跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.11) 您好!臺灣時間:2025/09/24 01:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:杜雨浩
研究生(外文):Tu, Yu-Hao
論文名稱:以氧化鋅/雲母晶種層於水熱法製備氧化鋅單晶
論文名稱(外文):Hydrothermal Growth of Zinc Oxide Single Crystal via ZnO/Muscovite Seed Layer
指導教授:朱英豪
指導教授(外文):Chu, Ying-Hao
口試委員:張立張宏宜
口試委員(外文):Chang, LiChang, Horng-Yi
口試日期:2018-7-30
學位類別:碩士
校院名稱:國立交通大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:30
中文關鍵詞:雲母水熱氧化鋅單晶
外文關鍵詞:muscovitehydrothermalzinc oxidesingle crystal
相關次數:
  • 被引用被引用:0
  • 點閱點閱:601
  • 評分評分:
  • 下載下載:97
  • 收藏至我的研究室書目清單書目收藏:1
氧化鋅是一具有十分多樣性質的材料,它可以被應用在電學、聲學、光學等眾多領域,其中因為氧化鋅的寬能隙(3.37eV)、高激子束縛能(60meV)以及良好的機械與熱穩定性,成為製作發光二極體的熱門材料[1]。傳統製程中,氧化鋅常以異質磊晶的方式成長於藍寶石基板上,但由於藍寶石基板與氧化鋅之間較大的晶格不匹配,使得氧化鋅內部產生大量的差排,這些缺陷使得氧化鋅的發光表現不如預期,為了解決這個問題,研究人員改以同質磊晶的方式在氧化鋅基板上成長氧化鋅以避免差排產生,藉此提高元件的發光效能。除此之外,氧化鋅的晶格常數也與目前被大量使用的發光二極體材料氮化鎵相近,基於相同的理由,高品質氧化鋅基板的需求隨之大量增加,在許多製作氧化鋅單晶的方法中,水熱法由於較低的成本、較快的成長速率以及大尺寸的晶體成長而被廣泛運用,在本研究中,我們以較簡易的方式,使用鐵氟龍內膽取代白金內膽,並且由射頻磁控濺鍍製備氧化鋅/雲母異質結構取代傳統水熱法中的氧化鋅單晶晶種做為晶種層。所得到的氧化鋅單晶將以X光繞射儀、螢光激發光譜及掃描式電子顯微鏡鑑定其品質。
Zinc oxide is a multifunctional material for electronics, acoustics and photonics. Owing to the wide band gap (3.37eV), the large excition-binding energy (60meV), good mechanical and thermal stability. Zinc oxide has been considered to be one of the promising material for light-emitting diode. Typically, zinc oxide is grown on sapphire substrate, but its performance is not as good as bulk zinc oxide due to the defects between zinc oxide and sapphire interface. To avoid the high dislocation density which originate from the large lattice mismatch of heterostructures, people tend to use homoepitaxy to grow zinc oxide. On the other hand, the lattice constant of zinc oxide is similar to gallium nitride, the currently used material for light emitting diode. Therefore, a high quality zinc oxide single crystal substrate is needed for this kind of application. Among varies methods of growing zinc oxide single crystal, hydrothermal is the mostly used process to obtain high quality single crystal due to its low cost, large crystal size and high growth rate. In our study, we try to get high quality zinc oxide single crystal with hydrothermal process in an easier way. Hence, we use Teflon inner container to replace platinum inner container to undergoing the hydrothermal process. Besides, instead of using single crystal zinc oxide as seed, we also replace it with zinc oxide/muscovite heterostructure. Then, the quality of the as-grown crystal is confirmed with X-ray diffraction, photoluminescence and scanning electron microscopy.
中文摘要 ……………………………………………………… i
英文摘要 ……………………………………………………… ii
誌謝 ……………………………………………………… iii
目錄 ……………………………………………………… iv
圖目錄 ……………………………………………………… v
一、 緒論………………………………………………… 1
二、 文獻回顧…………………………………………… 3
2.1 雲母的結構與應用………………………………… 3
2.2 氧化鋅的結構與應用……………………………… 4
2.3 氧化鋅單晶於水熱法之製程……………………… 6
三、 實驗方法…………………………………………… 8
3.1 實驗流程…………………………………………… 8
3.1.1 氧化鋅晶種製備…………………………………… 8
3.1.2 水熱法儀器及溶液調配…………………………… 8
3.2 製程儀器…………………………………………… 10
3.2.1 射頻磁控濺鍍……………………………………… 10
3.2.2 水熱法……………………………………………… 11
3.3 分析儀器…………………………………………… 12
3.3.1 高解析X光繞射儀………………………………… 12
3.3.2 掃描式電子顯微鏡………………………………… 13
3.3.3 光致發光光譜儀…………………………………… 14
3.3.4 紫外光/可見光分光光譜儀………………………… 15
四、 結果與討論………………………………………… 16
4.1 以射頻磁控濺鍍法製作之氧化鋅晶種層………… 16
4.2 於不同環境下以水熱法成長氧化鋅單晶………… 17
4.2.1 反應溫度…………………………………………… 17
4.2.2 降溫速率…………………………………………… 18
4.2.3 溶液鹼度…………………………………………… 19
4.2.4 粉末原料粒徑大小………………………………… 20
4.2.5 檸檬酸鈉添加……………………………………… 21
4.2.6 晶種層於水熱罐內位置…………………………… 22
4.3 整合各項條件後之成果…………………………… 23
五、 結論………………………………………………… 25
參考文獻 ……………………………………………………… 26
附錄一 ……………………………………………………… 29
[1] P. Zu, et al., “Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature”, Solid State Commun. 103, 459 (1996)
[2] Y. N. Xu, W. Y. Ching, “Electronic, optical, and structural properties of some wurtzite crystals”, Physical Review B, 48, 4335-4351 (1993)
[3] D. C. Look, et al., “Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy”, Appl. Phys. Lett. 81, 1830 (2002)
[4] H. von Wenckstern, et al., “Homoepitaxy of ZnO by pulsed‐laser deposition”, phys. stat. sol. (RRL), 1, 129-131 (2007)
[5] A. Ougazzaden, et al., “Growth of GaN by metal organic vapor phase epitaxy on ZnO-buffered c-sapphire substrates”, Journal of Crystal Growth, 310, 944-947 (2008)
[6] N. Sakagami, K. Shibayama, ”Hydrothermal Growth and Characterization of ZnO Single Crystals”, Jpn. J. Appl. Phys. 20-4, 201 (1981)
[7] R.A. Laudice, E.D. Kolg, A.J. Caporaso, ”Hydrothermal Growth of Large Sound Crystals of Zinc Oxide”, J. Am. Ceram.Soc. 47, 9 (1964)
[8] T. Sekiguchi et al., ”Hydrothermal growth of ZnO single crystals and their optical characterization”, Journal of Crystal Growth, 214-215, 72-76 (2000)
[9] J.W. Nielsen, E.F. Dearborn, ”THE GROWTH OF LARGE SINGLE CRYSTALS OF ZINC OXIDE”, J. Phys. Chem. 64, 1762–1763 (1960)
[10] N. Ohashi, et al., ”Cathodoluminescence and Photoluminescence of Zinc Oxide Single Crystals Grown by a Flux method”, J. Kore. Phys. Soc. 35 S287 (1999)
[11] J. Nause, ”ZnO broadens the spectrum”, III-Vs Review 12, 28 (1999)
[12] 陳凊,「成長凡德瓦磊晶透明導電氧化物於可撓式雲母基板」,國立交通大學,碩士論文,民國104年。
[13] V. A. Drits, et al., ”Factors responsible for crystal-chemical variations in the solid solutions from illite to aluminoceladonite and from glauconite to celadonite”, American Mineralogist, 95, 348-361 (2010),
[14] H. Sowa, H. Ahsbahs, “High-pressure X-ray investigation of zincite ZnO single crystals using diamond anvils with an improved shape”, Journal of Applied Crystallography, 39, 169-175 (2006)
[15] J. You, et al., “Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers”, Nature Nanotechnology, 11, 75–81 (2016)
[16] D. Liu, T. L. Kelly, “Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques”, Nature Photonics, 8, 133–138 (2014)
[17] Q. Liao, et al., “Flexible piezoelectric nanogenerators based on a fiber/ZnO nanowires/paper hybrid structure for energy harvesting”, Chem. Commun., 50, 1417-1419 (2014)
[18] G. Demazeau, A. Largeteau, “Hydrothermal/Solvothermal Crystal Growth: an Old but Adaptable Process”, Z. Anorg. Allg. Chem., 641, (2), 159–163 (2015)
[19] F. Huang, et al., “Research progress in ZnO single-crystal: growth, scientific understanding, and device applications”, Chin. Sci. Bull., 59 (12), 1235–1250 (2014)
[20] K. Maeda, et al., “Growth of 2 inch ZnO bulk single crystal by the hydrothermal method”, Semicond. Sci. Technol., 20, 49–54 (2005)
[21] C. Suryanarayana, M. Grant Norton, X-Ray Diffraction: A Practical Approach, Springer US, 1998
[22] L. Reimer, Scanning Electron Microscopy: Physics of Image Formation and Microanalysis, Springer-Verlag Berlin Heidelberg, 1998
[23] S. Perkowitz, Optical characterization of semiconductors : infrared, Raman, and photoluminescence spectroscopy, Academic Press, 1993
[24] L. D. S. Yadav, Organic Spectroscopy, Springer Netherlands, 2005
[25] L. N. Demianets, et al., “Mechanism of Growth of ZnO Single Crystals from Hydrothermal Alkali Solutions”, Crystallography Reports, 47, 86–98 (2002)
[26] W. J. Li, et al., “Growth mechanism and growth habit of oxide crystals”, Journal of Crystal Growth, 203, 186-196 (1999)
[27] Z. R. Tian, et al., “Complex and oriented ZnO nanostructures”, Nature Materials, 2, 821–826 (2003)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊