[1] P. Zu, et al., “Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature”, Solid State Commun. 103, 459 (1996)
[2] Y. N. Xu, W. Y. Ching, “Electronic, optical, and structural properties of some wurtzite crystals”, Physical Review B, 48, 4335-4351 (1993)
[3] D. C. Look, et al., “Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy”, Appl. Phys. Lett. 81, 1830 (2002)
[4] H. von Wenckstern, et al., “Homoepitaxy of ZnO by pulsed‐laser deposition”, phys. stat. sol. (RRL), 1, 129-131 (2007)
[5] A. Ougazzaden, et al., “Growth of GaN by metal organic vapor phase epitaxy on ZnO-buffered c-sapphire substrates”, Journal of Crystal Growth, 310, 944-947 (2008)
[6] N. Sakagami, K. Shibayama, ”Hydrothermal Growth and Characterization of ZnO Single Crystals”, Jpn. J. Appl. Phys. 20-4, 201 (1981)
[7] R.A. Laudice, E.D. Kolg, A.J. Caporaso, ”Hydrothermal Growth of Large Sound Crystals of Zinc Oxide”, J. Am. Ceram.Soc. 47, 9 (1964)
[8] T. Sekiguchi et al., ”Hydrothermal growth of ZnO single crystals and their optical characterization”, Journal of Crystal Growth, 214-215, 72-76 (2000)
[9] J.W. Nielsen, E.F. Dearborn, ”THE GROWTH OF LARGE SINGLE CRYSTALS OF ZINC OXIDE”, J. Phys. Chem. 64, 1762–1763 (1960)
[10] N. Ohashi, et al., ”Cathodoluminescence and Photoluminescence of Zinc Oxide Single Crystals Grown by a Flux method”, J. Kore. Phys. Soc. 35 S287 (1999)
[11] J. Nause, ”ZnO broadens the spectrum”, III-Vs Review 12, 28 (1999)
[12] 陳凊,「成長凡德瓦磊晶透明導電氧化物於可撓式雲母基板」,國立交通大學,碩士論文,民國104年。[13] V. A. Drits, et al., ”Factors responsible for crystal-chemical variations in the solid solutions from illite to aluminoceladonite and from glauconite to celadonite”, American Mineralogist, 95, 348-361 (2010),
[14] H. Sowa, H. Ahsbahs, “High-pressure X-ray investigation of zincite ZnO single crystals using diamond anvils with an improved shape”, Journal of Applied Crystallography, 39, 169-175 (2006)
[15] J. You, et al., “Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers”, Nature Nanotechnology, 11, 75–81 (2016)
[16] D. Liu, T. L. Kelly, “Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques”, Nature Photonics, 8, 133–138 (2014)
[17] Q. Liao, et al., “Flexible piezoelectric nanogenerators based on a fiber/ZnO nanowires/paper hybrid structure for energy harvesting”, Chem. Commun., 50, 1417-1419 (2014)
[18] G. Demazeau, A. Largeteau, “Hydrothermal/Solvothermal Crystal Growth: an Old but Adaptable Process”, Z. Anorg. Allg. Chem., 641, (2), 159–163 (2015)
[19] F. Huang, et al., “Research progress in ZnO single-crystal: growth, scientific understanding, and device applications”, Chin. Sci. Bull., 59 (12), 1235–1250 (2014)
[20] K. Maeda, et al., “Growth of 2 inch ZnO bulk single crystal by the hydrothermal method”, Semicond. Sci. Technol., 20, 49–54 (2005)
[21] C. Suryanarayana, M. Grant Norton, X-Ray Diffraction: A Practical Approach, Springer US, 1998
[22] L. Reimer, Scanning Electron Microscopy: Physics of Image Formation and Microanalysis, Springer-Verlag Berlin Heidelberg, 1998
[23] S. Perkowitz, Optical characterization of semiconductors : infrared, Raman, and photoluminescence spectroscopy, Academic Press, 1993
[24] L. D. S. Yadav, Organic Spectroscopy, Springer Netherlands, 2005
[25] L. N. Demianets, et al., “Mechanism of Growth of ZnO Single Crystals from Hydrothermal Alkali Solutions”, Crystallography Reports, 47, 86–98 (2002)
[26] W. J. Li, et al., “Growth mechanism and growth habit of oxide crystals”, Journal of Crystal Growth, 203, 186-196 (1999)
[27] Z. R. Tian, et al., “Complex and oriented ZnO nanostructures”, Nature Materials, 2, 821–826 (2003)