跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.219) 您好!臺灣時間:2025/11/30 14:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:屠海峰
研究生(外文):Hai Feng Tu
論文名稱:聚縮醛/聚乳酸摻合體為基材之奈米複合材料製備及性質探討
論文名稱(外文):Fabrication and characterization of polyoxymethylene/polylactide blend-based nanocomposites
指導教授:邱方遒
指導教授(外文):F. C. Chiu
學位類別:碩士
校院名稱:長庚大學
系所名稱:化工與材料工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:117
中文關鍵詞:聚縮醛聚乳酸摻合體奈米複合材料物理性質
外文關鍵詞:PolyoxymethylenePoly(lactic acid)BlendsNanocompositesPhysical properties
相關次數:
  • 被引用被引用:0
  • 點閱點閱:234
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用聚縮醛(POM)與聚乳酸(PLA)為基材,分別以奈米碳管(CNT)與石墨烯薄片(GNP)為填充材,利用雙螺桿押出機(Twin-screw extruder)製備POM/PLA摻合體、與摻合體為基材的奈米複合材料;並探討所製備樣品的相形態、晶體結構、熱性質、機械性質、流變性質與導電性。研究中以掃描式電子顯微鏡與光學顯微鏡分析相形態,證明摻合體樣品呈現單一相,且填充材分散良好。由熱重分析儀與微差掃描量熱儀分析樣品發現,熱穩定性降低與結晶度降低,確認了CNT與GNP表面之羧酸基團(-COOH)會使POM於摻混過程容易裂解。廣角X-ray繞射測試結果顯示,添加奈米碳管與石墨烯薄片並不影響POM/PLA摻合體之晶型結構。POM/PLA摻合體之拉伸模數、彎曲模數、固態儲存模數、熱變形溫度、熔融態儲存模數、複黏度與導電度皆因奈米碳管的添加而提升。雖然石墨烯薄片與奈米碳管同為擁有高剛性之填充材,但石墨烯薄片因其尺寸較大以及羧酸基團較多,和奈米碳管對POM/PLA摻合體性質的影響有顯著的不同。
In this study, carbon nanotube (CNT) and graphene nanoplate (GNP) served as reinforcing fillers to successfully prepare polyoxymethylene (POM)/ polylactide (PLA) blend-based nanocomposites by a twin-screw extruder. Morphology, thermal properties, mechanical properties, rheological properties, crystal structure, and electrical resistivity of the prepared samples were examined and compared with the another. Scanning electron microscope and polarized light microscope results confirmed the single phase of the POM/PLA blend and the nanofillers was finely dispersed in the blend matrix. The Fourier transform infrared spectroscopy data revealed weaker POM characteristic peaks in the composites. Thermogravimetric analysis showed that the thermal stability decreased with increasing CNT and GNP content in the composites compared to the blend. Differential scanning calorimetry results showed that POM crystallinity decreased with increasing CNT and GNP loading. The wideangle X-ray diffraction results showed that the addition of CNT and GNP did not affect the crystal structure of POM in the blend and composites. The tensile strength/modulus, flexural strength/modulus, solid state storage modulus, heat deflection temperature, and electrical conductivity improved with increasing CNT content in composites. The rheological properties measurement confirmed the achievement of pseudo-network structure in the composites after CNT loading in the composites.
Keywords:Polyoxymethylene, Polylactide, Blends, Nanocomposites, Physical properties
指導教授推薦書
口試委員審定書
致謝 iii
摘要 iv
英文摘要 v
目錄 vi
圖目錄 x
表目錄 xv
第一章 緒論 1
第二章 文獻回顧 4
2.1聚縮醛(Polyoxymethylene,POM) 4
2.2聚乳酸(Polylactide,PLA) 6
2.3奈米碳管(Carbon nanotube,CNT) 8
2.4石墨烯薄片(Graphene nanoplate,GNP) 11
2.5聚縮醛/聚乳酸摻合體 13
2.6聚縮醛奈米複合材料 17
2.7聚乳酸奈米複合材料 21
第三章 實驗 26
3.1 材料 26
3.2 儀器設備 26
3.3 樣品製備 29
3.3.1 押出樣品製備 29
3.3.2 射出試片製備 31
3.4 性質分析 31
3.4.1 掃描式電子顯微鏡 (SEM) 31
3.4.2 偏光顯微鏡 (PLM) 31
3.4.3 廣角X-ray繞射儀 (WAXD) 32
3.4.4 熱重損失分析儀 (TGA) 32
3.4.5 示差掃描量熱儀 (DSC) 32
3.4.6 耐衝擊試驗機 (Impact Test Machine) 33
3.4.7 萬能試驗機 (Universal Test Machine) 33
3.4.8 動態機械熱分析儀 (DMA) 33
3.4.9 流變儀 (Rheometer) 33
3.4.10 熱變形溫度試驗機 (HDT Test Machine) 34
3.4.11 電阻係數測試儀 (Resistance Meter) 34
3.5 實驗流程 35
第四章 結果與討論 36
4.1相形態 36
4.1.1掃描式電子顯微鏡 36
4.1.2光學顯微鏡 44
4.2晶體結構 52
4.3熱性質 55
4.3.1熱穩定性 55
4.3.2結晶行為 60
4.4.3熔融行為 66
4.4機械性質 71
4.4.1耐衝擊性質 71
4.4.2拉伸性質 74
4.4.3彎曲性質 79
4.4.4動態機械性質 82
4.4.5熱變形溫度 87
4.5流變性質 90
4.6導電性質 93
第五章 結論 96
參考文獻 98


圖目錄
圖2-1 聚縮醛近年來需求趨勢 5
圖2-2 丙交酯合成機制 7
圖2-3 富勒烯分類 9
圖2-4 (a) 單壁奈米碳管;(b) 多壁奈米碳管 之理想結構圖;(c) 單壁奈米碳管;(d) 雙壁奈米碳管;(e) 多壁奈米碳管 之TEM圖 10
圖2-5 扶椅型(Armchair)、拉鍊型(Zigzag)及對掌型(Chiral)奈米碳管 10
圖2-6奈米碳材分類 12
圖2-7 聚縮醛氧化機制 20
圖2-8 聚縮醛酸水解機制 20
圖3-1 樣品製備及分析流程圖 35
圖4-1-1 樣品SEM影像 (1000x):(a) POM;(b) PLA;(c) M7A3;(d) M7A3-C0.5;(e) M7A3-C1.0 38
圖4-1-2 樣品SEM影像 (1000x):(a) M7A3-C1.5;(b) M7A3-C2.0;(c) M7A3-C2.5;(d) M7A3-C3.0;(e) M7A3-G0.5 39
圖4-1-3 樣品SEM影像 (1000x):(a) M7A3-G1.0;(b) M7A3-G1.5;(c) M7A3-G2.0;(d) M7A3-G2.5;(e) M7A3-G3.0 40
圖4-1-4 樣品SEM影像 (3000x):(a) POM;(b) PLA;(c) M7A3;(d) M7A3-C0.5;(e) M7A3-C1.0 41
圖4-1-5 樣品SEM影像 (3000x):(a) M7A3-C1.5;(b) M7A3-C2.0;(c) M7A3-C2.5;(d) M7A3-C3.0;(e) M7A3-G0.5 42
圖4-1-6 樣品SEM影像 (3000x):(a) M7A3-G1.0;(b) M7A3-G1.5;(c) M7A3-G2.0;(d) M7A3-G2.5;(e) M7A3-G3.0 43
圖4-1-7 樣品於190 oC熔融之偏光顯微鏡影像 (20x):(a) POM;(b) PLA;(c) M7A3;(d) M7A3-C0.5;(e) M7A3-C1.0 46
圖4-1-8 樣品於190 oC熔融之偏光顯微鏡影像 (20x):(a) M7A3-C1.5;(b) M7A3-C2.0;(c) M7A3-C2.5;(d) M7A3-C3.0;(e) M7A3-G0.5 47
圖4-1-9 樣品於190 oC熔融之偏光顯微鏡影像 (20x):(a) M7A3-G1.0;(b) M7A3-G1.5;(c) M7A3-G2.0;(d) M7A3-G2.5;(e) M7A3-G3.0 48

圖4-1-10 樣品以10 oC/min冷卻至室溫後之偏光顯微鏡影像 (20x):(a) POM;(b) PLA;(c) M7A3;(d) M7A3-C0.5;(e) M7A3-C1.0 49
圖4-1-11 樣品以10 oC/min冷卻至室溫後之偏光顯微鏡影像 (20x):(a) M7A3-C1.5;(b) M7A3-C2.0;(c) M7A3-C2.5;(d) M7A3-C3.0;(e) M7A3-G0.5 50
圖4-1-12 樣品以10 oC/min冷卻至室溫後之偏光顯微鏡影像 (20x):(a) M7A3-G1.0;(b) M7A3-G1.5;(c) M7A3-G2.0;(d) M7A3-G2.5;(e) M7A3-G3.0 51
圖4-2-1 CNT奈米複合材料以10 ℃/min冷卻至室溫後之XRD圖譜 53
圖4-2-2 GNP奈米複合材料以10 ℃/min冷卻至室溫後之XRD圖譜 53
圖4-2-3 CNT奈米複合材料以40 ℃/min冷卻至室溫後之XRD圖譜 54
圖4-2-4 GNP奈米複合材料以40 ℃/min冷卻至室溫後之XRD圖譜 54
圖4-3-1 CNT奈米複合材料於氮氣中以20 ℃/min升溫之TGA圖譜 56
圖4-3-2 GNP奈米複合材料於氮氣中以20 ℃/min升溫之TGA圖譜 56
圖4-3-3 CNT奈米複合材料於空氣中以20 ℃/min升溫之TGA圖譜 57
圖4-3-4 GNP奈米複合材料於空氣中以20 ℃/min升溫之TGA圖譜 57
圖4-3-5 CNT奈米複合材料以10 oC/min降溫之DSC圖譜 62
圖4-3-6 GNP奈米複合材料以10 oC/min降溫之DSC圖譜 62
圖4-3-7 CNT奈米複合材料以40 oC/min降溫之DSC圖譜 63
圖4-3-8GNP奈米複合材料以40 oC/min降溫之DSC圖譜 63
圖4-3-9 CNT奈米複合材料以10 oC/min降溫後以20 oC/min升溫之DSC圖譜 68
圖4-3-10 GNP奈米複合材料以10 oC/min降溫後以20 oC/min升溫之DSC圖譜 68
圖4-3-11 CNT奈米複合材料以40 oC/min降溫後以20 oC/min升溫之DSC圖譜 69
圖4-3-12 GNP奈米複合材料以40 oC/min降溫後以20 oC/min升溫之DSC圖譜 69
圖4-4-1 樣品耐衝擊性質 72
圖4-4-2 樣品拉伸強度 76
圖4-4-3 樣品拉伸模數 76
圖4-4-4 樣品斷裂延伸率 77
圖4-4-5 樣品彎曲強度 80
圖4-4-6 樣品彎曲模數 80
圖4-4-7 樣品動態機械性質 (a) 儲存模數;(b) Tan δ 85
圖4-4-8 樣品熱變形溫度 88
圖4-5-1 樣品於190 ℃之流變性質:(a) 儲存模數;(b) 複粘度 對角頻率圖 92
圖4-6-1 樣品體電阻率 94


表目錄
表3-1 複合材料樣品配方表 30
表4-3-1 樣品於氮氣環境下TGA數據 58
表4-3-2 樣品於空氣環境下TGA數據 59
表4-3-3 樣品以10 °C /min降溫之DSC數據 64
表4-3-4 樣品以40 ℃/min降溫之DSC數據 65
表4-3-5 樣品以不同速率降溫後以20 ℃/min升溫之DSC數據 70
表4-4-1樣品耐衝擊強度數據 73
表4-4-2 樣品拉伸性質數據 78
表4-4-3 樣品彎曲性質數據 81
表4-4-4 樣品動態機械性質數據 86
表4-4-5 樣品熱變形溫度數據 89
表4-6-1 樣品體電阻率數據 95
1. Lüftl, S. and Visakh, P.M., Polyoxymethylene: State of Art, New Challenges and Opportunities, in Polyoxymethylene Handbook: Structure, Properties, Applications and their Nanocomposites. 2014. p. 1-19.
2. Archodoulaki, V.M., Lüftl, S., and Seidler, S., Oxidation induction time studies on the thermal degradation behaviour of polyoxymethylene. Polymer Testing, 2006. 25(1): p. 83-90.
3. Masamoto, J., Matsuzaki, K., and Morishita, H., Purification of formaldehyde by distillation. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, 1994. 27(1): p. 12-16.
4. Masamoto, J. and Matsuzaki, K., A study of vapor-liquid equilibrium of formaldehyde-water mixtures using chemical theory. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, 1994. 27(1): p. 6-11.
5. Masamoto, J., Yajima, K., Sakurai, S., Aida, S., Ueda, M., and Nomura, S., Microphase separation in polyoxymethylene end-capped with a long-chain alkyl. Polymer, 2000. 41(19): p. 7283-7287.
6. Lunt, J., Large-scale production, properties and commercial applications of poly lactic acid polymers. Polymer Degradation and Stability, 1998. 59(1-3): p. 145-152.
7. Iijima, S., Helical microtubules of graphitic carbon. Nature, 1991. 354(6348): p. 56-58.
8. Karthik, P.S., Himaja, A.L., and Singh, S.P., Carbon-allotropes: Synthesis methods, applications and future perspectives. Carbon Letters, 2014. 15(4): p. 219-237.
9. Zhao, W., Nam, S.D., Pokhrel, A., Gong, J., and Kim, I.J., Carbon nanotube synthesis and growth using zeolite by catalytic CVD and applications. Journal of the Korean Ceramic Society, 2013. 50(1): p. 1-17.
10. Thostenson, E.T., Ren, Z., and Chou, T.W., Advances in the science and technology of carbon nanotubes and their composites: A review. Composites Science and Technology, 2001. 61(13): p. 1899-1912.
11. Basirun, W.J., Nasiri-Tabrizi, B., and Baradaran, S., Overview of Hydroxyapatite–Graphene Nanoplatelets Composite as Bone Graft Substitute: Mechanical Behavior and In-vitro Biofunctionality. Critical Reviews in Solid State and Materials Sciences, 2018. 43(3): p. 177-212.
12. Rouf, T.B. and Kokini, J.L., Biodegradable biopolymer–graphene nanocomposites. Journal of Materials Science, 2016. 51(22): p. 9915-9945.
13. Rafiee, M.A., Rafiee, J., Wang, Z., Song, H., Yu, Z.Z., and Koratkar, N., Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano, 2009. 3(12): p. 3884-3890.
14. Kuilla, T., Bhadra, S., Yao, D., Kim, N.H., Bose, S., and Lee, J.H., Recent advances in graphene based polymer composites. Progress in Polymer Science (Oxford), 2010. 35(11): p. 1350-1375.
15. Lambert, T.N., Chavez, C.A., Hernandez-Sanchez, B., Lu, P., Bell, N.S., Ambrosini, A., Friedman, T., Boyle, T.J., Wheeler, D.R., and Huber, D.L., Synthesis and characterization of titania-graphene nanocomposites. Journal of Physical Chemistry C, 2009. 113(46): p. 19812-19823.
16. Pan, Z., He, L., Qiu, L., Korayem, A.H., Li, G., Zhu, J.W., Collins, F., Li, D., Duan, W.H., and Wang, M.C., Mechanical properties and microstructure of a graphene oxide-cement composite. Cement and Concrete Composites, 2015. 58: p. 140-147.
17. Yakovlev, A.V., Finaenov, A.I., Zabud'kov, S.L., and Yakovleva, E.V., Thermally expanded graphite: Synthesis, properties, and prospects for use. Russian Journal of Applied Chemistry, 2006. 79(11): p. 1741-1751.
18. Fan, H., Wang, L., Zhao, K., Li, N., Shi, Z., Ge, Z., and Jin, Z., Fabrication, mechanical properties, and biocompatibility of graphene-reinforced chitosan composites. Biomacromolecules, 2010. 11(9): p. 2345-2351.
19. Qiu, J., Xing, C., Cao, X., Wang, H., Wang, L., Zhao, L., and Li, Y., Miscibility and double glass transition temperature depression of poly(L-lactic acid) (PLLA)/poly(oxymethylene) (POM) blends. Macromolecules, 2013. 46(14): p. 5806-5814.
20. Guo, X., Liu, H., Zhang, J., and Huang, J., Effects of polyoxymethylene as a polymeric nucleating agent on the isothermal crystallization and visible transmittance of poly(lactic acid). Industrial and Engineering Chemistry Research, 2014. 53(43): p. 16754-16762.
21. Mathurosemontri, S., Auwongsuwan, P., Nagai, S., and Hamada, H. The effect of injection speed on morphology and mechanical properties of polyoxymethylene/poly(lactic acid) blends. in Energy Procedia. 2014.
22. Guo, X., Zhang, J., and Huang, J., Poly(lactic acid)/polyoxymethylene blends: Morphology, crystallization, rheology, and thermal mechanical properties. Polymer (United Kingdom), 2015. 69: p. 103-109.
23. Mathurosemontri, S., Thumsorn, S., Hamada, H., and Nagai, S. Tensile properties modification of ductile polyoxymethylene/poly (lactic acid) blend by annealing technique. in Annual Technical Conference - ANTEC, Conference Proceedings. 2016.
24. Zeng, Y., Ying, Z., Du, J., and Cheng, H.M., Effects of carbon nanotubes on processing stability of polyoxymethylene in melt-mixing process. Journal of Physical Chemistry C, 2007. 111(37): p. 13945-13950.
25. Zhao, X. and Ye, L., Structure and mechanical properties of polyoxymethylene/multi-walled carbon nanotube composites. Composites Part B: Engineering, 2011. 42(4): p. 926-933.
26. Jiang, Z., Chen, Y., and Liu, Z., The morphology, crystallization and conductive performance of a polyoxymethylene/carbon nanotube nanocomposite prepared under microinjection molding conditions. Journal of Polymer Research, 2014. 21(6).
27. Yousef, S., Visco, A., Galtieri, G., and Njuguna, J., Flexural, impact, rheological and physical characterizations of POM reinforced by carbon nanotubes and paraffin oil. Polymers for Advanced Technologies, 2016. 27(10): p. 1338-1344.
28. Asadollahi-yazdi, H., Shariati, M., Imam, A., and Ghatee, M., Investigating the mechanical properties of layered graphene/polyoxymethylene nanocomposites prepared by the spray method. Journal of Composite Materials, 2017. 51(21): p. 3053-3064.
29. Xu, Z., Niu, Y., Wang, Z., Li, H., Yang, L., Qiu, J., and Wang, H., Enhanced nucleation rate of polylactide in composites assisted by surface acid oxidized carbon nanotubes of different aspect ratios. ACS Applied Materials and Interfaces, 2011. 3(9): p. 3744-3753.
30. Liang, Y.Y., Xu, J.Z., Liu, X.Y., Zhong, G.J., and Li, Z.M., Role of surface chemical groups on carbon nanotubes in nucleation for polymer crystallization: Interfacial interaction and steric effect. Polymer (United Kingdom), 2013. 54(23): p. 6479-6488.
31. Gao, Y., Picot, O.T., Bilotti, E., and Peijs, T., Influence of filler size on the properties of poly(lactic acid) (PLA)/graphene nanoplatelet (GNP) nanocomposites. European Polymer Journal, 2017. 86: p. 117-131.
32. Wang, L., Qiu, J., Sakai, E., and Wei, X., The relationship between microstructure and mechanical properties of carbon nanotubes/polylactic acid nanocomposites prepared by twin-screw extrusion. Composites Part A: Applied Science and Manufacturing, 2016. 89: p. 18-25.
33. Fayolle, B. and Verdu, J., Radiation aging and chemi-crystallization processes in polyoxymethylene. European Polymer Journal, 2011. 47(11): p. 2145-2151.
34. Qiu, J., Guan, J., Wang, H., Zhu, S., Cao, X., Ye, Q.L., and Li, Y., Enhanced crystallization rate of poly(l -lactic acid) (PLLA) by polyoxymethylene (POM) fragment crystals in the plla/pom blends with a small amount of POM. Journal of Physical Chemistry B, 2014. 118(25): p. 7167-7176.
35. Lüftl, S., Archodoulaki, V.M., Koch, T., and Seidler, S., Effects of the additive package on the thermal properties of a commercial polyoxymethylene homopolymer. Journal of Vinyl and Additive Technology, 2008. 14(1): p. 21-27.
36. Raimo, M., Structure and Morphology of Polyoxymethylene, in Polyoxymethylene Handbook: Structure, Properties, Applications and their Nanocomposites. 2014. p. 163-191.
37. Meng, X., Wang, M., Yang, L., Ye, H., Cong, C., Dong, Y., and Zhou, Q., Effects of Amino-Functionalized Graphene Oxide on the Mechanical and Thermal Properties of Polyoxymethylene. Industrial and Engineering Chemistry Research, 2017. 56(51): p. 15038-15048.
38. Chunzheng, P., Chilan, C., Haobin, T., and Jianguo, Z., Mechanical enhancement and crystallization kinetics of polyoxymethylene-based composite film with carbon nanotube. Journal of Thermoplastic Composite Materials, 2017. 30(5): p. 599-607.
39. Wenzhong, N., Kang, Q., Shaofeng, L., and Lujie, Z., Mechanical enhancement, morphology, and crystallization kinetics of polyoxymethylene-based composites with recycled carbon fiber. Journal of Thermoplastic Composite Materials, 2016. 29(7): p. 935-950.
40. Li, Y. and Shimizu, H., Toughening of polylactide by melt blending with a biodegradable poly(ether)urethane elastomer. Macromolecular Bioscience, 2007. 7(7): p. 921-928.
41. Dong, W., Jiang, F., Zhao, L., You, J., Cao, X., and Li, Y., PLLA microalloys versus PLLA nanoalloys: Preparation, morphologies, and properties. ACS Applied Materials and Interfaces, 2012. 4(7): p. 3667-3675.
42. López-Barrón, C.R. and MacOsko, C.W., Rheological and morphological study of cocontinuous polymer blends during coarsening. Journal of Rheology, 2012. 56(6): p. 1315-1334.
43. Bongiorno, A., Pagano, C., Baldi, F., Bellantone, V., Surace, R., and Fassi, I., Micro-injection molding of CNT nanocomposites obtained via compounding process. Polymer Composites, 2017. 38(2): p. 349-362.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊