|
1. Lüftl, S. and Visakh, P.M., Polyoxymethylene: State of Art, New Challenges and Opportunities, in Polyoxymethylene Handbook: Structure, Properties, Applications and their Nanocomposites. 2014. p. 1-19. 2. Archodoulaki, V.M., Lüftl, S., and Seidler, S., Oxidation induction time studies on the thermal degradation behaviour of polyoxymethylene. Polymer Testing, 2006. 25(1): p. 83-90. 3. Masamoto, J., Matsuzaki, K., and Morishita, H., Purification of formaldehyde by distillation. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, 1994. 27(1): p. 12-16. 4. Masamoto, J. and Matsuzaki, K., A study of vapor-liquid equilibrium of formaldehyde-water mixtures using chemical theory. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, 1994. 27(1): p. 6-11. 5. Masamoto, J., Yajima, K., Sakurai, S., Aida, S., Ueda, M., and Nomura, S., Microphase separation in polyoxymethylene end-capped with a long-chain alkyl. Polymer, 2000. 41(19): p. 7283-7287. 6. Lunt, J., Large-scale production, properties and commercial applications of poly lactic acid polymers. Polymer Degradation and Stability, 1998. 59(1-3): p. 145-152. 7. Iijima, S., Helical microtubules of graphitic carbon. Nature, 1991. 354(6348): p. 56-58. 8. Karthik, P.S., Himaja, A.L., and Singh, S.P., Carbon-allotropes: Synthesis methods, applications and future perspectives. Carbon Letters, 2014. 15(4): p. 219-237. 9. Zhao, W., Nam, S.D., Pokhrel, A., Gong, J., and Kim, I.J., Carbon nanotube synthesis and growth using zeolite by catalytic CVD and applications. Journal of the Korean Ceramic Society, 2013. 50(1): p. 1-17. 10. Thostenson, E.T., Ren, Z., and Chou, T.W., Advances in the science and technology of carbon nanotubes and their composites: A review. Composites Science and Technology, 2001. 61(13): p. 1899-1912. 11. Basirun, W.J., Nasiri-Tabrizi, B., and Baradaran, S., Overview of Hydroxyapatite–Graphene Nanoplatelets Composite as Bone Graft Substitute: Mechanical Behavior and In-vitro Biofunctionality. Critical Reviews in Solid State and Materials Sciences, 2018. 43(3): p. 177-212. 12. Rouf, T.B. and Kokini, J.L., Biodegradable biopolymer–graphene nanocomposites. Journal of Materials Science, 2016. 51(22): p. 9915-9945. 13. Rafiee, M.A., Rafiee, J., Wang, Z., Song, H., Yu, Z.Z., and Koratkar, N., Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano, 2009. 3(12): p. 3884-3890. 14. Kuilla, T., Bhadra, S., Yao, D., Kim, N.H., Bose, S., and Lee, J.H., Recent advances in graphene based polymer composites. Progress in Polymer Science (Oxford), 2010. 35(11): p. 1350-1375. 15. Lambert, T.N., Chavez, C.A., Hernandez-Sanchez, B., Lu, P., Bell, N.S., Ambrosini, A., Friedman, T., Boyle, T.J., Wheeler, D.R., and Huber, D.L., Synthesis and characterization of titania-graphene nanocomposites. Journal of Physical Chemistry C, 2009. 113(46): p. 19812-19823. 16. Pan, Z., He, L., Qiu, L., Korayem, A.H., Li, G., Zhu, J.W., Collins, F., Li, D., Duan, W.H., and Wang, M.C., Mechanical properties and microstructure of a graphene oxide-cement composite. Cement and Concrete Composites, 2015. 58: p. 140-147. 17. Yakovlev, A.V., Finaenov, A.I., Zabud'kov, S.L., and Yakovleva, E.V., Thermally expanded graphite: Synthesis, properties, and prospects for use. Russian Journal of Applied Chemistry, 2006. 79(11): p. 1741-1751. 18. Fan, H., Wang, L., Zhao, K., Li, N., Shi, Z., Ge, Z., and Jin, Z., Fabrication, mechanical properties, and biocompatibility of graphene-reinforced chitosan composites. Biomacromolecules, 2010. 11(9): p. 2345-2351. 19. Qiu, J., Xing, C., Cao, X., Wang, H., Wang, L., Zhao, L., and Li, Y., Miscibility and double glass transition temperature depression of poly(L-lactic acid) (PLLA)/poly(oxymethylene) (POM) blends. Macromolecules, 2013. 46(14): p. 5806-5814. 20. Guo, X., Liu, H., Zhang, J., and Huang, J., Effects of polyoxymethylene as a polymeric nucleating agent on the isothermal crystallization and visible transmittance of poly(lactic acid). Industrial and Engineering Chemistry Research, 2014. 53(43): p. 16754-16762. 21. Mathurosemontri, S., Auwongsuwan, P., Nagai, S., and Hamada, H. The effect of injection speed on morphology and mechanical properties of polyoxymethylene/poly(lactic acid) blends. in Energy Procedia. 2014. 22. Guo, X., Zhang, J., and Huang, J., Poly(lactic acid)/polyoxymethylene blends: Morphology, crystallization, rheology, and thermal mechanical properties. Polymer (United Kingdom), 2015. 69: p. 103-109. 23. Mathurosemontri, S., Thumsorn, S., Hamada, H., and Nagai, S. Tensile properties modification of ductile polyoxymethylene/poly (lactic acid) blend by annealing technique. in Annual Technical Conference - ANTEC, Conference Proceedings. 2016. 24. Zeng, Y., Ying, Z., Du, J., and Cheng, H.M., Effects of carbon nanotubes on processing stability of polyoxymethylene in melt-mixing process. Journal of Physical Chemistry C, 2007. 111(37): p. 13945-13950. 25. Zhao, X. and Ye, L., Structure and mechanical properties of polyoxymethylene/multi-walled carbon nanotube composites. Composites Part B: Engineering, 2011. 42(4): p. 926-933. 26. Jiang, Z., Chen, Y., and Liu, Z., The morphology, crystallization and conductive performance of a polyoxymethylene/carbon nanotube nanocomposite prepared under microinjection molding conditions. Journal of Polymer Research, 2014. 21(6). 27. Yousef, S., Visco, A., Galtieri, G., and Njuguna, J., Flexural, impact, rheological and physical characterizations of POM reinforced by carbon nanotubes and paraffin oil. Polymers for Advanced Technologies, 2016. 27(10): p. 1338-1344. 28. Asadollahi-yazdi, H., Shariati, M., Imam, A., and Ghatee, M., Investigating the mechanical properties of layered graphene/polyoxymethylene nanocomposites prepared by the spray method. Journal of Composite Materials, 2017. 51(21): p. 3053-3064. 29. Xu, Z., Niu, Y., Wang, Z., Li, H., Yang, L., Qiu, J., and Wang, H., Enhanced nucleation rate of polylactide in composites assisted by surface acid oxidized carbon nanotubes of different aspect ratios. ACS Applied Materials and Interfaces, 2011. 3(9): p. 3744-3753. 30. Liang, Y.Y., Xu, J.Z., Liu, X.Y., Zhong, G.J., and Li, Z.M., Role of surface chemical groups on carbon nanotubes in nucleation for polymer crystallization: Interfacial interaction and steric effect. Polymer (United Kingdom), 2013. 54(23): p. 6479-6488. 31. Gao, Y., Picot, O.T., Bilotti, E., and Peijs, T., Influence of filler size on the properties of poly(lactic acid) (PLA)/graphene nanoplatelet (GNP) nanocomposites. European Polymer Journal, 2017. 86: p. 117-131. 32. Wang, L., Qiu, J., Sakai, E., and Wei, X., The relationship between microstructure and mechanical properties of carbon nanotubes/polylactic acid nanocomposites prepared by twin-screw extrusion. Composites Part A: Applied Science and Manufacturing, 2016. 89: p. 18-25. 33. Fayolle, B. and Verdu, J., Radiation aging and chemi-crystallization processes in polyoxymethylene. European Polymer Journal, 2011. 47(11): p. 2145-2151. 34. Qiu, J., Guan, J., Wang, H., Zhu, S., Cao, X., Ye, Q.L., and Li, Y., Enhanced crystallization rate of poly(l -lactic acid) (PLLA) by polyoxymethylene (POM) fragment crystals in the plla/pom blends with a small amount of POM. Journal of Physical Chemistry B, 2014. 118(25): p. 7167-7176. 35. Lüftl, S., Archodoulaki, V.M., Koch, T., and Seidler, S., Effects of the additive package on the thermal properties of a commercial polyoxymethylene homopolymer. Journal of Vinyl and Additive Technology, 2008. 14(1): p. 21-27. 36. Raimo, M., Structure and Morphology of Polyoxymethylene, in Polyoxymethylene Handbook: Structure, Properties, Applications and their Nanocomposites. 2014. p. 163-191. 37. Meng, X., Wang, M., Yang, L., Ye, H., Cong, C., Dong, Y., and Zhou, Q., Effects of Amino-Functionalized Graphene Oxide on the Mechanical and Thermal Properties of Polyoxymethylene. Industrial and Engineering Chemistry Research, 2017. 56(51): p. 15038-15048. 38. Chunzheng, P., Chilan, C., Haobin, T., and Jianguo, Z., Mechanical enhancement and crystallization kinetics of polyoxymethylene-based composite film with carbon nanotube. Journal of Thermoplastic Composite Materials, 2017. 30(5): p. 599-607. 39. Wenzhong, N., Kang, Q., Shaofeng, L., and Lujie, Z., Mechanical enhancement, morphology, and crystallization kinetics of polyoxymethylene-based composites with recycled carbon fiber. Journal of Thermoplastic Composite Materials, 2016. 29(7): p. 935-950. 40. Li, Y. and Shimizu, H., Toughening of polylactide by melt blending with a biodegradable poly(ether)urethane elastomer. Macromolecular Bioscience, 2007. 7(7): p. 921-928. 41. Dong, W., Jiang, F., Zhao, L., You, J., Cao, X., and Li, Y., PLLA microalloys versus PLLA nanoalloys: Preparation, morphologies, and properties. ACS Applied Materials and Interfaces, 2012. 4(7): p. 3667-3675. 42. López-Barrón, C.R. and MacOsko, C.W., Rheological and morphological study of cocontinuous polymer blends during coarsening. Journal of Rheology, 2012. 56(6): p. 1315-1334. 43. Bongiorno, A., Pagano, C., Baldi, F., Bellantone, V., Surace, R., and Fassi, I., Micro-injection molding of CNT nanocomposites obtained via compounding process. Polymer Composites, 2017. 38(2): p. 349-362.
|