-bundle turnover in neuronal growth cones. Nat Cell Biol. 2006;8(3):215-26.
42. Solaymani-Mohammadi S, Singer SM. Regulation of intestinal epithelial cell cytoskeletal remodeling by cellular immunity following gut infection. Mucosal Immunol. 2013;6(2):369-78.
43. Wang Y, George SP, Roy S, Pham E, Esmaeilniakooshkghazi A, Khurana S. Both the anti- and pro-apoptotic functions of villin regulate cell turnover and intestinal homeostasis. Sci Rep. 2016;6:35491.
44. Costigan M, Scholz J, Woolf CJ. Neuropathic pain: a maladaptive response of the nervous system to damage. Annu Rev Neurosci. 2009;32:1-32.
45. Merskey H, Bogduk N. Classification of Chronic Pain: Descriptions of Chronic Pain Syndromes and definitions of Pain Terms. 2nd ed. Seattle: IASP Press; 1994.
46. Joseph EK, Chen X, Bogen O, Levine JD. Oxaliplatin acts on IB4-positive nociceptors to induce an oxidative stress-dependent acute painful peripheral neuropathy. J Pain. 2008;9(5):463-72.
47. Zimmermann M. Pathobiology of neuropathic pain. Eur J Pharmacol. 2001;429(1-3):23-37.
48. Dworkin RH, Backonja M, Rowbotham MC, Allen RR, Argoff CR, Bennett GJ, et al. Advances in neuropathic pain: diagnosis, mechanisms, and treatment recommendations. Arch Neurol. 2003;60(11):1524-34.
49. Loseth S, Stalberg E, Jorde R, Mellgren SI. Early diabetic neuropathy: thermal thresholds and intraepidermal nerve fibre density in patients with normal nerve conduction studies. J Neurol. 2008;255(8):1197-202.
50. Cheng HT, Dauch JR, Porzio MT, Yanik BM, Hsieh W, Smith AG, et al. Increased axonal regeneration and swellings in intraepidermal nerve fibers characterize painful phenotypes of diabetic neuropathy. J Pain. 2013;14(9):941-7.
51. Navarro X, Vivo M, Valero-Cabre A. Neural plasticity after peripheral nerve injury and regeneration. Prog Neurobiol. 2007;82(4):163-201.
52. Dubovy P. Wallerian degeneration and peripheral nerve conditions for both axonal regeneration and neuropathic pain induction. Ann Anat. 2011;193(4):267-75.
53. Sommer C, Schafers M. Painful mononeuropathy in C57BL/Wld mice with delayed wallerian degeneration: differential effects of cytokine production and nerve regeneration on thermal and mechanical hypersensitivity. Brain Res. 1998;784(1-2):154-62.
54. Landowski LM, Dyck PJ, Engelstad J, Taylor BV. Axonopathy in peripheral neuropathies: Mechanisms and therapeutic approaches for regeneration. J Chem Neuroanat. 2016.
55. Xie W, Strong JA, Zhang JM. Active Nerve Regeneration with Failed Target Reinnervation Drives Persistent Neuropathic Pain. eNeuro. 2017;4(1).
56. Basbaum AI, Bautista DM, Scherrer G, Julius D. Cellular and molecular mechanisms of pain. Cell. 2009;139(2):267-84.
57. Belyantseva IA, Lewin GR. Stability and plasticity of primary afferent projections following nerve regeneration and central degeneration. Eur J Neurosci. 1999;11(2):457-68.
58. Gardiner NJ. Integrins and the extracellular matrix: key mediators of development and regeneration of the sensory nervous system. Dev Neurobiol. 2011;71(11):1054-72.
59. Tucker BA, Rahimtula M, Mearow KM. Laminin and growth factor receptor activation stimulates differential growth responses in subpopulations of adult DRG neurons. Eur J Neurosci. 2006;24(3):676-90.
60. Harvey P, Gong B, Rossomando AJ, Frank E. Topographically specific regeneration of sensory axons in the spinal cord. Proc Natl Acad Sci U S A. 2010;107(25):11585-90.
61. Leclere PG, Norman E, Groutsi F, Coffin R, Mayer U, Pizzey J, et al. Impaired axonal regeneration by isolectin B4-binding dorsal root ganglion neurons in vitro. J Neurosci. 2007;27(5):1190-9.
62. Molander C, Wang HF, Rivero-Melian C, Grant G. Early decline and late restoration of spinal cord binding and transganglionic transport of isolectin B4 from Griffonia simplicifolia I after peripheral nerve transection or crush. Restor Neurol Neurosci. 1996;10(3):123-33.
63. Bailey AL, Ribeiro-da-Silva A. Transient loss of terminals from non-peptidergic nociceptive fibers in the substantia gelatinosa of spinal cord following chronic constriction injury of the sciatic nerve. Neuroscience. 2006;138(2):675-90.
64. Jaggi AS, Jain V, Singh N. Animal models of neuropathic pain. Fundam Clin Pharmacol. 2011;25(1):1-28.
65. Olechowski CJ, Truong JJ, Kerr BJ. Neuropathic pain behaviours in a chronic-relapsing model of experimental autoimmune encephalomyelitis (EAE). Pain. 2009;141(1-2):156-64.
66. Osterberg A, Boivie J, Thuomas KA. Central pain in multiple sclerosis--prevalence and clinical characteristics. Eur J Pain. 2005;9(5):531-42.
67. Misawa S, Kuwabara S, Mori M, Hayakawa S, Sawai S, Hattori T. Peripheral nerve demyelination in multiple sclerosis. Clin Neurophysiol. 2008;119(8):1829-33.
68. Sarova-Pinhas I, Achiron A, Gilad R, Lampl Y. Peripheral neuropathy in multiple sclerosis: a clinical and electrophysiologic study. Acta Neurol Scand. 1995;91(4):234-8.
69. Stromnes IM, Goverman JM. Active induction of experimental allergic encephalomyelitis. Nat Protoc. 2006;1(4):1810-9.
70. Wang IC, Chung CY, Liao F, Chen CC, Lee CH. Peripheral sensory neuron injury contributes to neuropathic pain in experimental autoimmune encephalomyelitis. Sci Rep. 2017;7:42304.
71. Begum F, Zhu W, Cortes C, MacNeil B, Namaka M. Elevation of tumor necrosis factor alpha in dorsal root ganglia and spinal cord is associated with neuroimmune modulation of pain in an animal model of multiple sclerosis. J Neuroimmune Pharmacol. 2013;8(3):677-90.
72. Zhu W, Frost EE, Begum F, Vora P, Au K, Gong Y, et al. The role of dorsal root ganglia activation and brain-derived neurotrophic factor in multiple sclerosis. J Cell Mol Med. 2012;16(8):1856-65.
73. Colleoni M, Sacerdote P. Murine models of human neuropathic pain. Biochim Biophys Acta. 2010;1802(10):924-33.
74. Grothey A. Oxaliplatin-safety profile: neurotoxicity. Semin Oncol. 2003;30(4 Suppl 15):5-13.
75. Ling B, Coudore-Civiale MA, Balayssac D, Eschalier A, Coudore F, Authier N. Behavioral and immunohistological assessment of painful neuropathy induced by a single oxaliplatin injection in the rat. Toxicology. 2007;234(3):176-84.
76. Toyama S, Shimoyama N, Ishida Y, Koyasu T, Szeto HH, Shimoyama M. Characterization of acute and chronic neuropathies induced by oxaliplatin in mice and differential effects of a novel mitochondria-targeted antioxidant on the neuropathies. Anesthesiology. 2014;120(2):459-73.
77. Bennett GJ, Xie Y-K. A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain. 1988;33(1):87-107.
78. Martucci C, Trovato AE, Costa B, Borsani E, Franchi S, Magnaghi V, et al. The purinergic antagonist PPADS reduces pain related behaviours and interleukin-1 beta, interleukin-6, iNOS and nNOS overproduction in central and peripheral nervous system after peripheral neuropathy in mice. Pain. 2008;137(1):81-95.
79. Muthuraman A, Jaggi AS, Singh N, Singh D. Ameliorative effects of amiloride and pralidoxime in chronic constriction injury and vincristine induced painful neuropathy in rats. Eur J Pharmacol. 2008;587(1-3):104-11.
80. De Vry J, Kuhl E, Franken-Kunkel P, Eckel G. Pharmacological characterization of the chronic constriction injury model of neuropathic pain. Eur J Pharmacol. 2004;491(2-3):137-48.
81. Dowdall T, Robinson I, Meert TF. Comparison of five different rat models of peripheral nerve injury. Pharmacol Biochem Behav. 2005;80(1):93-108.
82. Tseng TJ, Chen CC, Hsieh YL, Hsieh ST. Effects of decompression on neuropathic pain behaviors and skin reinnervation in chronic constriction injury. Exp Neurol. 2007;204(2):574-82.
83. Thorburn KC, Paylor JW, Webber CA, Winship IR, Kerr BJ. Facial hypersensitivity and trigeminal pathology in mice with experimental autoimmune encephalomyelitis. Pain. 2016;157(3):627-42.
84. Starobova H, Vetter I. Pathophysiology of Chemotherapy-Induced Peripheral Neuropathy. Front Mol Neurosci. 2017;10:174.
85. Leech MD, Chung CY, Culshaw A, Anderton SM. Peptide-based immunotherapy of experimental autoimmune encephalomyelitis without anaphylaxis. Eur J Immunol. 2007;37(12):3576-81.
86. Lorenz JE, Kallenborn-Gerhardt W, Lu R, Syhr KM, Eaton P, Geisslinger G, et al. Oxidant-induced activation of cGMP-dependent protein kinase Ialpha mediates neuropathic pain after peripheral nerve injury. Antioxid Redox Signal. 2014;21(10):1504-15.
87. Lin CC, Chen WN, Chen CJ, Lin YW, Zimmer A, Chen CC. An antinociceptive role for substance P in acid-induced chronic muscle pain. Proc Natl Acad Sci U S A. 2012;109(2):E76-83.
88. Bonin RP, Bories C, De Koninck Y. A simplified up-down method (SUDO) for measuring mechanical nociception in rodents using von Frey filaments. Molecular pain. 2014;10(1):26.
89. Lautenbacher S, Fillingim RB. Pathophysiology of pain perception: Springer Science & Business Media; 2004.
90. Lin SH, Cheng YR, Banks RW, Min MY, Bewick GS, Chen CC. Evidence for the involvement of ASIC3 in sensory mechanotransduction in proprioceptors. Nat Commun. 2016;7:11460.
91. Chang MF, Hsieh JH, Chiang H, Kan HW, Huang CM, Chellis L, et al. Effective gene expression in the rat dorsal root ganglia with a non-viral vector delivered via spinal nerve injection. Sci Rep. 2016;6:35612.
92. Dai SP, Huang YH, Chang CJ, Huang YF, Hsieh WS, Tabata Y, et al. TDAG8 involved in initiating inflammatory hyperalgesia and establishing hyperalgesic priming in mice. Sci Rep. 2017;7:41415.
93. Thakor D, Spigelman I, Tabata Y, Nishimura I. Subcutaneous peripheral injection of cationized gelatin/DNA polyplexes as a platform for non-viral gene transfer to sensory neurons. Mol Ther. 2007;15(12):2124-31.
94. Otsu N. A threshold selection method from gray-level histograms. IEEE transactions on systems, man, and cybernetics. 1979;9(1):62-6.
95. Cheng CF, Cheng JK, Chen CY, Rau RH, Chang YC, Tsaur ML. Nerve growth factor-induced synapse-like structures in contralateral sensory ganglia contribute to chronic mirror-image pain. Pain. 2015;156(11):2295-309.
96. Attal N, Bouhassira D, Gautron M, Vaillant JN, Mitry E, Lepere C, et al. Thermal hyperalgesia as a marker of oxaliplatin neurotoxicity: a prospective quantified sensory assessment study. Pain. 2009;144(3):245-52.
97. Wilson RH, Lehky T, Thomas RR, Quinn MG, Floeter MK, Grem JL. Acute oxaliplatin-induced peripheral nerve hyperexcitability. J Clin Oncol. 2002;20(7):1767-74.
98. Casals-Diaz L, Vivo M, Navarro X. Nociceptive responses and spinal plastic changes of afferent C-fibers in three neuropathic pain models induced by sciatic nerve injury in the rat. Exp Neurol. 2009;217(1):84-95.
99. Makker PG, Duffy SS, Lees JG, Perera CJ, Tonkin RS, Butovsky O, et al. Characterisation of Immune and Neuroinflammatory Changes Associated with Chemotherapy-Induced Peripheral Neuropathy. PLoS One. 2017;12(1):e0170814.
100. Tarpley JW, Kohler MG, Martin WJ. The behavioral and neuroanatomical effects of IB4-saporin treatment in rat models of nociceptive and neuropathic pain. Brain Res. 2004;1029(1):65-76.
101. Boucher TJ, Okuse K, Bennett DL, Munson JB, Wood JN, McMahon SB. Potent analgesic effects of GDNF in neuropathic pain states. Science. 2000;290(5489):124-7.
102. Bradke F, Fawcett JW, Spira ME. Assembly of a new growth cone after axotomy: the precursor to axon regeneration. Nat Rev Neurosci. 2012;13(3):183-93.
103. Tucker BA, Rahimtula M, Mearow KM. Src and FAK are key early signalling intermediates required for neurite growth in NGF-responsive adult DRG neurons. Cell Signal. 2008;20(1):241-57.
104. D'Arcangelo G, Halegoua S. A branched signaling pathway for nerve growth factor is revealed by Src-, Ras-, and Raf-mediated gene inductions. Mol Cell Biol. 1993;13(6):3146-55.
105. Rico B, Beggs HE, Schahin-Reed D, Kimes N, Schmidt A, Reichardt LF. Control of axonal branching and synapse formation by focal adhesion kinase. Nat Neurosci. 2004;7(10):1059-69.
106. Calalb MB, Polte TR, Hanks SK. Tyrosine Phosphorylation of Focal Adhesion Kinase at Sites in the Catalytic Domain Regulates Kinase-Activity - a Role for Src Family Kinases. Molecular and Cellular Biology. 1995;15(2):954-63.
107. Gomez TM, Letourneau PC. Actin dynamics in growth cone motility and navigation. J Neurochem. 2014;129(2):221-34.
108. Bement WM, Forscher P, Mooseker MS. A novel cytoskeletal structure involved in purse string wound closure and cell polarity maintenance. J Cell Biol. 1993;121(3):565-78.
109. Arora PD, Wang Y, Janmey PA, Bresnick A, Yin HL, McCulloch CA. Gelsolin and non-muscle myosin IIA interact to mediate calcium-regulated collagen phagocytosis. J Biol Chem. 2011;286(39):34184-98.
110. Chen Y, Takizawa N, Crowley JL, Oh SW, Gatto CL, Kambara T, et al. F-actin and myosin II binding domains in supervillin. J Biol Chem. 2003;278(46):46094-106.
111. Turney SG, Bridgman PC. Laminin stimulates and guides axonal outgrowth via growth cone myosin II activity. Nat Neurosci. 2005;8(6):717-9.
112. Lin CH, Espreafico EM, Mooseker MS, Forscher P. Myosin drives retrograde F-actin flow in neuronal growth cones. Neuron. 1996;16(4):769-82.
113. Vallee RB, Seale GE, Tsai JW. Emerging roles for myosin II and cytoplasmic dynein in migrating neurons and growth cones. Trends Cell Biol. 2009;19(7):347-55.
114. Luo L. Actin cytoskeleton regulation in neuronal morphogenesis and structural plasticity. Annu Rev Cell Dev Biol. 2002;18:601-35.
115. Sydor AM, Su AL, Wang FS, Xu A, Jay DG. Talin and vinculin play distinct roles in filopodial motility in the neuronal growth cone. J Cell Biol. 1996;134(5):1197-207.
116. Chen K, Zhang W, Chen J, Li S, Guo G. Rho-associated protein kinase modulates neurite extension by regulating microtubule remodeling and vinculin distribution. Neural Regen Res. 2013;8(32):3027-35.
117. Frezel N, Sohet F, Daneman R, Basbaum AI, Braz JM. Peripheral and central neuronal ATF3 precedes CD4+ T-cell infiltration in EAE. Exp Neurol. 2016;283(Pt A):224-34.
118. Duffy SS, Perera CJ, Makker PG, Lees JG, Carrive P, Moalem-Taylor G. Peripheral and Central Neuroinflammatory Changes and Pain Behaviors in an Animal Model of Multiple Sclerosis. Front Immunol. 2016;7:369.
119. Coleman MP. The challenges of axon survival: introduction to the special issue on axonal degeneration. Exp Neurol. 2013;246:1-5.
120. Xiao WH, Zheng H, Bennett GJ. Characterization of oxaliplatin-induced chronic painful peripheral neuropathy in the rat and comparison with the neuropathy induced by paclitaxel. Neuroscience. 2012;203:194-206.
121. Fling BW, Dutta GG, Schlueter H, Cameron MH, Horak FB. Associations between Proprioceptive Neural Pathway Structural Connectivity and Balance in People with Multiple Sclerosis. Front Hum Neurosci. 2014;8:814.
122. Detloff MR, Smith EJ, Quiros Molina D, Ganzer PD, Houle JD. Acute exercise prevents the development of neuropathic pain and the sprouting of non-peptidergic (GDNF- and artemin-responsive) c-fibers after spinal cord injury. Exp Neurol. 2014;255:38-48.
123. Gauchan P, Andoh T, Kato A, Kuraishi Y. Involvement of increased expression of transient receptor potential melastatin 8 in oxaliplatin-induced cold allodynia in mice. Neurosci Lett. 2009;458(2):93-5.
124. Meacham K, Shepherd A, Mohapatra DP, Haroutounian S. Neuropathic Pain: Central vs. Peripheral Mechanisms. Curr Pain Headache Rep. 2017;21(6):28.
125. Wang XZ, Kuroda M, Sok J, Batchvarova N, Kimmel R, Chung P, et al. Identification of novel stress-induced genes downstream of chop. EMBO J. 1998;17(13):3619-30.
126. Entingh AJ, Law BK, Moses HL. Induction of the C/EBP homologous protein (CHOP) by amino acid deprivation requires insulin-like growth factor I, phosphatidylinositol 3-kinase, and mammalian target of rapamycin signaling. Endocrinology. 2001;142(1):221-8.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top